Skip to content
Snippets Groups Projects
net_test_3.cpp 4.91 KiB
Newer Older
  • Learn to ignore specific revisions
  • Michal Kravcenko's avatar
    Michal Kravcenko committed
    /**
     * Example of a set of neural networks sharing some edge weights
    
     * The system of equations associated with the net in this example is not regular
     * minimizes the function: [(2y+0.5)^2 + (2x+y+0.25)^2] / 2 + [(4.5x + 0.37)^2] / 1
    
     * minimum [0.010024714] at (x, y) = (-333/4370, -9593/43700) = (-0.076201373, -0.219519451)
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
    //
    // Created by martin on 7/16/18.
    //
    
    #include <vector>
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
    int main() {
    
        std::cout << "Running lib4neuro example   3: Use of the particle swarm method to train a set of networks sharing some edge weights" << std::endl;
        std::cout << "********************************************************************************************************************" <<std::endl;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        /* TRAIN DATA DEFINITION */
        std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_01, data_vec_02;
        std::vector<double> inp, out;
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        data_vec_01.emplace_back(std::make_pair(inp, out));
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        data_vec_01.emplace_back(std::make_pair(inp, out));
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
    
        inp = {1.25};
        out = {0.63};
        data_vec_02.emplace_back(std::make_pair(inp, out));
        DataSet ds_02(&data_vec_02);
    
        /* NETWORK DEFINITION */
        NeuralNetwork net;
    
        /* Input neurons */
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        NeuronLinear *i1 = new NeuronLinear();  //f(x) = x
        NeuronLinear *i2 = new NeuronLinear();  //f(x) = x
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
    
        NeuronLinear *i3 = new NeuronLinear( ); //f(x) = x
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        /* Output neurons */
    
        NeuronLinear *o1 = new NeuronLinear( );  //f(x) = x
        NeuronLinear *o2 = new NeuronLinear( );  //f(x) = x
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
    
    
        /* Adding neurons to the nets */
    
        size_t idx1 = net.add_neuron(i1, BIAS_TYPE::NO_BIAS);
        size_t idx2 = net.add_neuron(i2, BIAS_TYPE::NO_BIAS);
        size_t idx3 = net.add_neuron(o1, BIAS_TYPE::NEXT_BIAS);
        size_t idx4 = net.add_neuron(i3, BIAS_TYPE::NEXT_BIAS);
        size_t idx5 = net.add_neuron(o2, BIAS_TYPE::NEXT_BIAS);
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /* Adding connections */
    
        net.add_connection_simple(idx1, idx3, SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT); // weight index 0
        net.add_connection_simple(idx2, idx3, SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT); // weight index 1
        net.add_connection_simple(idx4, idx5, SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT, 0); // AGAIN weight index 0 - same weight!
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        net.randomize_weights();
    
        /* specification of the input/output neurons */
        std::vector<size_t> net_input_neurons_indices(3);
        std::vector<size_t> net_output_neurons_indices(2);
        net_input_neurons_indices[0] = idx1;
        net_input_neurons_indices[1] = idx2;
        net_input_neurons_indices[2] = idx4;
    
        net_output_neurons_indices[0] = idx3;
        net_output_neurons_indices[1] = idx5;
    
        net.specify_input_neurons(net_input_neurons_indices);
        net.specify_output_neurons(net_output_neurons_indices);
    
    
        /* CONSTRUCTION OF SUBNETWORKS */
    
        //TODO subnetworks retain the number of weights, could be optimized to include only the used weights
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        std::vector<size_t> subnet_01_input_neurons, subnet_01_output_neurons;
        std::vector<size_t> subnet_02_input_neurons, subnet_02_output_neurons;
    
        subnet_01_input_neurons.push_back(idx1);
        subnet_01_input_neurons.push_back(idx2);
        subnet_01_output_neurons.push_back(idx3);
    
        NeuralNetwork *subnet_01 = net.get_subnet( subnet_01_input_neurons, subnet_01_output_neurons );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        subnet_02_input_neurons.push_back(idx4);
        subnet_02_output_neurons.push_back(idx5);
    
        NeuralNetwork *subnet_02 = net.get_subnet( subnet_02_input_neurons, subnet_02_output_neurons );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
    
        if(subnet_01 && subnet_02){
            /* COMPLEX ERROR FUNCTION SPECIFICATION */
            MSE mse_01(subnet_01, &ds_01);
            MSE mse_02(subnet_02, &ds_02);
    
            ErrorSum mse_sum;
            mse_sum.add_error_function( &mse_01 );
            mse_sum.add_error_function( &mse_02 );
    
            /* TRAINING METHOD SETUP */
            std::vector<double> domain_bounds = {-10.0, 10.0, -10.0, 10.0,-10.0, 10.0, -10.0, 10.0,-10.0, 10.0, -10.0, 10.0,-10.0, 10.0, -10.0, 10.0,-10.0, 10.0, -10.0, 10.0,-10.0, 10.0, -10.0, 10.0,-10.0, 10.0, -10.0, 10.0};
            ParticleSwarm swarm_01(&mse_sum, &domain_bounds);
    
            /* if the maximal velocity from the previous step is less than 'gamma' times the current maximal velocity, then one
             * terminating criterion is met */
            double gamma = 0.5;
    
            /* if 'delta' times 'n' particles are in the centroid neighborhood given by the radius 'epsilon', then the second
             * terminating criterion is met ('n' is the total number of particles) */
            double epsilon = 0.02;
            double delta = 0.9;
            swarm_01.optimize(gamma, epsilon, delta);
    
        }
        else{
            std::cout << "We apologize, this example is unfinished as we are in the process of developing methods for efficient subnetwork definition" << std::endl;
        }
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        return 0;
    }