Skip to content
Snippets Groups Projects
LazyLearning.cpp 4.66 KiB
Newer Older
  • Learn to ignore specific revisions
  • kra568's avatar
    kra568 committed
    /**
     * DESCRIPTION OF THE FILE
     *
     * @author Michal Kravčenko
     * @date 30.7.18 -
     */
    
    #include <random.hpp>
    #include <limits>
    
    #include "message.h"
    
    #include "LazyLearning.h"
    
    namespace lib4neuro {
    	LazyLearning::LazyLearning(
    		LearningMethod &inner_trainer,
    		double tol
    	){
    		this->inner_method = &inner_trainer;
    		this->tolerance = tol;
    	}
    
    	LazyLearning::~LazyLearning( ) {}
    
    	void LazyLearning::optimize(
    		lib4neuro::ErrorFunction& ef,
    		std::ofstream* ofs
    	) {
    
            std::vector<size_t> subset_indices;
            std::vector<bool> active_subset;
            std::vector<float> entry_errors;
            while( true ){
    
                ef.divide_data_worst_subset( subset_indices, active_subset, entry_errors );
                /* errors of the active subset */
                float subset_error_min = std::numeric_limits<float>::max();
                float subset_error_max = 0.0;
                float subset_error_total = 0.0;
                size_t new_subset_index = subset_indices[subset_indices.size() - 1];
                float new_subset_entry_error = entry_errors[new_subset_index];
    
                float new_subset_entry_error_min = 0.0;
                float new_subset_entry_error_max = 0.0;
    
    kra568's avatar
    kra568 committed
    
    
                /* errors of the elements not considered */
                float shelved_error_min = subset_error_min;
                float shelved_error_max = 0.0;
                float shelved_error_total = 0.0;
    
                /* processing of the errors */
                for( size_t i = 0; i < entry_errors.size(); ++i){
                    if( active_subset[ i ] ){
                        if( i == new_subset_index ){
    
                        }
                        else{
                            subset_error_total += entry_errors[ i ];
                            subset_error_max = std::max(subset_error_max, entry_errors[ i ] );
                            subset_error_min = std::min(subset_error_min, entry_errors[ i ] );
                        }
                    }
                    else{
                        shelved_error_total += entry_errors[ i ];
                        shelved_error_max = std::max(shelved_error_max, entry_errors[ i ] );
                        shelved_error_min = std::min(shelved_error_min, entry_errors[ i ] );
                    }
                }
    
    
                int nactive_set = subset_indices.size();
                int nshelved_set = active_subset.size() - subset_indices.size();
    
                MPI_Allreduce( MPI_IN_PLACE, &nactive_set, 1, MPI_INT, MPI_SUM, lib4neuro::mpi_active_comm );
                MPI_Allreduce( MPI_IN_PLACE, &subset_error_total, 1, MPI_FLOAT, MPI_SUM, lib4neuro::mpi_active_comm );
                MPI_Allreduce( MPI_IN_PLACE, &subset_error_min, 1, MPI_FLOAT, MPI_MIN, lib4neuro::mpi_active_comm );
                MPI_Allreduce( MPI_IN_PLACE, &subset_error_max, 1, MPI_FLOAT, MPI_MAX, lib4neuro::mpi_active_comm );
                MPI_Allreduce( &new_subset_entry_error, &new_subset_entry_error_min, 1, MPI_FLOAT, MPI_MIN, lib4neuro::mpi_active_comm );
                MPI_Allreduce( &new_subset_entry_error, &new_subset_entry_error_max, 1, MPI_FLOAT, MPI_MAX, lib4neuro::mpi_active_comm );
    
                MPI_Allreduce( MPI_IN_PLACE, &nshelved_set, 1, MPI_INT, MPI_SUM, lib4neuro::mpi_active_comm );
                MPI_Allreduce( MPI_IN_PLACE, &shelved_error_total, 1, MPI_FLOAT, MPI_SUM, lib4neuro::mpi_active_comm );
                MPI_Allreduce( MPI_IN_PLACE, &shelved_error_min, 1, MPI_FLOAT, MPI_MIN, lib4neuro::mpi_active_comm );
                MPI_Allreduce( MPI_IN_PLACE, &shelved_error_max, 1, MPI_FLOAT, MPI_MAX, lib4neuro::mpi_active_comm );
    
    
    kra568's avatar
    kra568 committed
                if( subset_indices.size() > 1 ){
    
                    COUT_INFO( "[" << nactive_set << "] subset error: " << subset_error_total << ", in range: " << subset_error_min << " - " << subset_error_max << ", new entry errors: " << new_subset_entry_error_min << " - " << new_subset_entry_error_max );
    
    kra568's avatar
    kra568 committed
                }
                else{
    
                    COUT_INFO( "[" << nactive_set << "] new entry error: " << new_subset_entry_error_min << " - " << new_subset_entry_error_max );
    
    kra568's avatar
    kra568 committed
                }
    
                COUT_INFO( "[" << nshelved_set << "] remaining error: " << shelved_error_total << ", in range: " << shelved_error_min << " - " << shelved_error_max << std::endl );
    
    kra568's avatar
    kra568 committed
    
                if( shelved_error_max < this->tolerance && subset_error_max < this->tolerance && new_subset_entry_error < this->tolerance ){
                    break;
                }
    
                this->inner_method->optimize( ef, ofs );
    
                double sub_error_after = ef.eval( );
                while( sub_error_after > this->tolerance ){
                    this->inner_method->optimize( ef, ofs );
                    sub_error_after = ef.eval( );
                }
                ef.return_full_data_set_for_training( );
                COUT_INFO( "------------------------" );
            }
    	}
    
    }//end of namespace lib4neuro