Newer
Older
//
// Created by martin on 7/15/18.
//
#include <sstream>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_int_distribution.hpp>
Martin Beseda
committed
#include "exceptions.h"
#include "message.h"
Martin Beseda
committed
namespace lib4neuro {

Michal Kravcenko
committed
Martin Beseda
committed
size_t ErrorFunction::get_dimension() {
return this->dimension;
}
NeuralNetwork* ErrorFunction::get_network_instance() {
return this->net;
}
void ErrorFunction::divide_data_train_test(double percent_test) {
size_t ds_size = this->ds->get_n_elements();
/* Store the full data set */
this->ds_full = this->ds;
/* Choose random subset of the DataSet for training and the remaining part for validation */
boost::random::mt19937 gen;
boost::random::uniform_int_distribution<> dist(0, ds_size - 1);
size_t test_set_size = ceil(ds_size * percent_test);
std::vector<unsigned int> test_indices;
test_indices.reserve(test_set_size);
for (unsigned int i = 0; i < test_set_size; i++) {
test_indices.emplace_back(dist(gen));
}
std::sort(test_indices.begin(), test_indices.end(), std::greater<unsigned int>());
std::vector<std::pair<std::vector<double>, std::vector<double>>> test_data, train_data;
/* Copy all the data to train_data */
Martin Beseda
committed
for (auto e : *this->ds_full->get_data()) {
/* Move the testing data from train_data to test_data */
Martin Beseda
committed
for (auto ind : test_indices) {
test_data.emplace_back(train_data.at(ind));
train_data.erase(train_data.begin() + ind);
}
/* Re-initialize data set for training */
this->ds = new DataSet(&train_data, this->ds_full->get_normalization_strategy());
this->ds_test = new DataSet(&test_data, this->ds_full->get_normalization_strategy());
}
void ErrorFunction::return_full_data_set_for_training() {
Martin Beseda
committed
if (this->ds_test) {
Martin Beseda
committed
DataSet* ErrorFunction::get_dataset() {
return this->ds;
}
DataSet* ErrorFunction::get_test_dataset() {
return this->ds_test;
}
std::vector<double>* ErrorFunction::get_parameters() {
std::vector<double>* output = new std::vector<double>(this->net->get_n_weights() + this->net->get_n_biases());
size_t i = 0;
for (auto el: *this->net->get_parameter_ptr_weights()) {
output->at(i) = el;
++i;
}
for (auto el: *this->net->get_parameter_ptr_biases()) {
output->at(i) = el;
++i;
}
return output;
}
MSE::MSE(NeuralNetwork* net, DataSet* ds) {
Martin Beseda
committed
this->net = net;
this->ds = ds;
this->dimension = net->get_n_weights() + net->get_n_biases();
Martin Beseda
committed
double MSE::eval_on_data_set(lib4neuro::DataSet* data_set, std::ofstream* results_file_path,
std::vector<double>* weights) {
//TODO do NOT duplicate code - rewrite the function in a better way
size_t dim_in = data_set->get_input_dim();
size_t dim_out = data_set->get_output_dim();

Michal Kravcenko
committed
double error = 0.0, val, output_norm;
std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = data_set->get_data();

Michal Kravcenko
committed
size_t n_elements = data->size();

Michal Kravcenko
committed
//TODO instead use something smarter
std::vector<std::vector<double>> outputs(data->size());
Martin Beseda
committed
std::vector<double> output(dim_out);

Michal Kravcenko
committed
COUT_DEBUG("Evaluation of the error function MSE on the given data-set (format 'data-set element index' 'input'"

Michal Kravcenko
committed
" 'real output' 'predicted output' 'absolute error' 'relative error'):"
Martin Beseda
committed

Michal Kravcenko
committed
*results_file_path << "[Data-set element index] [Input] [Real output] [Predicted output] [Abs. error] [Rel. error]" << std::endl;
Martin Beseda
committed
for (auto i = 0; i < data->size(); i++) { // Iterate through every element in the test set

Michal Kravcenko
committed
error = 0.0;
output_norm = 0.0;
Martin Beseda
committed
/* Compute the net output and store it into 'output' variable */
this->net->eval_single(data->at(i).first,
Martin Beseda
committed
weights);

Michal Kravcenko
committed
outputs.at(i) = output;
}
bool denormalize_output = false;
if(data_set->is_normalized()) {
data_set->de_normalize();
denormalize_output = true;
}
for (auto i = 0; i < data->size(); i++) {
Martin Beseda
committed
/* Compute difference for every element of the output vector */
#ifdef L4N_DEBUG
std::stringstream ss_input;
for(auto j = 0; j < dim_in-1; j++) {
ss_input << data->at(i).first.at(j) << ",";
}
ss_input << data->at(i).first.back();
std::stringstream ss_real_output;
std::stringstream ss_predicted_output;
#endif
double denormalized_output;
for (size_t j = 0; j < dim_out; ++j) {
if(denormalize_output) {
denormalized_output = data_set->get_normalization_strategy()->de_normalize(outputs.at(i).at(j));
} else {
denormalized_output = outputs.at(i).at(j);
}
#ifdef L4N_DEBUG
ss_real_output << data->at(i).second.at(j);
ss_predicted_output << denormalized_output;
#endif
Martin Beseda
committed
val = denormalized_output - data->at(i).second.at(j);
Martin Beseda
committed
error += val * val;
output_norm += denormalized_output * denormalized_output;

Michal Kravcenko
committed
}
#ifdef L4N_DEBUG
COUT_DEBUG(i << ": "
<< ss_input.str() << " ; "
<< ss_real_output.str() << " ; "

Michal Kravcenko
committed
<< ss_predicted_output.str() << "; "
<< std::sqrt(error) << "; "
<< 2 * std::sqrt(error) / (std::sqrt(error) + std::sqrt(output_norm)) <<
std::endl);
Martin Beseda
committed
*results_file_path << i << ": "
<< ss_input.str() << " ; "
<< ss_real_output.str() << " ; "

Michal Kravcenko
committed
<< ss_predicted_output.str() << "; "
<< std::sqrt(error) << "; "
<< 2 * std::sqrt(error) / (std::sqrt(error) + std::sqrt(output_norm)) <<
std::endl;
#endif
Martin Beseda
committed
}

Michal Kravcenko
committed
double result = std::sqrt(error) / n_elements;
Martin Beseda
committed
*results_file_path << "MSE = " << result << std::endl;
return result;
}
double MSE::eval_on_data_set(DataSet* data_set, std::string results_file_path, std::vector<double>* weights) {
//TODO do NOT duplicate code - rewrite the function in a better way
size_t dim_out = data_set->get_output_dim();
size_t n_elements = data_set->get_n_elements();
double error = 0.0, val;
std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = data_set->get_data();
//TODO instead use something smarter
std::vector<std::vector<double>> outputs(data->size());
Martin Beseda
committed
std::vector<double> output(dim_out);
COUT_DEBUG(
"Evaluation of the error function MSE on the given data-set (format 'input' 'real output' 'predicted output'):"
<< std::endl);
std::ofstream ofs(results_file_path);
if (!ofs.is_open()) {
THROW_RUNTIME_ERROR("File path: " + results_file_path + " was not successfully opened!");
}
ofs << "[Input] [Real output] [Predicted output]" << std::endl;
for (auto i = 0; i < data->size(); i++) { // Iterate through every element in the test set
/* Compute the net output and store it into 'output' variable */
this->net->eval_single(data->at(i).first,
output,
weights);
outputs.at(i) = output;
}
bool denormalize_output = false;
if(data_set->is_normalized()) {
data_set->de_normalize();
denormalize_output = true;
}
for(auto i = 0; i < data->size(); i++) {
Martin Beseda
committed
/* Compute difference for every element of the output vector */
double denormalized_output;
Martin Beseda
committed
for (size_t j = 0; j < dim_out; ++j) {
if(denormalize_output) {
denormalized_output = data_set->get_normalization_strategy()->de_normalize(outputs.at(i).at(j));
} else {
denormalized_output = outputs.at(i).at(j);
}
Martin Beseda
committed
COUT_DEBUG("Element " << i << ": "
<< data->at(i).first.at(j) << " "
<< data->at(i).second.at(j) << " "
<< denormalized_output << std::endl);
Martin Beseda
committed
ofs << data->at(i).first.at(j) << " "
<< data->at(i).second.at(j) << " "
<< denormalized_output << std::endl;
Martin Beseda
committed
val = denormalized_output - data->at(i).second.at(j);
Martin Beseda
committed
error += val * val;
}
Martin Beseda
committed
ofs << std::endl;
Martin Beseda
committed
}
Martin Beseda
committed
ofs.close();
Martin Beseda
committed
return error / n_elements;

Michal Kravcenko
committed
Martin Beseda
committed
double MSE::eval_on_data_set(DataSet* data_set, std::vector<double>* weights) {
size_t dim_out = data_set->get_output_dim();
size_t n_elements = data_set->get_n_elements();
double error = 0.0, val;
std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = data_set->get_data();
//TODO instead use something smarter
std::vector<std::vector<double>> outputs(data->size());
Martin Beseda
committed
std::vector<double> output(dim_out);
COUT_DEBUG(
"Evaluation of the error function MSE on the given data-set (format 'input' 'real output' 'predicted output'):"
<< std::endl);
/* Compute predicted outputs */
Martin Beseda
committed
for (auto i = 0; i < data->size(); i++) { // Iterate through every element in the test set
/* Compute the net output and store it into 'output' variable */
this->net->eval_single(data->at(i).first,
output,
weights);
outputs.at(i) = output;
}
/* De-normalize data-set, if it's normalized */
bool denormalize_output = false;
if(data_set->is_normalized()) {
data_set->de_normalize();
denormalize_output = true;
}
/* Evaluate the prediction error on de-normalized data */
for(auto i = 0; i < data->size(); i++) {
Martin Beseda
committed
/* Compute difference for every element of the output vector */
double denormalized_output;
for (auto j = 0; j < dim_out; ++j) {
if(denormalize_output) {
denormalized_output = data_set->get_normalization_strategy()->de_normalize(outputs.at(i).at(j));
} else {
denormalized_output = outputs.at(i).at(j);
}
Martin Beseda
committed
COUT_DEBUG("Element " << i << ": "
<< data->at(i).first.at(j) << " "
<< data->at(i).second.at(j) << " "
<< denormalized_output << std::endl);
Martin Beseda
committed
val = denormalized_output - data->at(i).second.at(j);
Martin Beseda
committed
error += val * val;
}
}
Martin Beseda
committed
return error / n_elements;
}
double MSE::eval(std::vector<double>* weights) {
size_t dim_out = this->ds->get_output_dim();

Michal Kravcenko
committed
// unsigned int dim_in = this->ds->get_input_dim();
size_t n_elements = this->ds->get_n_elements();
double error = 0.0, val;
Martin Beseda
committed
std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = this->ds->get_data();
// //TODO instead use something smarter
// this->net->copy_weights(weights);
std::vector<double> output(dim_out);
for (auto el: *data) { // Iterate through every element in the test set
this->net->eval_single(el.first, output,
weights); // Compute the net output and store it into 'output' variable
for (size_t j = 0; j < dim_out; ++j) { // Compute difference for every element of the output vector
Martin Beseda
committed
val = output.at(j) - el.second.at(j);
error += val * val;
}
}
return error / n_elements;

Michal Kravcenko
committed
Martin Beseda
committed
double MSE::eval_on_test_data(std::vector<double>* weights) {
return this->eval_on_data_set(this->ds_test, weights);

Michal Kravcenko
committed
Martin Beseda
committed
double MSE::eval_on_test_data(std::string results_file_path, std::vector<double>* weights) {
return this->eval_on_data_set(this->ds_test, results_file_path, weights);
}
double MSE::eval_on_test_data(std::ofstream* results_file_path, std::vector<double>* weights) {
return this->eval_on_data_set(this->ds_test, results_file_path, weights);
}
Martin Beseda
committed
Martin Beseda
committed
void
MSE::calculate_error_gradient(std::vector<double>& params, std::vector<double>& grad, double alpha, size_t batch) {

Michal Kravcenko
committed
size_t dim_out = this->ds->get_output_dim();
size_t n_elements = this->ds->get_n_elements();
Martin Beseda
committed
std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = this->ds->get_data();

Michal Kravcenko
committed
Martin Beseda
committed
if (batch) {
Martin Beseda
committed
*data = this->ds->get_random_data_batch(batch);
n_elements = data->size();
}
std::vector<double> error_derivative(dim_out);

Michal Kravcenko
committed
for (auto el: *data) { // Iterate through every element in the test set

Michal Kravcenko
committed
this->net->eval_single(el.first, error_derivative,
¶ms); // Compute the net output and store it into 'output' variable

Michal Kravcenko
committed
for (size_t j = 0; j < dim_out; ++j) {
error_derivative[j] = 2.0 * (error_derivative[j] - el.second[j]); //real - expected result
}
this->net->add_to_gradient_single(el.first, error_derivative, alpha / n_elements, grad);
}
Martin Beseda
committed
ErrorSum::ErrorSum() {
this->summand = nullptr;
this->summand_coefficient = nullptr;
this->dimension = 0;
}
Martin Beseda
committed
ErrorSum::~ErrorSum() {
if (this->summand) {
delete this->summand;
}
if (this->summand_coefficient) {
delete this->summand_coefficient;
}
double ErrorSum::eval_on_test_data(std::vector<double>* weights) {
//TODO take care of the case, when there are no test data
Martin Beseda
committed
ErrorFunction* ef = nullptr;

Michal Kravcenko
committed
Martin Beseda
committed
for (unsigned int i = 0; i < this->summand->size(); ++i) {

Michal Kravcenko
committed
if (ef) {
output += ef->eval_on_test_data(weights) * this->summand_coefficient->at(i);
}

Michal Kravcenko
committed
}

Michal Kravcenko
committed
}
Martin Beseda
committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
double ErrorSum::eval_on_test_data(std::string results_file_path, std::vector<double>* weights) {
THROW_NOT_IMPLEMENTED_ERROR();
return -1;
}
double ErrorSum::eval_on_test_data(std::ofstream* results_file_path, std::vector<double>* weights) {
THROW_NOT_IMPLEMENTED_ERROR();
return -1;
}
double ErrorSum::eval_on_data_set(lib4neuro::DataSet* data_set, std::vector<double>* weights) {
THROW_NOT_IMPLEMENTED_ERROR();
return -1;
}
double ErrorSum::eval_on_data_set(lib4neuro::DataSet* data_set, std::string results_file_path,
std::vector<double>* weights) {
THROW_NOT_IMPLEMENTED_ERROR();
return -1;
}
double ErrorSum::eval_on_data_set(lib4neuro::DataSet* data_set, std::ofstream* results_file_path,
std::vector<double>* weights) {
THROW_NOT_IMPLEMENTED_ERROR();
return -1;
}
double ErrorSum::eval(std::vector<double>* weights) {
Martin Beseda
committed
double output = 0.0;
Martin Beseda
committed
ErrorFunction* ef = nullptr;
Martin Beseda
committed
for (unsigned int i = 0; i < this->summand->size(); ++i) {
if (ef) {
output += ef->eval(weights) * this->summand_coefficient->at(i);
}
Martin Beseda
committed
}
Martin Beseda
committed
return output;
Martin Beseda
committed
void ErrorSum::calculate_error_gradient(std::vector<double>& params, std::vector<double>& grad, double alpha,
size_t batch) {

Michal Kravcenko
committed
Martin Beseda
committed
ErrorFunction* ef = nullptr;
for (size_t i = 0; i < this->summand->size(); ++i) {
ef = this->summand->at(i);

Michal Kravcenko
committed
ef->calculate_error_gradient(params, grad, this->summand_coefficient->at(i) * alpha, batch);

Michal Kravcenko
committed
}
Martin Beseda
committed
void ErrorSum::add_error_function(ErrorFunction* F, double alpha) {
Martin Beseda
committed
if (!this->summand) {
Martin Beseda
committed
this->summand = new std::vector<ErrorFunction*>(0);
Martin Beseda
committed
}
this->summand->push_back(F);
if (!this->summand_coefficient) {
this->summand_coefficient = new std::vector<double>(0);
}
this->summand_coefficient->push_back(alpha);
if (F) {
if (F->get_dimension() > this->dimension) {
this->dimension = F->get_dimension();
}
Martin Beseda
committed
size_t ErrorSum::get_dimension() {
// if(!this->dimension) {
// size_t max = 0;
// for(auto e : *this->summand) {
// if(e->get_dimension() > max) {
// max = e->get_dimension();
// }
// };
//
// this->dimension = max;
// }
Martin Beseda
committed
return this->dimension;
}
Martin Beseda
committed
std::vector<double>* ErrorSum::get_parameters() {
return this->summand->at(0)->get_parameters();
}

Michal Kravcenko
committed
Martin Beseda
committed
DataSet* ErrorSum::get_dataset() {
return this->summand->at(0)->get_dataset();
};