Newer
Older
//
// Created by martin on 7/15/18.
//
#include <sstream>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_int_distribution.hpp>
Martin Beseda
committed
#include "exceptions.h"
#include "message.h"
Martin Beseda
committed
namespace lib4neuro {

Michal Kravcenko
committed
Martin Beseda
committed
size_t ErrorFunction::get_dimension() {
return this->dimension;
}
NeuralNetwork* ErrorFunction::get_network_instance() {
return this->net;
}
void ErrorFunction::divide_data_train_test(double percent_test) {
size_t ds_size = this->ds->get_n_elements();
/* Store the full data set */
this->ds_full = this->ds;
/* Choose random subset of the DataSet for training and the remaining part for validation */
boost::random::mt19937 gen;
boost::random::uniform_int_distribution<> dist(0, ds_size - 1);
size_t test_set_size = ceil(ds_size * percent_test);
std::vector<unsigned int> test_indices;
test_indices.reserve(test_set_size);
for (unsigned int i = 0; i < test_set_size; i++) {
test_indices.emplace_back(dist(gen));
}
std::sort(test_indices.begin(), test_indices.end(), std::greater<unsigned int>());
std::vector<std::pair<std::vector<double>, std::vector<double>>> test_data, train_data;
/* Copy all the data to train_data */
Martin Beseda
committed
for (auto e : *this->ds_full->get_data()) {
/* Move the testing data from train_data to test_data */
Martin Beseda
committed
for (auto ind : test_indices) {
test_data.emplace_back(train_data.at(ind));
train_data.erase(train_data.begin() + ind);
}
/* Re-initialize data set for training */
this->ds = new DataSet(&train_data, this->ds_full->get_normalization_strategy());
this->ds_test = new DataSet(&test_data, this->ds_full->get_normalization_strategy());
}
void ErrorFunction::return_full_data_set_for_training() {
Martin Beseda
committed
if (this->ds_test) {
Martin Beseda
committed
DataSet* ErrorFunction::get_dataset() {
return this->ds;
}
DataSet* ErrorFunction::get_test_dataset() {
return this->ds_test;
}
std::vector<double>* ErrorFunction::get_parameters() {
std::vector<double>* output = new std::vector<double>(this->net->get_n_weights() + this->net->get_n_biases());
size_t i = 0;
for (auto el: *this->net->get_parameter_ptr_weights()) {
output->at(i) = el;
++i;
}
for (auto el: *this->net->get_parameter_ptr_biases()) {
output->at(i) = el;
++i;
}
return output;
}
MSE::MSE(NeuralNetwork* net, DataSet* ds) {
Martin Beseda
committed
this->net = net;
this->ds = ds;
this->dimension = net->get_n_weights() + net->get_n_biases();
Martin Beseda
committed
double MSE::eval_on_single_input(std::vector<double>* input,
std::vector<double>* output,
std::vector<double>* weights) {
std::vector<double> predicted_output(this->get_network_instance()->get_n_outputs());
Martin Beseda
committed
this->net->eval_single(*input, predicted_output, weights);
double result = 0;
double val;
Martin Beseda
committed
Martin Beseda
committed
for(size_t i = 0; i < output->size(); i++) {
val = output->at(i) - predicted_output.at(i);
result += val*val;
}
Martin Beseda
committed
}
double MSE::eval_on_data_set(lib4neuro::DataSet* data_set,
std::ofstream* results_file_path,
std::vector<double>* weights,
bool denormalize_data,
bool verbose) {
size_t dim_in = data_set->get_input_dim();
size_t dim_out = data_set->get_output_dim();
double error = 0.0, val, output_norm = 0;
std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = data_set->get_data();

Michal Kravcenko
committed
size_t n_elements = data->size();

Michal Kravcenko
committed
//TODO instead use something smarter
std::vector<std::vector<double>> outputs(data->size());
Martin Beseda
committed
std::vector<double> output(dim_out);

Michal Kravcenko
committed
if (verbose) {
COUT_DEBUG("Evaluation of the error function MSE on the given data-set" << std::endl);
COUT_DEBUG(R_ALIGN << "[Element index]" << " "
<< R_ALIGN << "[Input]" << " "
<< R_ALIGN << "[Real output]" << " "
<< R_ALIGN << "[Predicted output]" << " "
<< R_ALIGN << "[Absolute error]" << " "
<< R_ALIGN << "[Relative error %]"
<< std::endl);
}
if (results_file_path) {
*results_file_path << R_ALIGN << "[Element index]" << " "
<< R_ALIGN << "[Input]" << " "
<< R_ALIGN << "[Real output]" << " "
<< R_ALIGN << "[Predicted output]" << " "
<< R_ALIGN << "[Abs. error]" << " "
<< R_ALIGN << "[Rel. error %]"
<< std::endl;
}
Martin Beseda
committed
for (auto i = 0; i < data->size(); i++) { // Iterate through every element in the test set
/* Compute the net output and store it into 'output' variable */
this->net->eval_single(data->at(i).first,
Martin Beseda
committed
weights);

Michal Kravcenko
committed
outputs.at(i) = output;
}
Martin Beseda
committed
double denormalized_output;
double denormalized_real_input;
double denormalized_real_output;
// bool denormalize_output = false;
// if (denormalize_data) {
// if(data_set->is_normalized()) {
// data_set->de_normalize();
// }
// denormalize_output = true;
// }
for (auto i = 0; i < data->size(); i++) {
Martin Beseda
committed
/* Compute difference for every element of the output vector */
#ifdef L4N_DEBUG
std::stringstream ss_input;
Martin Beseda
committed
std::string separator = "";
for (auto j = 0; j < dim_in; j++) {
if(denormalize_data) {
denormalized_real_input = data_set->get_normalization_strategy()->de_normalize(data->at(i).first.at(j));
} else {
denormalized_real_input = data->at(i).first.at(j);
}
ss_input << separator << denormalized_real_input;
separator = ",";
}
if(denormalize_data) {
denormalized_real_input = data_set->get_normalization_strategy()->de_normalize(data->at(i).first.back());
} else {
denormalized_real_input = data->at(i).first.back();
}
std::stringstream ss_real_output;
std::stringstream ss_predicted_output;
#endif
Martin Beseda
committed
double loc_error = 0;
output_norm = 0;
Martin Beseda
committed
separator = "";
for (size_t j = 0; j < dim_out; ++j) {
Martin Beseda
committed
if (denormalize_data) {
denormalized_real_output = data_set->get_normalization_strategy()->de_normalize(data->at(i).second.at(j));
denormalized_output = data_set->get_normalization_strategy()->de_normalize(outputs.at(i).at(j));
} else {
Martin Beseda
committed
denormalized_real_output = data->at(i).second.at(j);
denormalized_output = outputs.at(i).at(j);
}
#ifdef L4N_DEBUG
Martin Beseda
committed
ss_real_output << separator << denormalized_real_output;
ss_predicted_output << separator << denormalized_output;
separator = ",";
#endif
Martin Beseda
committed
Martin Beseda
committed
val = denormalized_output - denormalized_real_output;
loc_error += val * val;
error += loc_error;
Martin Beseda
committed
output_norm += denormalized_output * denormalized_output;

Michal Kravcenko
committed
}

Michal Kravcenko
committed
#ifdef L4N_DEBUG
std::stringstream ss_ind;
ss_ind << "[" << i << "]";
if (verbose) {
COUT_DEBUG(R_ALIGN << ss_ind.str() << " "
<< R_ALIGN << ss_input.str() << " "
<< R_ALIGN << ss_real_output.str() << " "
<< R_ALIGN << ss_predicted_output.str() << " "
<< R_ALIGN << std::sqrt(loc_error) << " "
<< R_ALIGN
<< 200.0 * std::sqrt(loc_error) / (std::sqrt(loc_error) + std::sqrt(output_norm))
<< std::endl);
Martin Beseda
committed
}
Martin Beseda
committed
if (results_file_path) {
*results_file_path << R_ALIGN << ss_ind.str() << " "
<< R_ALIGN << ss_input.str() << " "
<< R_ALIGN << ss_real_output.str() << " "
<< R_ALIGN << ss_predicted_output.str() << " "
<< R_ALIGN << std::sqrt(loc_error) << " "
<< R_ALIGN
<< 200.0 * std::sqrt(loc_error) / (std::sqrt(loc_error) + std::sqrt(output_norm))
<< std::endl;
}
#endif
Martin Beseda
committed
}
Martin Beseda
committed
double result = std::sqrt(error) / n_elements;
if (verbose) {
COUT_DEBUG("MSE = " << result << std::endl);
if (results_file_path) {
*results_file_path << "MSE = " << result << std::endl;
Martin Beseda
committed
}
double MSE::eval_on_data_set(DataSet* data_set,
std::string results_file_path,
std::vector<double>* weights,
bool verbose) {
std::ofstream ofs(results_file_path);
if (ofs.is_open()) {
return this->eval_on_data_set(data_set,
&ofs,
weights,
true,
verbose);
ofs.close();
} else {
THROW_RUNTIME_ERROR("File " + results_file_path + " couldn't be open!");
}
}
double MSE::eval_on_data_set(DataSet* data_set,
std::vector<double>* weights,
bool verbose) {
return this->eval_on_data_set(data_set,
nullptr,
weights,
true,
verbose);
}
double MSE::eval(std::vector<double>* weights,
bool denormalize_data,
bool verbose) {
return this->eval_on_data_set(this->ds,
nullptr,
weights,
denormalize_data,
verbose);

Michal Kravcenko
committed
double MSE::eval_on_test_data(std::vector<double>* weights,
bool verbose) {
return this->eval_on_data_set(this->ds_test,
weights,
verbose);

Michal Kravcenko
committed
double MSE::eval_on_test_data(std::string results_file_path,
std::vector<double>* weights,
bool verbose) {
return this->eval_on_data_set(this->ds_test,
results_file_path,
weights,
verbose);
Martin Beseda
committed
}
double MSE::eval_on_test_data(std::ofstream* results_file_path,
std::vector<double>* weights,
bool verbose) {
return this->eval_on_data_set(this->ds_test,
results_file_path,
weights,
true,
verbose);
Martin Beseda
committed
}
Martin Beseda
committed
Martin Beseda
committed
void
MSE::calculate_error_gradient(std::vector<double>& params,
std::vector<double>& grad,
double alpha,
size_t batch) {

Michal Kravcenko
committed
size_t dim_out = this->ds->get_output_dim();
size_t n_elements = this->ds->get_n_elements();
Martin Beseda
committed
std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = this->ds->get_data();
Martin Beseda
committed
*data = this->ds->get_random_data_batch(batch);
n_elements = data->size();
}
std::vector<double> error_derivative(dim_out);
for (auto el: *data) { // Iterate through every element in the test set
this->net->eval_single(el.first, error_derivative,
¶ms); // Compute the net output and store it into 'output' variable
for (size_t j = 0; j < dim_out; ++j) {
error_derivative[j] = 2.0 * (error_derivative[j] - el.second[j]); //real - expected result
this->net->add_to_gradient_single(el.first,
error_derivative,
alpha / n_elements,
grad);

Michal Kravcenko
committed
double MSE::calculate_single_residual(std::vector<double>* input,
std::vector<double>* output,
std::vector<double>* parameters) {

Michal Kravcenko
committed
//TODO maybe move to the general ErrorFunction
//TODO check input vector sizes - they HAVE TO be allocated before calling this function
Martin Beseda
committed
return -this->eval_on_single_input(input, output, parameters);
Martin Beseda
committed
}
Martin Beseda
committed
Martin Beseda
committed
void MSE::calculate_residual_gradient(std::vector<double>* input,
std::vector<double>* output,
std::vector<double>* gradient,
double h) {

Michal Kravcenko
committed
//TODO check input vector sizes - they HAVE TO be allocated before calling this function

Michal Kravcenko
committed
Martin Beseda
committed
size_t n_parameters = this->get_dimension();
std::vector<double>* parameters = this->get_parameters();

Michal Kravcenko
committed
Martin Beseda
committed
double delta; // Complete step size
double former_parameter_value;
double f_val1; // f(x + delta)
double f_val2; // f(x - delta)

Michal Kravcenko
committed
Martin Beseda
committed
for (size_t i = 0; i < n_parameters; i++) {
delta = h * (1 + std::abs(parameters->at(i)));
former_parameter_value = parameters->at(i);

Michal Kravcenko
committed
Martin Beseda
committed
if(delta != 0) {
/* Computation of f_val1 = f(x + delta) */
parameters->at(i) = former_parameter_value + delta;
f_val1 = this->calculate_single_residual(input, output, parameters);

Michal Kravcenko
committed
Martin Beseda
committed
/* Computation of f_val2 = f(x - delta) */
parameters->at(i) = former_parameter_value - delta;
f_val2 = this->calculate_single_residual(input, output, parameters);
Martin Beseda
committed
gradient->at(i) = (f_val1 - f_val2) / (2*delta);
Martin Beseda
committed
/* Restore parameter to the former value */
parameters->at(i) = former_parameter_value;

Michal Kravcenko
committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
void MSE::calculate_error_gradient_single(std::vector<double> &error_vector,
std::vector<double> &gradient_vector) {
std::fill(gradient_vector.begin(), gradient_vector.end(), 0);
std::vector<double> dummy_input;
this->net->add_to_gradient_single( dummy_input, error_vector, 1.0, gradient_vector);
}
void
MSE::analyze_error_gradient(std::vector<double>& params, std::vector<double>& grad, double alpha, size_t batch) {
size_t dim_out = this->ds->get_output_dim();
size_t n_elements = this->ds->get_n_elements();
std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = this->ds->get_data();
if (batch > 0) {
*data = this->ds->get_random_data_batch(batch);
n_elements = data->size();
}
std::vector<double> error_derivative(dim_out);
std::vector<double> grad_sum(grad.size());
std::fill(grad_sum.begin(), grad_sum.end(), 0.0);
this->net->write_weights();
this->net->write_biases();
for (auto el: *data) { // Iterate through every element in the test set
this->net->eval_single_debug(el.first, error_derivative,
¶ms); // Compute the net output and store it into 'output' variable
std::cout << "Input[";
for( auto v: el.first){
std::cout << v << ", ";
}
std::cout << "]";
std::cout << " Desired Output[";
for( auto v: el.second){
std::cout << v << ", ";
}
std::cout << "]";
std::cout << " Real Output[";
for( auto v: error_derivative){
std::cout << v << ", ";
}
std::cout << "]";
for (size_t j = 0; j < dim_out; ++j) {
error_derivative[j] = 2.0 * (error_derivative[j] - el.second[j]); //real - expected result
}
std::cout << " Error derivative[";
for( auto v: error_derivative){
std::cout << v << ", ";
}
std::cout << "]";
std::fill( grad.begin(), grad.end(), 0.0);
this->net->add_to_gradient_single_debug(el.first, error_derivative, 1.0, grad);
for(size_t i = 0; i < grad.size(); ++i){
grad_sum[i] += grad[i];
}
std::cout << " Gradient[";
for( auto v: grad){
std::cout << v << ", ";
}
std::cout << "]";
std::cout << std::endl;
}
std::cout << " Total gradient[";
for( auto v: grad_sum){
std::cout << v << ", ";
}
std::cout << "]" << std::endl << std::endl;
}
double MSE::eval_single_item_by_idx(size_t i, std::vector<double> *parameter_vector,
std::vector<double> &error_vector) {
double output = 0, val;
this->net->eval_single(this->get_dataset()->get_data()->at(i).first, error_vector, parameter_vector);
for (size_t j = 0; j < error_vector.size(); ++j) { // Compute difference for every element of the output vector
val = error_vector.at(j) - this->get_dataset()->get_data()->at(i).second.at(j);
output += val * val;
}
for (size_t j = 0; j < error_vector.size(); ++j) {
error_vector[j] = 2.0 * (error_vector[j] - this->get_dataset()->get_data()->at(i).second[j]); //real - expected result
}
return sqrt(output);
}
Martin Beseda
committed
ErrorSum::ErrorSum() {
this->summand = nullptr;
this->summand_coefficient = nullptr;
this->dimension = 0;
}
Martin Beseda
committed
ErrorSum::~ErrorSum() {
if (this->summand) {
delete this->summand;
}
if (this->summand_coefficient) {
delete this->summand_coefficient;
}
double ErrorSum::eval_on_test_data(std::vector<double>* weights,
bool verbose) {
//TODO take care of the case, when there are no test data
Martin Beseda
committed
ErrorFunction* ef = nullptr;

Michal Kravcenko
committed
Martin Beseda
committed
for (unsigned int i = 0; i < this->summand->size(); ++i) {

Michal Kravcenko
committed
if (ef) {
output += ef->eval_on_test_data(weights) * this->summand_coefficient->at(i);
}

Michal Kravcenko
committed
}

Michal Kravcenko
committed
}
double ErrorSum::eval_on_test_data(std::string results_file_path,
std::vector<double>* weights,
bool verbose) {
Martin Beseda
committed
THROW_NOT_IMPLEMENTED_ERROR();
return -1;
}
double ErrorSum::eval_on_test_data(std::ofstream* results_file_path,
std::vector<double>* weights,
bool verbose) {
Martin Beseda
committed
THROW_NOT_IMPLEMENTED_ERROR();
return -1;
}
double ErrorSum::eval_on_data_set(lib4neuro::DataSet* data_set,
std::vector<double>* weights,
bool verbose) {
Martin Beseda
committed
THROW_NOT_IMPLEMENTED_ERROR();
return -1;
}
double ErrorSum::eval_on_data_set(lib4neuro::DataSet* data_set,
std::string results_file_path,
std::vector<double>* weights,
bool verbose) {
Martin Beseda
committed
THROW_NOT_IMPLEMENTED_ERROR();
return -1;
}
double ErrorSum::eval_on_data_set(lib4neuro::DataSet* data_set,
std::ofstream* results_file_path,
std::vector<double>* weights,
bool denormalize_data,
bool verbose) {
Martin Beseda
committed
THROW_NOT_IMPLEMENTED_ERROR();
return -1;
}
double ErrorSum::eval(std::vector<double>* weights,
bool denormalize_data,
bool verbose) {
Martin Beseda
committed
double output = 0.0;
Martin Beseda
committed
ErrorFunction* ef = nullptr;
Martin Beseda
committed
for (unsigned int i = 0; i < this->summand->size(); ++i) {
if (ef) {
output += ef->eval(weights) * this->summand_coefficient->at(i);
}
Martin Beseda
committed
}
Martin Beseda
committed
return output;

Michal Kravcenko
committed
double ErrorSum::eval_single_item_by_idx(size_t i, std::vector<double> *parameter_vector,
std::vector<double> &error_vector) {
double output = 0.0;
ErrorFunction* ef = nullptr;
std::fill(error_vector.begin(), error_vector.end(), 0);
std::vector<double> error_vector_mem(error_vector.size());
for (size_t j = 0; j < this->summand->size(); ++j) {
ef = this->summand->at(i);
if (ef) {
output += ef->eval_single_item_by_idx(i, parameter_vector, error_vector_mem) * this->summand_coefficient->at(j);
for( size_t k = 0; k < error_vector_mem.size(); ++k){
error_vector[k] += error_vector_mem[k] * this->summand_coefficient->at(j);
}
}
}
return output;
}
Martin Beseda
committed
void ErrorSum::calculate_error_gradient(std::vector<double>& params, std::vector<double>& grad, double alpha,
size_t batch) {

Michal Kravcenko
committed
Martin Beseda
committed
ErrorFunction* ef = nullptr;
for (size_t i = 0; i < this->summand->size(); ++i) {
ef = this->summand->at(i);

Michal Kravcenko
committed
ef->calculate_error_gradient(params, grad, this->summand_coefficient->at(i) * alpha, batch);

Michal Kravcenko
committed
}

Michal Kravcenko
committed
void ErrorSum::calculate_error_gradient_single(std::vector<double> &error_vector,
std::vector<double> &gradient_vector) {
COUT_INFO("ErrorSum::calculate_error_gradient_single NOT YET IMPLEMENTED!!!");
}
void ErrorSum::analyze_error_gradient(std::vector<double>& params, std::vector<double>& grad, double alpha,
size_t batch) {
ErrorFunction* ef = nullptr;
for (size_t i = 0; i < this->summand->size(); ++i) {
ef = this->summand->at(i);
if (ef) {
ef->calculate_error_gradient(params, grad, this->summand_coefficient->at(i) * alpha, batch);
}
}
}
Martin Beseda
committed
void ErrorSum::add_error_function(ErrorFunction* F, double alpha) {
Martin Beseda
committed
if (!this->summand) {
Martin Beseda
committed
this->summand = new std::vector<ErrorFunction*>(0);
Martin Beseda
committed
}
this->summand->push_back(F);
if (!this->summand_coefficient) {
this->summand_coefficient = new std::vector<double>(0);
}
this->summand_coefficient->push_back(alpha);
if (F) {
if (F->get_dimension() > this->dimension) {
this->dimension = F->get_dimension();
}
Martin Beseda
committed
size_t ErrorSum::get_dimension() {
// if(!this->dimension) {
// size_t max = 0;
// for(auto e : *this->summand) {
// if(e->get_dimension() > max) {
// max = e->get_dimension();
// }
// };
//
// this->dimension = max;
// }
Martin Beseda
committed
return this->dimension;
}
Martin Beseda
committed
std::vector<double>* ErrorSum::get_parameters() {
return this->summand->at(0)->get_parameters();
}

Michal Kravcenko
committed
Martin Beseda
committed
DataSet* ErrorSum::get_dataset() {
return this->summand->at(0)->get_dataset();
};
void ErrorSum::calculate_residual_gradient(std::vector<double>* input,
std::vector<double>* output,
std::vector<double>* gradient,
double h) {
THROW_NOT_IMPLEMENTED_ERROR();
}
double ErrorSum::calculate_single_residual(std::vector<double>* input,
std::vector<double>* output,
std::vector<double>* parameters) {
THROW_NOT_IMPLEMENTED_ERROR();
return 0;
}