Newer
Older
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
The first step to use Xilinx accelerators is to initialize Vitis (compiler) and XRT (runtime) environments.
```console
$ . /tools/Xilinx/Vitis/2023.1/settings64.sh
$ . /opt/xilinx/xrt/setup.sh
```
## Platform Level Accelerator Management
This should allow to examine current platform using `xbutil examine`,
which should output user-level information about XRT platform and list available devices
```
$ xbutil examine
System Configuration
OS Name : Linux
Release : 4.18.0-477.27.1.el8_8.x86_64
Version : #1 SMP Thu Aug 31 10:29:22 EDT 2023
Machine : x86_64
CPU Cores : 64
Memory : 257145 MB
Distribution : Red Hat Enterprise Linux 8.8 (Ootpa)
GLIBC : 2.28
Model : ProLiant XL675d Gen10 Plus
XRT
Version : 2.16.0
Branch : master
Hash : f2524a2fcbbabd969db19abf4d835c24379e390d
Hash Date : 2023-10-11 14:01:19
XOCL : 2.16.0, f2524a2fcbbabd969db19abf4d835c24379e390d
XCLMGMT : 2.16.0, f2524a2fcbbabd969db19abf4d835c24379e390d
Devices present
BDF : Shell Logic UUID Device ID Device Ready*
-------------------------------------------------------------------------------------------------------------------------
[0000:88:00.1] : xilinx_u280_gen3x16_xdma_base_1 283BAB8F-654D-8674-968F-4DA57F7FA5D7 user(inst=132) Yes
[0000:8c:00.1] : xilinx_u280_gen3x16_xdma_base_1 283BAB8F-654D-8674-968F-4DA57F7FA5D7 user(inst=133) Yes
* Devices that are not ready will have reduced functionality when using XRT tools
```
Here two Xilinx Alveo u280 accelerators (`0000:88:00.1` and `0000:8c:00.1`) are available.
The `xbutil` can be also used to query additional information about specific device using its BDF address
```console
$ xbutil examine -d "0000:88:00.1"
-------------------------------------------------
[0000:88:00.1] : xilinx_u280_gen3x16_xdma_base_1
-------------------------------------------------
Platform
XSA Name : xilinx_u280_gen3x16_xdma_base_1
Logic UUID : 283BAB8F-654D-8674-968F-4DA57F7FA5D7
FPGA Name :
JTAG ID Code : 0x14b7d093
DDR Size : 0 Bytes
DDR Count : 0
Mig Calibrated : true
P2P Status : disabled
Performance Mode : not supported
P2P IO space required : 64 GB
Clocks
DATA_CLK (Data) : 300 MHz
KERNEL_CLK (Kernel) : 500 MHz
hbm_aclk (System) : 450 MHz
Mac Addresses : 00:0A:35:0E:20:B0
: 00:0A:35:0E:20:B1
Device Status: HEALTHY
Hardware Context ID: 0
Xclbin UUID: 6306D6AE-1D66-AEA7-B15D-446D4ECC53BD
PL Compute Units
Index Name Base Address Usage Status
-------------------------------------------------
0 vadd:vadd_1 0x800000 1 (IDLE)
```
Basic functionality of the device can be checked using `xbutil validate -d <BDF>` as
```console
$ xbutil validate -d "0000:88:00.1"
Validate Device : [0000:88:00.1]
Platform : xilinx_u280_gen3x16_xdma_base_1
SC Version : 4.3.27
Platform ID : 283BAB8F-654D-8674-968F-4DA57F7FA5D7
-------------------------------------------------------------------------------
Test 1 [0000:88:00.1] : aux-connection
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 2 [0000:88:00.1] : pcie-link
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 3 [0000:88:00.1] : sc-version
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 4 [0000:88:00.1] : verify
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 5 [0000:88:00.1] : dma
Details : Buffer size - '16 MB' Memory Tag - 'HBM[0]'
Host -> PCIe -> FPGA write bandwidth = 11988.9 MB/s
Host <- PCIe <- FPGA read bandwidth = 12571.2 MB/s
...
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 6 [0000:88:00.1] : iops
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 7 [0000:88:00.1] : mem-bw
Details : Throughput (Type: DDR) (Bank count: 2) : 33932.9MB/s
Throughput of Memory Tag: DDR[0] is 16974.1MB/s
Throughput of Memory Tag: DDR[1] is 16974.2MB/s
Throughput (Type: HBM) (Bank count: 1) : 12383.7MB/s
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 8 [0000:88:00.1] : p2p
Test 9 [0000:88:00.1] : vcu
Test 10 [0000:88:00.1] : aie
Test 11 [0000:88:00.1] : ps-aie
Test 12 [0000:88:00.1] : ps-pl-verify
Test 13 [0000:88:00.1] : ps-verify
Test 14 [0000:88:00.1] : ps-iops
```
Finally, the device can be reinitialized using `xbutil reset -d <BDF>` as
```console
$ xbutil reset -d "0000:88:00.1"
Performing 'HOT Reset' on '0000:88:00.1'
Are you sure you wish to proceed? [Y/n]: Y
Successfully reset Device[0000:88:00.1]
```
This can be useful to recover the device from states such as `HANGING`, reported by `xbutil examine -d <BDF>`.
## OpenCL Platform Level
The `clinfo` utility can be used to verify that the accelerator is visible to OpenCL
```console
$ clinfo
Number of platforms: 2
Platform Profile: FULL_PROFILE
Platform Version: OpenCL 2.1 AMD-APP (3590.0)
Platform Name: AMD Accelerated Parallel Processing
Platform Vendor: Advanced Micro Devices, Inc.
Platform Extensions: cl_khr_icd cl_amd_event_callback
Platform Profile: EMBEDDED_PROFILE
Platform Version: OpenCL 1.0
Platform Name: Xilinx
Platform Vendor: Xilinx
Platform Extensions: cl_khr_icd
<...>
Platform Name: Xilinx
Number of devices: 2
Device Type: CL_DEVICE_TYPE_ACCRLERATOR
Vendor ID: 0h
Max compute units: 0
Max work items dimensions: 3
Max work items[0]: 4294967295
Max work items[1]: 4294967295
Max work items[2]: 4294967295
Max work group size: 4294967295
Preferred vector width char: 1
Preferred vector width short: 1
Preferred vector width int: 1
Preferred vector width long: 1
Preferred vector width float: 1
Preferred vector width double: 0
Max clock frequency: 0Mhz
Address bits: 64
Max memory allocation: 4294967296
Image support: Yes
Max number of images read arguments: 128
Max number of images write arguments: 8
Max image 2D width: 8192
Max image 2D height: 8192
Max image 3D width: 2048
Max image 3D height: 2048
Max image 3D depth: 2048
Max samplers within kernel: 0
Max size of kernel argument: 2048
Alignment (bits) of base address: 32768
Minimum alignment (bytes) for any datatype: 128
Single precision floating point capability
Denorms: No
Quiet NaNs: Yes
Round to nearest even: Yes
Round to zero: No
Round to +ve and infinity: No
IEEE754-2008 fused multiply-add: No
Cache type: None
Cache line size: 64
Cache size: 0
Global memory size: 0
Constant buffer size: 4194304
Max number of constant args: 8
Local memory type: Scratchpad
Local memory size: 16384
Error correction support: 1
Profiling timer resolution: 1
Device endianess: Little
Available: No
Compiler available: No
Execution capabilities:
Execute OpenCL kernels: Yes
Execute native function: No
Queue on Host properties:
Out-of-Order: Yes
Profiling: Yes
Platform ID: 0x16fbae8
Name: xilinx_u280_gen3x16_xdma_base_1
Vendor: Xilinx
Driver version: 1.0
Profile: EMBEDDED_PROFILE
Version: OpenCL 1.0
<...>
```
which shows that both `Xilinx` platform and accelerator devices are present.
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
To simplify the build process we define two environment variables `IT4I_PLATFORM` and `IT4I_BUILD_MODE`.
The first `IT4I_PLATFORM` denotes specific accelerator hardware such as `Alveo u250` or `Alveo u280`
and its configuration stored in (`*.xpfm` files).
The list of available platforms can be obtained using `platforminfo` utility:
```console
$ platforminfo -l
{
"platforms": [
{
"baseName": "xilinx_u280_gen3x16_xdma_1_202211_1",
"version": "202211.1",
"type": "sdaccel",
"dataCenter": "true",
"embedded": "false",
"externalHost": "true",
"serverManaged": "true",
"platformState": "impl",
"usesPR": "true",
"platformFile": "\/opt\/xilinx\/platforms\/xilinx_u280_gen3x16_xdma_1_202211_1\/xilinx_u280_gen3x16_xdma_1_202211_1.xpfm"
},
{
"baseName": "xilinx_u250_gen3x16_xdma_4_1_202210_1",
"version": "202210.1",
"type": "sdaccel",
"dataCenter": "true",
"embedded": "false",
"externalHost": "true",
"serverManaged": "true",
"platformState": "impl",
"usesPR": "true",
"platformFile": "\/opt\/xilinx\/platforms\/xilinx_u250_gen3x16_xdma_4_1_202210_1\/xilinx_u250_gen3x16_xdma_4_1_202210_1.xpfm"
}
]
}
```
Here, `baseName` and potentially `platformFile` are of interest and either can be specified as value of `IT4I_PLATFORM`.
In this case we have platform files `xilinx_u280_gen3x16_xdma_1_202211_1` (Alveo u280) and `xilinx_u250_gen3x16_xdma_4_1_202210_1` (Alveo u250).
The `IT4I_BUILD_MODE` is used to specify build type (`hw`, `hw_emu` and `sw_emu`):
- `hw` performs full synthesis for the accelerator
- `hw_emu` allows to run both synthesis and emulation for debugging
- `sw_emu` compiles kernels only for emulation (doesn't require accelerator and allows much faster build)
For example to configure build for `Alveo u280` we set:
```console
$ export IT4I_PLATFORM=xilinx_u280_gen3x16_xdma_1_202211_1
```
### Software Emulation Mode
The software emulation mode is preferable for development as HLS synthesis is very time consuming. To build following applications in this mode we set:
```console
and run each application with `XCL_EMULATION_MODE` set to `sw_emu`:
```
$ XCL_EMULATION_MODE=sw_emu <application>
```
### Hardware Synthesis Mode
!!! note
The HLS of these simple applications **can take up to 2 hours** to finish.
To allow the application to utilize real hardware we have to synthetize FPGA design for the accelerator. This can be done by repeating same steps used to build kernels in emulation mode, but with `IT4I_BUILD_MODE` set to `hw` like so:
```console
$ export IT4I_BUILD_MODE=hw
```
the host application binary can be reused, but it has to be run without `XCL_EMULATION_MODE`:
```console
$ <application>
```
## Sample Applications
The first two samples illustrate two main approaches to building FPGA accelerated applications using Xilinx platform - **XRT** and **OpenCL**.
The final example combines **HIP** with **XRT** to show basics necessary to build application, which utilizes both GPU and FPGA accelerators.
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
### Using HLS and XRT
The applications are typically separated into host and accelerator/kernel side.
The following host-side code should be saved as `host.cpp`
```c++
/*
# Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved.
# SPDX-License-Identifier: X11
*/
#include <iostream>
#include <cstring>
// XRT includes
#include "xrt/xrt_bo.h"
#include <experimental/xrt_xclbin.h>
#include "xrt/xrt_device.h"
#include "xrt/xrt_kernel.h"
#define DATA_SIZE 4096
int main(int argc, char** argv)
{
if(argc != 2)
{
std::cout << "Usage: " << argv[0] << " <XCLBIN File>" << std::endl;
return EXIT_FAILURE;
}
// Read settings
std::string binaryFile = argv[1];
int device_index = 0;
std::cout << "Open the device" << device_index << std::endl;
auto device = xrt::device(device_index);
std::cout << "Load the xclbin " << binaryFile << std::endl;
auto uuid = device.load_xclbin("./vadd.xclbin");
size_t vector_size_bytes = sizeof(int) * DATA_SIZE;
//auto krnl = xrt::kernel(device, uuid, "vadd");
auto krnl = xrt::kernel(device, uuid, "vadd", xrt::kernel::cu_access_mode::exclusive);
std::cout << "Allocate Buffer in Global Memory\n";
auto boIn1 = xrt::bo(device, vector_size_bytes, krnl.group_id(0)); //Match kernel arguments to RTL kernel
auto boIn2 = xrt::bo(device, vector_size_bytes, krnl.group_id(1));
auto boOut = xrt::bo(device, vector_size_bytes, krnl.group_id(2));
// Map the contents of the buffer object into host memory
auto bo0_map = boIn1.map<int*>();
auto bo1_map = boIn2.map<int*>();
auto bo2_map = boOut.map<int*>();
std::fill(bo0_map, bo0_map + DATA_SIZE, 0);
std::fill(bo1_map, bo1_map + DATA_SIZE, 0);
std::fill(bo2_map, bo2_map + DATA_SIZE, 0);
// Create the test data
int bufReference[DATA_SIZE];
for (int i = 0; i < DATA_SIZE; ++i)
{
bo0_map[i] = i;
bo1_map[i] = i;
bufReference[i] = bo0_map[i] + bo1_map[i]; //Generate check data for validation
}
// Synchronize buffer content with device side
std::cout << "synchronize input buffer data to device global memory\n";
boIn1.sync(XCL_BO_SYNC_BO_TO_DEVICE);
boIn2.sync(XCL_BO_SYNC_BO_TO_DEVICE);
std::cout << "Execution of the kernel\n";
auto run = krnl(boIn1, boIn2, boOut, DATA_SIZE); //DATA_SIZE=size
run.wait();
// Get the output;
std::cout << "Get the output data from the device" << std::endl;
boOut.sync(XCL_BO_SYNC_BO_FROM_DEVICE);
// Validate results
if (std::memcmp(bo2_map, bufReference, vector_size_bytes))
throw std::runtime_error("Value read back does not match reference");
std::cout << "TEST PASSED\n";
return 0;
}
```
The host-side code can now be compiled using GCC toolchain as:
```console
$ g++ host.cpp -I$XILINX_XRT/include -I$XILINX_VIVADO/include -L$XILINX_XRT/lib -lxrt_coreutil -o host
```
The accelerator side (simple vector-add kernel) should be saved as `vadd.cpp`.
```c++
/*
# Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved.
# SPDX-License-Identifier: X11
*/
extern "C" {
void vadd(
const unsigned int *in1, // Read-Only Vector 1
const unsigned int *in2, // Read-Only Vector 2
unsigned int *out, // Output Result
int size // Size in integer
)
{
#pragma HLS INTERFACE m_axi port=in1 bundle=aximm1
#pragma HLS INTERFACE m_axi port=in2 bundle=aximm2
#pragma HLS INTERFACE m_axi port=out bundle=aximm1
for(int i = 0; i < size; ++i)
{
out[i] = in1[i] + in2[i];
}
}
}
```
The accelerator-side code is build using Vitis `v++`.
This is two-step process, which either builds emulation binary or performs full HLS (depending on the value of `-t` argument).
The platform (specific accelerator) has to be also specified at this step (both for emulation and full HLS).
```console
$ v++ -c -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM -k vadd vadd.cpp -o vadd.xo
$ v++ -l -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM vadd.xo -o vadd.xclbin
```
This process should result in `vadd.xclbin`, which can be loaded by host-side application.
### Running the Application
With both host application and kernel binary at hand the application (in emulation mode) can be launched as
```console
$ XCL_EMULATION_MODE=sw_emu ./host vadd.xclbin
```
or with real hardware (having compiled kernels with `IT4I_BUILD_MODE=hw`)
```console
./host vadd.xclbin
```
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
## Using HLS and OpenCL
The host-side application code should be saved as `host.cpp`.
This application attempts to find `Xilinx` OpenCL platform in the system and selects first device in that platform.
The device is then configured with provided kernel binary.
Other than that the only difference to typical vector-add in OpenCL is use of `enqueueTask(...)` to launch the kernel
(compared to typical `enqueueNDRangeKernel`).
```c++
#include <iostream>
#include <fstream>
#include <iterator>
#include <vector>
#define CL_HPP_TARGET_OPENCL_VERSION 120
#define CL_HPP_MINIMUM_OPENCL_VERSION 120
#define CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY 1
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
#include <CL/cl2.hpp>
#include <CL/cl_ext_xilinx.h>
std::vector<unsigned char> read_binary_file(const std::string &filename)
{
std::cout << "INFO: Reading " << filename << std::endl;
std::ifstream file(filename, std::ios::binary);
file.unsetf(std::ios::skipws);
std::streampos file_size;
file.seekg(0, std::ios::end);
file_size = file.tellg();
file.seekg(0, std::ios::beg);
std::vector<unsigned char> data;
data.reserve(file_size);
data.insert(data.begin(),
std::istream_iterator<unsigned char>(file),
std::istream_iterator<unsigned char>());
return data;
}
cl::Device select_device()
{
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
cl::Platform platform;
for(cl::Platform &p: platforms)
{
const std::string name = p.getInfo<CL_PLATFORM_NAME>();
std::cout << "PLATFORM: " << name << std::endl;
if(name == "Xilinx")
{
platform = p;
break;
}
}
if(platform == cl::Platform())
{
std::cout << "Xilinx platform not found!" << std::endl;
exit(EXIT_FAILURE);
}
std::vector<cl::Device> devices;
platform.getDevices(CL_DEVICE_TYPE_ACCELERATOR, &devices);
return devices[0];
}
static const int DATA_SIZE = 1024;
int main(int argc, char *argv[])
{
if(argc != 2)
{
std::cout << "Usage: " << argv[0] << " <XCLBIN File>" << std::endl;
return EXIT_FAILURE;
}
std::string binary_file = argv[1];
std::vector<int> source_a(DATA_SIZE, 10);
std::vector<int> source_b(DATA_SIZE, 32);
auto program_binary = read_binary_file(binary_file);
cl::Program::Binaries bins{{program_binary.data(), program_binary.size()}};
cl::Device device = select_device();
cl::Context context(device, nullptr, nullptr, nullptr);
cl::CommandQueue q(context, device, CL_QUEUE_PROFILING_ENABLE);
cl::Program program(context, {device}, bins, nullptr);
cl::Kernel vadd_kernel = cl::Kernel(program, "vector_add");
cl::Buffer buffer_a(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, source_a.size() * sizeof(int), source_a.data());
cl::Buffer buffer_b(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, source_b.size() * sizeof(int), source_b.data());
cl::Buffer buffer_res(context, CL_MEM_READ_WRITE, source_a.size() * sizeof(int));
int narg = 0;
vadd_kernel.setArg(narg++, buffer_res);
vadd_kernel.setArg(narg++, buffer_a);
vadd_kernel.setArg(narg++, buffer_b);
vadd_kernel.setArg(narg++, DATA_SIZE);
q.enqueueTask(vadd_kernel);
std::vector<int> result(DATA_SIZE, 0);
q.enqueueReadBuffer(buffer_res, CL_TRUE, 0, result.size() * sizeof(int), result.data());
int mismatch_count = 0;
for(size_t i = 0; i < DATA_SIZE; ++i)
{
int host_result = source_a[i] + source_b[i];
if(result[i] != host_result)
{
mismatch_count++;
std::cout << "ERROR: " << result[i] << " != " << host_result << std::endl;
break;
}
}
std::cout << "RESULT: " << (mismatch_count == 0 ? "PASSED" : "FAILED") << std::endl;
return 0;
}
```
The host-side code can now be compiled using GCC toolchain as:
```console
$ g++ host.cpp -I$XILINX_XRT/include -I$XILINX_VIVADO/include -lOpenCL -o host
```
The accelerator side (simple vector-add kernel) should be saved as `vadd.cl`.
```c++
#define BUFFER_SIZE 256
#define DATA_SIZE 1024
// TRIPCOUNT indentifier
__constant uint c_len = DATA_SIZE / BUFFER_SIZE;
__constant uint c_size = BUFFER_SIZE;
__attribute__((reqd_work_group_size(1, 1, 1)))
__kernel void vector_add(__global int* c,
__global const int* a,
__global const int* b,
const int n_elements)
{
int arrayA[BUFFER_SIZE];
int arrayB[BUFFER_SIZE];
__attribute__((xcl_loop_tripcount(c_len, c_len)))
for (int i = 0; i < n_elements; i += BUFFER_SIZE)
{
int size = BUFFER_SIZE;
if(i + size > n_elements)
size = n_elements - i;
__attribute__((xcl_loop_tripcount(c_size, c_size)))
__attribute__((xcl_pipeline_loop(1))) readA:
for(int j = 0; j < size; j++)
arrayA[j] = a[i + j];
__attribute__((xcl_loop_tripcount(c_size, c_size)))
__attribute__((xcl_pipeline_loop(1))) readB:
for(int j = 0; j < size; j++)
arrayB[j] = b[i + j];
__attribute__((xcl_loop_tripcount(c_size, c_size)))
__attribute__((xcl_pipeline_loop(1))) vadd_writeC:
for(int j = 0; j < size; j++)
c[i + j] = arrayA[j] + arrayB[j];
}
}
```
The accelerator-side code is build using Vitis `v++`.
This is three-step process, which either builds emulation binary or performs full HLS (depending on the value of `-t` argument).
The platform (specific accelerator) has to be also specified at this step (both for emulation and full HLS).
```console
$ v++ -c -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM -k vector_add -o vadd.xo vadd.cl
$ v++ -l -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM -o vadd.link.xclbin vadd.xo
$ v++ -p vadd.link.xclbin -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM -o vadd.xclbin
```
This process should result in `vadd.xclbin`, which can be loaded by host-side application.
### Running the Application
With both host application and kernel binary at hand the application (in emulation mode) can be launched as
```console
$ XCL_EMULATION_MODE=sw_emu ./host vadd.xclbin
```
or with real hardware (having compiled kernels with `IT4I_BUILD_MODE=hw`)
```console
./host vadd.xclbin
```
## Hybrid GPU and FPGA Application (HIP+XRT)
This simple 8-bit quantized dot product (`R = sum(X[i]*Y[i])`) example illustrates basic approach to utilize both GPU and FPGA accelerators in a single application.
The application takes the simplest approach, where both synchronization and data transfers are handled explicitly by the host.
The HIP toolchain is used to compile the single source host/GPU code as usual, but it is also linked with XRT runtime, which allows host to control the FPGA accelerator.
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
The FPGA kernels are built separately as in previous examples.
The host/GPU HIP code should be saved as `main.hip`
```c++
#include <iostream>
#include <vector>
#include "xrt/xrt_bo.h"
#include "experimental/xrt_xclbin.h"
#include "xrt/xrt_device.h"
#include "xrt/xrt_kernel.h"
#include "hip/hip_runtime.h"
const size_t DATA_SIZE = 1024;
float compute_reference(const float *srcX, const float *srcY, size_t count);
__global__ void quantize(int8_t *out, const float *in, size_t count)
{
size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
for(size_t i = idx; i < count; i += blockDim.x * gridDim.x)
out[i] = int8_t(in[i] * 127);
}
__global__ void dequantize(float *out, const int16_t *in, size_t count)
{
size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
for(size_t i = idx; i < count; i += blockDim.x * gridDim.x)
out[i] = float(in[i] / float(127*127));
}
int main(int argc, char *argv[])
{
if(argc != 2)
{
std::cout << "Usage: " << argv[0] << " <XCLBIN File>" << std::endl;
return EXIT_FAILURE;
}
// Prepare experiment data
std::vector<float> srcX(DATA_SIZE);
std::vector<float> srcY(DATA_SIZE);
float outR = 0.0f;
for(size_t i = 0; i < DATA_SIZE; ++i)
{
srcX[i] = float(rand()) / float(RAND_MAX);
srcY[i] = float(rand()) / float(RAND_MAX);
outR += srcX[i] * srcY[i];
}
float outR_quant = compute_reference(srcX.data(), srcY.data(), DATA_SIZE);
std::cout << "REFERENCE: " << outR_quant << " (" << outR << ")" << std::endl;
// Initialize XRT (FPGA device), load kernels binary and create kernel object
xrt::device device(0);
std::cout << "Loading xclbin file " << argv[1] << std::endl;
xrt::uuid xclbinId = device.load_xclbin(argv[1]);
xrt::kernel mulKernel(device, xclbinId, "multiply", xrt::kernel::cu_access_mode::exclusive);
// Allocate GPU buffers
float *srcX_gpu, *srcY_gpu, *res_gpu;
int8_t *srcX_gpu_quant, *srcY_gpu_quant;
int16_t *res_gpu_quant;
hipMalloc(&srcX_gpu, DATA_SIZE * sizeof(float));
hipMalloc(&srcY_gpu, DATA_SIZE * sizeof(float));
hipMalloc(&res_gpu, DATA_SIZE * sizeof(float));
hipMalloc(&srcX_gpu_quant, DATA_SIZE * sizeof(int8_t));
hipMalloc(&srcY_gpu_quant, DATA_SIZE * sizeof(int8_t));
hipMalloc(&res_gpu_quant, DATA_SIZE * sizeof(int16_t));
// Allocate FPGA buffers
xrt::bo srcX_fpga_quant(device, DATA_SIZE * sizeof(int8_t), mulKernel.group_id(0));
xrt::bo srcY_fpga_quant(device, DATA_SIZE * sizeof(int8_t), mulKernel.group_id(1));
xrt::bo res_fpga_quant(device, DATA_SIZE * sizeof(int16_t), mulKernel.group_id(2));
// Copy experiment data from HOST to GPU
hipMemcpy(srcX_gpu, srcX.data(), DATA_SIZE * sizeof(float), hipMemcpyHostToDevice);
hipMemcpy(srcY_gpu, srcY.data(), DATA_SIZE * sizeof(float), hipMemcpyHostToDevice);
// Execute quantization kernels on both input vectors
quantize<<<16, 256>>>(srcX_gpu_quant, srcX_gpu, DATA_SIZE);
quantize<<<16, 256>>>(srcY_gpu_quant, srcY_gpu, DATA_SIZE);
// Map FPGA buffers into HOST memory, copy data from GPU to these mapped buffers and synchronize them into FPGA memory
hipMemcpy(srcX_fpga_quant.map<int8_t *>(), srcX_gpu_quant, DATA_SIZE * sizeof(int8_t), hipMemcpyDeviceToHost);
srcX_fpga_quant.sync(XCL_BO_SYNC_BO_TO_DEVICE);
hipMemcpy(srcY_fpga_quant.map<int8_t *>(), srcY_gpu_quant, DATA_SIZE * sizeof(int8_t), hipMemcpyDeviceToHost);
srcY_fpga_quant.sync(XCL_BO_SYNC_BO_TO_DEVICE);
// Execute FPGA kernel (8-bit integer multiplication)
auto kernelRun = mulKernel(res_fpga_quant, srcX_fpga_quant, srcY_fpga_quant, DATA_SIZE);
kernelRun.wait();
// Synchronize output FPGA buffer back to HOST and copy its contents to GPU buffer for dequantization
res_fpga_quant.sync(XCL_BO_SYNC_BO_FROM_DEVICE);
hipMemcpy(res_gpu_quant, res_fpga_quant.map<int16_t *>(), DATA_SIZE * sizeof(int16_t), hipMemcpyDeviceToHost);
// Dequantize multiplication result on GPU
dequantize<<<16, 256>>>(res_gpu, res_gpu_quant, DATA_SIZE);
// Copy dequantized results from GPU to HOST
std::vector<float> res(DATA_SIZE);
hipMemcpy(res.data(), res_gpu, DATA_SIZE * sizeof(float), hipMemcpyDeviceToHost);
// Perform simple sum on CPU
float out = 0.0;
for(size_t i = 0; i < DATA_SIZE; ++i)
out += res[i];
std::cout << "RESULT: " << out << std::endl;
hipFree(srcX_gpu);
hipFree(srcY_gpu);
hipFree(res_gpu);
hipFree(srcX_gpu_quant);
hipFree(srcY_gpu_quant);
hipFree(res_gpu_quant);
return 0;
}
float compute_reference(const float *srcX, const float *srcY, size_t count)
{
float out = 0.0f;
for(size_t i = 0; i < count; ++i)
{
int16_t quantX(srcX[i] * 127);
int16_t quantY(srcY[i] * 127);
out += float(int16_t(quantX * quantY) / float(127*127));
}
return out;
}
```
The host/GPU application can be built using HIPCC as:
$ hipcc -I$XILINX_XRT/include -I$XILINX_VIVADO/include -L$XILINX_XRT/lib -lxrt_coreutil main.hip -o host
```
The accelerator side (simple vector-multiply kernel) should be saved as `kernels.cpp`.
```c++
extern "C" {
void multiply(
short *out,
const char *inX,
const char *inY,
int size)
{
#pragma HLS INTERFACE m_axi port=inX bundle=aximm1
#pragma HLS INTERFACE m_axi port=inY bundle=aximm2
#pragma HLS INTERFACE m_axi port=out bundle=aximm1
for(int i = 0; i < size; ++i)
out[i] = short(inX[i]) * short(inY[i]);
}
}
Once again the HLS kernel is build using Vitis `v++` in two steps:
v++ -c -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM -k multiply kernels.cpp -o kernels.xo
v++ -l -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM kernels.xo -o kernels.xclbin
### Running the Application
In emulation mode (FPGA emulation, GPU HW is required) the application can be launched as:
```console
$ XCL_EMULATION_MODE=sw_emu ./host kernels.xclbin
REFERENCE: 256.554 (260.714)
Loading xclbin file ./kernels.xclbin
RESULT: 256.554
```
or, having compiled kernels with `IT4I_BUILD_MODE=hw` set, using real hardware (both FPGA and GPU HW is required)
```console
$ ./host kernels.xclbin
REFERENCE: 256.554 (260.714)
Loading xclbin file ./kernels.xclbin
RESULT: 256.554
```
## Additional Resources
- [https://xilinx.github.io/Vitis-Tutorials/][1]
- [http://xilinx.github.io/Vitis_Accel_Examples/][2]
[1]: https://xilinx.github.io/Vitis-Tutorials/