Newer
Older
you need to prepare a job script for that partition or use the interactive job:
```console
salloc -N 1 -c 144 -A PROJECT-ID -p p11-grace --time=08:00:00
```
where:
- `-N 1` means allocation single node,
- `-c 144` means allocation 144 cores,
- `-p p11-grace` is NVIDIA Grace partition,
- `--time=08:00:00` means allocation for 8 hours.
## Available Toolchains
The platform offers three toolchains:
- Standard GCC (as a module `ml GCC`)
- [NVHPC](https://developer.nvidia.com/hpc-sdk) (as a module `ml NVHPC`)
- [Clang for NVIDIA Grace](https://developer.nvidia.com/grace/clang) (installed in `/opt/nvidia/clang`)
!!! note
The NVHPC toolchain showed strong results with minimal amount of tuning necessary in our initial evaluation.
### GCC Toolchain
The GCC compiler seems to struggle with vectorization of short (constant length) loops, which tend to get completely unrolled/eliminated instead of being vectorized. For example simple nested loop such as
```cpp
for(int i = 0; i < 1000000; ++i) {
// Iterations dependent in "i"
// ...
for(int j = 0; j < 8; ++j) {
// but independent in "j"
// ...
}
}
```
may emit scalar code for the inner loop leading to no vectorization being used at all.
The Clang/LLVM tends to behave similarly, but can be guided to properly vectorize the inner loop with either flags `-O3 -ffast-math -march=native -fno-unroll-loops -mllvm -force-vector-width=8` or pragmas such as `#pragma clang loop vectorize_width(8)` and `#pragma clang loop unroll(disable)`.
```cpp
for(int i = 0; i < 1000000; ++i) {
// Iterations dependent in "i"
// ...
#pragma clang loop unroll(disable) vectorize_width(8)
for(int j = 0; j < 8; ++j) {
// but independent in "j"
// ...
}
}
```
!!! note
Our basic experiments show that fixed width vectorization (NEON) tends to perform better in the case of short (register-length) loops than SVE. In cases (like above), where specified `vectorize_width` is larger than availiable vector unit width, Clang will emit multiple NEON instructions (eg. 4 instructions will be emitted to process 8 64-bit operations in 128-bit units of Grace).
The NVHPC toolchain handled aforementioned case without any additional tuning. Simple `-O3 -march=native -fast` should be therefore sufficient.
## Basic Math Libraries
The basic libraries (BLAS and LAPACK) are included in NVHPC toolchain and can be used simply as `-lblas` and `-llapack` for BLAS and LAPACK respectively (`lp64` and `ilp64` versions are also included).
!!! note
The Grace platform doesn't include CUDA-capable GPU, therefore `nvcc` will fail with an error. This means that `nvc`, `nvc++` and `nvfortran` should be used instead.
### NVIDIA Performance Libraries
The [NVPL](https://developer.nvidia.com/nvpl) package includes more extensive set of libraries in both sequential and multi-threaded versions:
- BLACS: `-lnvpl_blacs_{lp64,ilp64}_{mpich,openmpi3,openmpi4,openmpi5}`
- BLAS: `-lnvpl_blas_{lp64,ilp64}_{seq,gomp}`
- FFTW: `-lnvpl_fftw`
- LAPACK: `-lnvpl_lapack_{lp64,ilp64}_{seq,gomp}`
- ScaLAPACK: `-lnvpl_scalapack_{lp64,ilp64}`
- RAND: `-lnvpl_rand` or `-lnvpl_rand_mt`
- SPARSE: `-lnvpl_sparse`
This package should be compatible with all availiable toolchains and includes CMake module files for easy integration into CMake-based projects. For further documentation see also [NVPL](https://docs.nvidia.com/nvpl).
### Recommended BLAS Library
We recommend to use the multi-threaded BLAS library from the NVPL package.
!!! note
It is important to pin the processes using **OMP_PROC_BIND=spread**
Example:
```console
$ ml NVHPC
$ nvc -O3 -march=native myprog.c -o myprog -lnvpl_blas_lp64_gomp
$ OMP_PROC_BIND=spread ./myprog
```
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
## Basic Communication Libraries
The OpenMPI 4 implementation is included with NVHPC toolchain and is exposed as a module (`ml OpenMPI`). The following example
```cpp
#include <mpi.h>
#include <sched.h>
#include <omp.h>
int main(int argc, char **argv)
{
int rank;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
#pragma omp parallel
{
printf("Hello on rank %d, thread %d on CPU %d\n", rank, omp_get_thread_num(), sched_getcpu());
}
MPI_Finalize();
}
```
can be compiled and run as follows
```console
ml OpenMPI
mpic++ -fast -fopenmp hello.cpp -o hello
OMP_PROC_BIND=close OMP_NUM_THREADS=4 mpirun -np 4 --map-by slot:pe=36 ./hello
```
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
In this configuration we run 4 ranks bound to one quarter of cores each with 4 OpenMP threads.
## Simple BLAS Application
The `hello world` example application (written in `C++` and `Fortran`) uses simple stationary probability vector estimation to illustrate use of GEMM (BLAS 3 routine).
Stationary probability vector estimation in `C++`:
```cpp
#include <iostream>
#include <vector>
#include <chrono>
#include "cblas.h"
const size_t ITERATIONS = 32;
const size_t MATRIX_SIZE = 1024;
int main(int argc, char *argv[])
{
const size_t matrixElements = MATRIX_SIZE*MATRIX_SIZE;
std::vector<float> a(matrixElements, 1.0f / float(MATRIX_SIZE));
for(size_t i = 0; i < MATRIX_SIZE; ++i)
a[i] = 0.5f / (float(MATRIX_SIZE) - 1.0f);
a[0] = 0.5f;
std::vector<float> w1(matrixElements, 0.0f);
std::vector<float> w2(matrixElements, 0.0f);
std::copy(a.begin(), a.end(), w1.begin());
std::vector<float> *t1, *t2;
t1 = &w1;
t2 = &w2;
auto c1 = std::chrono::steady_clock::now();
for(size_t i = 0; i < ITERATIONS; ++i)
{
std::fill(t2->begin(), t2->end(), 0.0f);
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, MATRIX_SIZE, MATRIX_SIZE, MATRIX_SIZE,
1.0f, t1->data(), MATRIX_SIZE,
a.data(), MATRIX_SIZE,
1.0f, t2->data(), MATRIX_SIZE);
std::swap(t1, t2);
}
auto c2 = std::chrono::steady_clock::now();
for(size_t i = 0; i < MATRIX_SIZE; ++i)
{
std::cout << (*t1)[i*MATRIX_SIZE + i] << " ";
}
std::cout << std::endl;
std::cout << "Elapsed Time: " << std::chrono::duration<double>(c2 - c1).count() << std::endl;
return 0;
}
```
Stationary probability vector estimation in `Fortran`:
```fortran
program main
implicit none
integer :: matrix_size, iterations
integer :: i
real, allocatable, target :: a(:,:), w1(:,:), w2(:,:)
real, dimension(:,:), contiguous, pointer :: t1, t2, tmp
real, pointer :: out_data(:), out_diag(:)
integer :: cr, cm, c1, c2
iterations = 32
matrix_size = 1024
call system_clock(count_rate=cr)
call system_clock(count_max=cm)
allocate(a(matrix_size, matrix_size))
allocate(w1(matrix_size, matrix_size))
allocate(w2(matrix_size, matrix_size))
a(:,:) = 1.0 / real(matrix_size)
a(:,1) = 0.5 / real(matrix_size - 1)
a(1,1) = 0.5
w1 = a
w2(:,:) = 0.0
t1 => w1
t2 => w2
call system_clock(c1)
do i = 0, iterations
t2(:,:) = 0.0
call sgemm('N', 'N', matrix_size, matrix_size, matrix_size, 1.0, t1, matrix_size, a, matrix_size, 1.0, t2, matrix_size)
tmp => t1
t1 => t2
t2 => tmp
end do
call system_clock(c2)
out_data(1:size(t1)) => t1
out_diag => out_data(1::matrix_size+1)
print *, out_diag
print *, "Elapsed Time: ", (c2 - c1) / real(cr)
deallocate(a)
deallocate(w1)
deallocate(w2)
end program main
```
### Using NVHPC Toolchain
The C++ version of the example can be compiled with NVHPC and ran as follows
```console
ml NVHPC
nvc++ -O3 -march=native -fast -I$NVHPC/Linux_aarch64/$EBVERSIONNVHPC/compilers/include/lp64 -lblas main.cpp -o main
OMP_NUM_THREADS=144 OMP_PROC_BIND=spread ./main
```
The Fortran version is just as simple:
```console
ml NVHPC
nvfortran -O3 -march=native -fast -lblas main.f90 -o main.x
OMP_NUM_THREADS=144 OMP_PROC_BIND=spread ./main
```
!!! note
It may be advantageous to use NVPL libraries instead NVHPC ones. For example DGEMM BLAS 3 routine from NVPL is almost 30% faster than NVHPC one.
Similarly Clang for Grace toolchain with NVPL BLAS can be used to compile C++ version of the example.
```console
ml NVHPC
/opt/nvidia/clang/17.23.11/bin/clang++ -O3 -march=native -ffast-math -I$NVHPC/Linux_aarch64/$EBVERSIONNVHPC/compilers/include/lp64 -lnvpl_blas_lp64_gomp main.cpp -o main
```
!!! note
NVHPC module is used just for the `cblas.h` include in this case. This can be avoided by changing the code to use `nvpl_blas.h` instead.
## Additional Resources
- [https://www.nvidia.com/en-us/data-center/grace-cpu-superchip/][1]
- [https://developer.nvidia.com/hpc-sdk][2]
- [https://developer.nvidia.com/grace/clang][3]
- [https://docs.nvidia.com/nvpl][4]
[1]: https://www.nvidia.com/en-us/data-center/grace-cpu-superchip/
[2]: https://developer.nvidia.com/hpc-sdk
[3]: https://developer.nvidia.com/grace/clang