Skip to content
Snippets Groups Projects
amd.md 12.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • Jan Siwiec's avatar
    Jan Siwiec committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
    # Using AMD Partition
    
    For testing your application on the AMD partition,
    you need to prepare a job script for that partition or use the interactive job:
    
    ```
    salloc -N 1 -c 64 -A PROJECT-ID -p p03-amd --gres=gpu:4 --time=08:00:00
    ```
    where: 
    - -N 1 means allocating one server, 
    - -c 64 means allocation 64 cores,  
    - -A is your project, 
    - -p p03-amd is AMD partition, 
    - --gres=gpu:4 means allcating all 4 GPUs of the node,
    - --time=08:00:00 means allocation for 8 hours.  
    
    You have also an option to allocate subset of the resources only, by reducing the -c and --gres=gpu to smaller values. 
    
    ```
    salloc -N 1 -c 48 -A PROJECT-ID -p p03-amd --gres=gpu:3 --time=08:00:00
    salloc -N 1 -c 32 -A PROJECT-ID -p p03-amd --gres=gpu:2 --time=08:00:00
    salloc -N 1 -c 16 -A PROJECT-ID -p p03-amd --gres=gpu:1 --time=08:00:00
    ```
    
    ### Note: 
    
    p03-amd01 server has hyperthreading enabled therefore htop shows 128 cores.
    
    p03-amd02 server has hyperthreading dissabled therefore htop shows 64 cores.
    
    
    ## Using AMD MI100 GPUs
    
    The AMD GPUs can be programmed using the ROCm open-source platform (see: https://docs.amd.com/ for more information.)
    
    ROCm and related libraries are installed directly in the system. You can find it here: 
    ```
    /opt/rocm/
    ```
    The actual version can be found here: 
    ```
    [user@p03-amd02.cs]$ cat /opt/rocm/.info/version
    
    5.5.1-74
    ```
    
    ## Basic HIP code
    
    The first way how to program AMD GPUs is to use HIP. 
    
    The basic vector addition code in HIP looks like this. This a full code and you can copy and paste it into a file. For this example we use `vector_add.hip.cpp` .  
    
    ```
    #include <cstdio>
    #include <hip/hip_runtime.h>
    
    
    
    __global__ void add_vectors(float * x, float * y, float alpha, int count)
    {
        long long idx = blockIdx.x * blockDim.x + threadIdx.x;
    
        if(idx < count)
            y[idx] += alpha * x[idx];
    }
    
    int main()
    {
        // number of elements in the vectors
        long long count = 10;
    
        // allocation and initialization of data on the host (CPU memory)
        float * h_x = new float[count];
        float * h_y = new float[count];
        for(long long i = 0; i < count; i++)
        {
            h_x[i] = i;
            h_y[i] = 10 * i;
        }
    
        // print the input data
        printf("X:");
        for(long long i = 0; i < count; i++)
            printf(" %7.2f", h_x[i]);
        printf("\n");
        printf("Y:");
        for(long long i = 0; i < count; i++)
            printf(" %7.2f", h_y[i]);
        printf("\n");
        
        // allocation of memory on the GPU device
        float * d_x;
        float * d_y;
        hipMalloc(&d_x, count * sizeof(float));
        hipMalloc(&d_y, count * sizeof(float));
    
        // copy the data from host memory to the device
        hipMemcpy(d_x, h_x, count * sizeof(float), hipMemcpyHostToDevice);
        hipMemcpy(d_y, h_y, count * sizeof(float), hipMemcpyHostToDevice);
    
        int tpb = 256;
        int bpg = (count - 1) / tpb + 1;
        // launch the kernel on the GPU
        add_vectors<<< bpg, tpb >>>(d_x, d_y, 100, count);
        // hipLaunchKernelGGL(add_vectors, bpg, tpb, 0, 0, d_x, d_y, 100, count);
    
        // copy the result back to CPU memory
        hipMemcpy(h_y, d_y, count * sizeof(float), hipMemcpyDeviceToHost);
    
        // print the results
        printf("Y:");
        for(long long i = 0; i < count; i++)
            printf(" %7.2f", h_y[i]);
        printf("\n");
    
        // free the allocated memory
        hipFree(d_x);
        hipFree(d_y);
        delete[] h_x;
        delete[] h_y;
    
        return 0;
    }
    ```
    
    To compile the code we use `hipcc` compiler. The compiler information can be found like this: 
    
    ````
    [user@p03-amd02.cs ~]$ hipcc --version 
    
    HIP version: 5.5.30202-eaf00c0b
    AMD clang version 16.0.0 (https://github.com/RadeonOpenCompute/llvm-project roc-5.5.1 23194 69ef12a7c3cc5b0ccf820bc007bd87e8b3ac3037)
    Target: x86_64-unknown-linux-gnu
    Thread model: posix
    InstalledDir: /opt/rocm-5.5.1/llvm/bin
    ````
    
    The code is compiled a follows: 
    
    ```
    hipcc vector_add.hip.cpp -o vector_add.x
    ```
    
    The correct output of the code is: 
    ```
    [user@p03-amd02.cs ~]$ ./vector_add.x 
    X:    0.00    1.00    2.00    3.00    4.00    5.00    6.00    7.00    8.00    9.00
    Y:    0.00   10.00   20.00   30.00   40.00   50.00   60.00   70.00   80.00   90.00
    Y:    0.00  110.00  220.00  330.00  440.00  550.00  660.00  770.00  880.00  990.00
    ```
    
    ## HIP and ROCm libraries
    
    The list of official AMD libraries can be found here: https://docs.amd.com/category/libraries. 
    
    
    
    The libraries are installed in the same directory is ROCm 
    ```
    /opt/rocm/
    ```
    
    Following libraries are installed: 
    ```
    drwxr-xr-x  4 root root   44 Jun  7 14:09 hipblas
    drwxr-xr-x  3 root root   17 Jun  7 14:09 hipblas-clients
    drwxr-xr-x  3 root root   29 Jun  7 14:09 hipcub
    drwxr-xr-x  4 root root   44 Jun  7 14:09 hipfft
    drwxr-xr-x  3 root root   25 Jun  7 14:09 hipfort
    drwxr-xr-x  4 root root   32 Jun  7 14:09 hiprand
    drwxr-xr-x  4 root root   44 Jun  7 14:09 hipsolver
    drwxr-xr-x  4 root root   44 Jun  7 14:09 hipsparse
    ```
    
    and 
    
    ```
    drwxr-xr-x  4 root root   32 Jun  7 14:09 rocalution
    drwxr-xr-x  4 root root   44 Jun  7 14:09 rocblas
    drwxr-xr-x  4 root root   44 Jun  7 14:09 rocfft
    drwxr-xr-x  4 root root   32 Jun  7 14:09 rocprim
    drwxr-xr-x  4 root root   32 Jun  7 14:09 rocrand
    drwxr-xr-x  4 root root   44 Jun  7 14:09 rocsolver
    drwxr-xr-x  4 root root   44 Jun  7 14:09 rocsparse
    drwxr-xr-x  3 root root   29 Jun  7 14:09 rocthrust
    ```
    
    
    
    ### Using hipBlas library
    
    The basic code in HIP that uses hipBlas looks like this. This a full code and you can copy and paste it into a file. For this example we use `hipblas.hip.cpp` .  
    
    ```
    #include <cstdio>
    #include <vector>
    #include <cstdlib>
    #include <hip/hip_runtime.h>
    #include <hipblas/hipblas.h>
    
    
    int main()
    {    
        srand(9600);
    
        int width = 10;
        int height = 7;
        int elem_count = width * height;
    
    
        // initialization of data in CPU memory
    
        float * h_A;
        hipHostMalloc(&h_A, elem_count * sizeof(*h_A));
        for(int i = 0; i < elem_count; i++)
            h_A[i] = (100.0f * rand()) / (float)RAND_MAX;
        printf("Matrix A:\n");
        for(int r = 0; r < height; r++)
        {
            for(int c = 0; c < width; c++)
                printf("%6.3f  ", h_A[r + height * c]);
            printf("\n");
        }
    
        float * h_x;
        hipHostMalloc(&h_x, width * sizeof(*h_x));
        for(int i = 0; i < width; i++)
            h_x[i] = (100.0f * rand()) / (float)RAND_MAX;
        printf("vector x:\n");
        for(int i = 0; i < width; i++)
            printf("%6.3f  ", h_x[i]);
        printf("\n");
        
        float * h_y;
        hipHostMalloc(&h_y, height * sizeof(*h_y));
        for(int i = 0; i < height; i++)
            h_x[i] = 100.0f + i;
        printf("vector y:\n");
        for(int i = 0; i < height; i++)
            printf("%6.3f  ", h_x[i]);
        printf("\n");
    
        
        // initialization of data in GPU memory
    
        float * d_A;
        size_t pitch_A;
        hipMallocPitch((void**)&d_A, &pitch_A, height * sizeof(*d_A), width);
        hipMemcpy2D(d_A, pitch_A, h_A, height * sizeof(*d_A), height * sizeof(*d_A), width, hipMemcpyHostToDevice);
        int lda = pitch_A / sizeof(float);
    
        float * d_x;
        hipMalloc(&d_x, width * sizeof(*d_x));
        hipMemcpy(d_x, h_x, width * sizeof(*d_x), hipMemcpyHostToDevice);
        
        float * d_y;
        hipMalloc(&d_y, height * sizeof(*d_y));
        hipMemcpy(d_y, h_y, height * sizeof(*d_y), hipMemcpyHostToDevice);
    
    
        // basic calculation of the result on the CPU
    
        float alpha=2.0f, beta=10.0f;
    
        for(int i = 0; i < height; i++)
            h_y[i] *= beta;
        for(int r = 0; r < height; r++)
            for(int c = 0; c < width; c++)
                h_y[r] += alpha * h_x[c] * h_A[r + height * c];
        printf("result y CPU:\n");
        for(int i = 0; i < height; i++)
            printf("%6.3f  ", h_y[i]);
        printf("\n");
        
        
        // calculation of the result on the GPU using the hipBLAS library
    
        hipblasHandle_t blas_handle;
        hipblasCreate(&blas_handle);
    
        hipblasSgemv(blas_handle, HIPBLAS_OP_N, height, width, &alpha, d_A, lda, d_x, 1, &beta, d_y, 1);
        hipDeviceSynchronize();
    
        hipblasDestroy(blas_handle);
        
    
        // copy the GPU result to CPU memory and print it
        hipMemcpy(h_y, d_y, height * sizeof(*d_y), hipMemcpyDeviceToHost);
        printf("result y BLAS:\n");
        for(int i = 0; i < height; i++)
            printf("%6.3f  ", h_y[i]);
        printf("\n");
    
    
        // free all the allocated memory
        hipFree(d_A);
        hipFree(d_x);
        hipFree(d_y);
        hipHostFree(h_A);
        hipHostFree(h_x);
        hipHostFree(h_y);
    
        return 0;
    }
    ```
    
    The code compilation can be done as follows: 
    ```
    hipcc hipblas.hip.cpp -o hipblas.x -lhipblas
    ```
    
    ### Using hipSolver library
    
    The basic code in HIP that uses hipSolver looks like this. This a full code and you can copy and paste it into a file. For this example we use `hipsolver.hip.cpp` .  
    
    ```
    #include <cstdio>
    #include <vector>
    #include <cstdlib>
    #include <algorithm>
    #include <hipsolver/hipsolver.h>
    #include <hipblas/hipblas.h>
    
    int main()
    {
        srand(63456);
    
        int size = 10;
    
    
        // allocation and initialization of data on host. this time we use std::vector
    
        int h_A_ld = size;
        int h_A_pitch = h_A_ld * sizeof(float);
        std::vector<float> h_A(size * h_A_ld);
        for(int r = 0; r < size; r++)
            for(int c = 0; c < size; c++)
                h_A[r * h_A_ld + c] = (10.0 * rand()) / RAND_MAX;
        printf("System matrix A:\n");
        for(int r = 0; r < size; r++)
        {
            for(int c = 0; c < size; c++)
                printf("%6.3f  ", h_A[r * h_A_ld + c]);
            printf("\n");
        }    
        
        std::vector<float> h_b(size);
        for(int i = 0; i < size; i++)
            h_b[i] = (10.0 * rand()) / RAND_MAX;
        printf("RHS vector b:\n");
        for(int i = 0; i < size; i++)
            printf("%6.3f  ", h_b[i]);
        printf("\n");
    
        std::vector<float> h_x(size);
    
    
        // memory allocation on the device and initialization
    
        float * d_A;
        size_t d_A_pitch;
        hipMallocPitch((void**)&d_A, &d_A_pitch, size, size);
        int d_A_ld = d_A_pitch / sizeof(float);
    
        float * d_b;
        hipMalloc(&d_b, size * sizeof(float));
        
        float * d_x;
        hipMalloc(&d_x, size * sizeof(float));
    
        int * d_piv;
        hipMalloc(&d_piv, size * sizeof(int));
    
        int * info;
        hipMallocManaged(&info, sizeof(int));
    
        hipMemcpy2D(d_A, d_A_pitch, h_A.data(), h_A_pitch, size * sizeof(float), size, hipMemcpyHostToDevice);
        hipMemcpy(d_b, h_b.data(), size * sizeof(float), hipMemcpyHostToDevice);
        
    
        // solving the system using hipSOLVER
    
        hipsolverHandle_t solverHandle;
        hipsolverCreate(&solverHandle);
    
        int wss_trf, wss_trs; // wss = WorkSpace Size
        hipsolverSgetrf_bufferSize(solverHandle, size, size, d_A, d_A_ld, &wss_trf);
        hipsolverSgetrs_bufferSize(solverHandle, HIPSOLVER_OP_N, size, 1, d_A, d_A_ld, d_piv, d_b, size, &wss_trs);
        float * workspace;
        int wss = std::max(wss_trf, wss_trs);
        hipMalloc(&workspace, wss * sizeof(float));
        
        hipsolverSgetrf(solverHandle, size, size, d_A, d_A_ld, workspace, wss, d_piv, info);
        hipsolverSgetrs(solverHandle, HIPSOLVER_OP_N, size, 1, d_A, d_A_ld, d_piv, d_b, size, workspace, wss, info);
    
        hipMemcpy(d_x, d_b, size * sizeof(float), hipMemcpyDeviceToDevice);
        hipMemcpy(h_x.data(), d_x, size * sizeof(float), hipMemcpyDeviceToHost);
        printf("Solution vector x:\n");
        for(int i = 0; i < size; i++)
            printf("%6.3f  ", h_x[i]);
        printf("\n");
    
        hipFree(workspace);
    
        hipsolverDestroy(solverHandle);
    
    
        // perform matrix-vector multiplication A*x using hipBLAS to check if the solution is correct
    
        hipblasHandle_t blasHandle;
        hipblasCreate(&blasHandle);
    
        float alpha = 1;
        float beta = 0;
        hipMemcpy2D(d_A, d_A_pitch, h_A.data(), h_A_pitch, size * sizeof(float), size, hipMemcpyHostToDevice);
        hipblasSgemv(blasHandle, HIPBLAS_OP_N, size, size, &alpha, d_A, d_A_ld, d_x, 1, &beta, d_b, 1);
        hipDeviceSynchronize();
    
        hipblasDestroy(blasHandle);
    
        for(int i = 0; i < size; i++)
            h_b[i] = 0;
        hipMemcpy(h_b.data(), d_b, size * sizeof(float), hipMemcpyDeviceToHost);
        printf("Check multiplication vector Ax:\n");
        for(int i = 0; i < size; i++)
            printf("%6.3f  ", h_b[i]);
        printf("\n");
    
    
        // free all the allocated memory
    
        hipFree(info);
        hipFree(d_piv);
        hipFree(d_x);
        hipFree(d_b);
        hipFree(d_A);
    
        return 0;
    }
    ```
    
    The code compilation can be done as follows: 
    ```
    hipcc hipsolver.hip.cpp -o hipsolver.x -lhipblas -lhipsolver
    ```
    
    ### Other AMD libraries and frameworks 
    
    
    
    
    
    Please see [gcc options](https://gcc.gnu.org/onlinedocs/gcc/AArch64-Options.html) for more advanced compilation settings.
    No complications are expected as long as the application does not use any intrinsic for `x64` architecture.
    If you want to use intrinsic,
    [SVE](https://developer.arm.com/documentation/102699/0100/Optimizing-with-intrinsics) instruction set is available.