Newer
Older
double calcul::distance_dtw_euklid(vtr<double> const &u, vtr<double> const &v)
{
double sum = 0;
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
for (size_t i = 0; i < u.size(); i++)
{
sum += pow(u[i] - v[i], 2);
}
return sum;
}
double calcul::distance_dtw_euklid_mean(vtr<double> const &u, vtr<double> const &v)
{
double sum = 0;
for (size_t i = 0; i < u.size(); i++)
{
double ratio = 0;
if (u[i] > v[i])
ratio += 1 - v[i] / u[i];
else if (v[i] > u[i])
sum += 1 - u[i] / v[i];
//sum += std::abs(1 - u[i] / (v[i] + 0.00000001));
}
return sum;
}
double calcul::distance_dtw_manhattan(vtr<double> const &u, vtr<double> const &v)
{
double sum = 0;
for (size_t i = 0; i < u.size(); i++)
{
sum += abs(u[i] - v[i]);
}
return sum;
}
double calcul::distance_dtw_simd(vtr<double> const &u, vtr<double> const &v, size_t simds, size_t rest)
//if (simds > 0)
//{
// //_mm256_zeroall();
// size_t iEnd = u.size() - 4 < 0 ? 0 : u.size();
// for (size_t i = 0; i < u.size() - rest; i += 4)
// {
// //__m256d u256 = _mm256_set_pd(u[i], u[i + 1], u[i + 2], u[i + 3]);
// //__m256d v256 = _mm256_set_pd(v[i], v[i + 1], v[i + 2], v[i + 3]);
// __m256d result = _mm256_sub_pd(_mm256_set_pd(u[i], u[i + 1], u[i + 2], u[i + 3]), _mm256_set_pd(v[i], v[i + 1], v[i + 2], v[i + 3]));
// result = _mm256_mul_pd(result, result);
//
// auto r = result.m256d_f64; // == double* f = (double*)&result;
// sum += r[0] + r[1] + r[2] + r[3];
// }
//}
//for (size_t i = u.size() - rest; i < u.size(); i++)
//{
// sum += pow(u[i] - v[i], 2);
//}
double calcul::distance_dtw_csiChroma(vtr<double> const &u, vtr<double> const &v, double treshold = 0.07)
vtr<int> u_filter(u.size());
vtr<int> v_filter(v.size());
//binary filtering
for (size_t i = 0; i < u.size(); i++)
{
if (u[i] > treshold)
u_filter[i] = 1;
if (v[i] > treshold)
v_filter[i] = 1;
}
int minU = constant::MAX_int;
int minV = constant::MAX_int;
int idxU = 0;
int idxV = 0;
//search minimal distance between filtered vectors and minor/major scale
for (int i = 0; i < (int)cstruct::scaleChord.size(); i++)
int sumU = 0;
int sumV = 0;
for (size_t j = 0; j < u.size(); j++)
{
sumU += std::abs(u_filter[j] - cstruct::scaleChord[i][j]);
sumV += std::abs(v_filter[j] - cstruct::scaleChord[i][j]);
//max value == 1 -> pow 2 -> abs
}
if (sumU < minU)
{
minU = sumU;
}
if (sumV < minV)
{
minV = sumV;
}
}
//calculate result (zero u/v if minimal scale vectors == 1)
for (size_t i = 0; i < u.size(); i++)
{
double tmpU;
if (cstruct::scaleChord[idxU][i] == 1)
tmpU = 0;
else
tmpU = u[i];
double tmpV;
if (cstruct::scaleChord[idxV][i] == 1)
tmpV = 0;
else
tmpV = v[i];
//result += std::abs(tmpU - tmpV);
result += std::pow(tmpU - tmpV, 2);
}
double calcul::distance_dtw_csiChord(vtr<double> const &u, vtr<double> const &v, vtr<int> const &uKey, vtr<int> const &vKey)
{
int minU = constant::MAX_int;
int minV = constant::MAX_int;
int idxU = 0;
int idxV = 0;
//search minimal distance between filtered vectors and minor/major scale
for (int i = 0; i < (int)cstruct::scaleChord.size(); i++)
{
int sumU = 0;
int sumV = 0;
for (size_t j = 0; j < u.size(); j++)
{
sumU += (int)std::abs(u[j] - cstruct::scaleChord[i][j]); //max value == 1 -> pow 2 -> abs
sumV += (int)std::abs(v[j] - cstruct::scaleChord[i][j]);
if (sumU < minU)
{
minU = sumU;
}
if (sumV < minV)
{
minV = sumV;
}
}
if (idxU > 11) idxU -= 12;
if (idxV > 11) idxV -= 12;
auto dist1 = calcul::distance_circleFifth(idxU, idxV); //distance between chord roots
auto dist2 = calcul::distance_circleFifth(uKey[uKey.size() - 1], vKey[vKey.size() - 1]); //dist key roots
auto getPitch = [](int idx) {
vtr<bool> pitch(48); //pitch space of 4 levels (level e is irrelevant)
pitch[idx + 12] = 1; //level b root
pitch[idx + 19 % 12] = 1; //level b 2.
pitch[idx + 24] = 1; //level c root
pitch[idx + 31 % 24] = 1; //level c 3.
if (idx > 11) //level c 2.
pitch[idx + 27 % 24] = 1;
else
pitch[idx + 28 % 24] = 1;
return pitch;
};
auto pitchU = getPitch(idxU); //pitch space of 4 levels (level e is irrelevant)
auto pitchV = getPitch(idxV);
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
//minU = int_max; //reinit variables
//minV = int_max;
//idxU = 0;
//idxV = 0;
////search minimal distance between filtered vectors and minor/major scale
//for (size_t i = 0; i < scaleChord.size(); i++)
//{
// int sumU = 0;
// int sumV = 0;
// for (size_t j = 0; j < uKey.size(); j++)
// {
// sumU += std::abs(uKey[j] - scaleKey[i][j]);
// sumV += std::abs(vKey[j] - scaleKey[i][j]);
// //max value == 1 -> pow 2 -> abs
// }
// if (sumU < minU)
// {
// minU = sumU;
// idxU = static_cast<int>(i);
// }
// if (sumV < minV)
// {
// minV = sumV;
// idxV = static_cast<int>(i);
// }
//}
//auto dist2 = calcul::distance_circleOfFifth(idxU > 11 ? idxU - 12 : idxU, idxV > 11 ? idxV - 12 : idxV);
for (size_t i = 0; i < 12; i++) //add level d to pitch spaces
{
pitchU[i + 36] = uKey[i];
pitchV[i + 36] = vKey[i];
}
int dist3 = 0; //calculation of pitch psace distance
for (size_t i = 0; i < 48; i++)
{
if (pitchU[i] != pitchV[i])
dist3++;
}
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
return dist1 + dist2 + dist3;
}
double calcul::distance_dtw_many(vtr2<double> const &points)
{
double sum = 0;
for (size_t i = 0; i < points.size(); i++)
{
for (size_t j = i + 1; j < points.size(); j++)
{
sum += distance_dtw_euklid(points[i], points[j]);
}
}
return sum;
}
double calcul::distance_lcss(vtr<double> const &u, vtr<double> const &v, int idx)
{
if (u.size() == 0 || v.size() == 0)
return 0;
double sum = abs(u[idx] - v[idx]);
return sum;
}
double calcul::score_dtw_s1(double ratioRaw)
{
return ratioRaw;
}
double calcul::score_dtw_s2(double ratioRaw, size_t pathLength)
{
return sqrt(ratioRaw) / static_cast<double>(pathLength);
}
double calcul::score_dtw_s3(size_t lenA, size_t lenB, size_t lenPath)
{
return 1 - (lenA / static_cast<double>(lenPath) + lenB / static_cast<double>(lenPath)) / 2;
}
double calcul::score_dtw_s4(double ratioRaw, double ratioRawMax)
{
return (sqrt(ratioRaw) / sqrt(ratioRawMax));
}
double calcul::score_dtw_s5(double ratioRaw, double ratioRawMax, double coeficient)
return (sqrt(ratioRaw) / sqrt(ratioRawMax)) * coeficient;
}
double calcul::score_dtw_max(vtr2<double> const &A, vtr2<double> const &B, coord start, coord end)
{
double min = constant::MAX_double;
double max = constant::MIN_double;
size_t sA = 0;
size_t eA = (int)A.size();
size_t sB = 0;
size_t eB = (int)B.size();
if (A.size() < B.size()) {
sB = start.col;
eB = end.col;
}
if (B.size() < A.size()) {
sA = start.row;
eA = end.row;
}
for (size_t i = sA; i < eA; i++)
for (size_t j = 0; j < A[i].size(); j++)
{
sum += A[i][j];
}
if (min > sum)
min = sum;
if (max < sum) //added
max = sum;
{
double sum = 0;
for (size_t j = 0; j < B[i].size(); j++)
{
sum += B[i][j];
}
if (min > sum) //added
min = sum;
if (max < sum)
max = sum;
return pow(max - min, 2) * std::max(eA - sA, eB - sB);
}
double calcul::lenRatio(size_t lenA, size_t lenB)
{
if (lenA < lenB)
return (double)lenA / lenB;
else if (lenB < lenA)
return (double)lenB / lenA;
else
return 1;
}
double calcul::ratio(size_t dividend, size_t divisor)
{
return dividend / (double)divisor;
}
double calcul::score_lcss_s1(double ratioRaw, size_t pathLength)
{
return 1 - ratioRaw / static_cast<double>(pathLength);
}
double calcul::score_lcss_s2(double ratioRaw, size_t maxABLen)
{
return 1 - ratioRaw / maxABLen;
}
double calcul::score_lcss_s3(double ratioRaw)
{
return ratioRaw;
}
double calcul::score_multi_dtw(vtr3<double> const &input, vtr3<double> const &output)
size_t sumA = 0;
for (auto s : input)
sumA += s.size();
size_t sumB = 0;
for (auto s : output)
sumB += s.size();
return sumA / static_cast<double>(sumB);
double calcul::score_averageRank(int ref, vtr<int> const &queryAnswer, input_clusters const &clusters)
int clusterSize = clusters.getClusterSize(ref);
int counter = 0;
double averageRank = 0;
for (size_t i = 0; i < queryAnswer.size(); i++) //query (ref sequence) //column
if (clusters.getClusterID(queryAnswer[i]) == clusters.getClusterID(ref))
averageRank += (int)i + 1;
counter++;
if (counter == clusterSize - 1)
break;
averageRank = averageRank / (clusterSize - 1);
return averageRank;
}
double calcul::score_averagePrecision(int ref, vtr<int> const &queryAnswer, input_clusters const &clusters)
int clusterSize = clusters.getClusterSize(ref);
int counter = 0;
for (size_t i = 0; i < queryAnswer.size(); i++) //query (ref sequence) //column
{
if (clusters.getClusterID(queryAnswer[i]) == clusters.getClusterID(ref))
{
pr += ++counter / (double)(i + 1);
if (counter == clusterSize - 1)
break;
}
}
double ap = pr / (clusterSize - 1);
return ap;
}
double calcul::score_map(vtr<double> const &averagePrecisions)
{
return accumulate(averagePrecisions.begin(), averagePrecisions.end(), 0.0) / averagePrecisions.size();
}
double calcul::score_precision(int ref, vtr<int> const &queryAnswer, input_clusters const &clusters)
int clusterSize = clusters.getClusterSize(ref);
int truePositives = 0;
int falsePositives = 0;
//int range = min(topThreshold, (int)top.size());
for (int i = 0; i < clusterSize - 1; i++)
if (clusters.getClusterID(queryAnswer[i]) == clusters.getClusterID(ref))
truePositives++;
else
falsePositives++;
}
double precision = (double)truePositives / (truePositives + falsePositives);
return precision;
}
double calcul::score_recall(int ref, vtr<int> const &queryAnswer, input_clusters const &clusters)
int clusterSize = clusters.getClusterSize(ref);
for (int i = 0; i < clusterSize - 1; i++)
if (clusters.getClusterID(queryAnswer[i]) == clusters.getClusterID(ref))
double recall = (double)truePositives / (clusterSize - 1);
//
//double GetMultiRatiolcss(Vtr<string, 3> input, vector<int> raws)
//{
// size_t sumA = 0;
// for (auto s: input)
// sumA += s.size();
//
// int sumB = 0;
// for (auto s: raws)
// sumB += s;
//
// return sumA / (double)sumB;
//}
double calcul::lb_keogh(vtr2<double> const &A, vtr2<double> const &B, parameter const ¶ms)
{
int width = 1 + 2 * (int)params.w;
int w = (int)params.w;
deque<int> maxfifo, minfifo;
maxfifo.push_back(0);
minfifo.push_back(0);
vtr<double> maxvalues(B.size());
vtr<double> minvalues(B.size());
for (int i = 1; i < static_cast<int>(A.size()); ++i) {
if (i >= w + 1) {
maxvalues[i - w - 1] = A[maxfifo.front()][0];
minvalues[i - w - 1] = A[minfifo.front()][0];
}
if (A[i][0] > A[i - 1][0]) { //overshoot
maxfifo.pop_back();
while (maxfifo.size() > 0) {
if (A[i][0] <= A[maxfifo.back()][0]) break;
maxfifo.pop_back();
}
}
else {
minfifo.pop_back();
while (minfifo.size() > 0) {
if (A[i][0] >= A[minfifo.back()][0]) break;
minfifo.pop_back();
}
}
maxfifo.push_back(static_cast<int>(i));
minfifo.push_back(static_cast<int>(i));
if (i == width + maxfifo.front()) maxfifo.pop_front();
else if (i == width + minfifo.front()) minfifo.pop_front();
}
for (size_t i = A.size(); i <= A.size() + w; ++i) {
maxvalues[i - w - 1] = A[maxfifo.front()][0];
minvalues[i - w - 1] = A[minfifo.front()][0];
if (static_cast<int>(i) - maxfifo.front() >= width) maxfifo.pop_front();
if (static_cast<int>(i) - minfifo.front() >= width) minfifo.pop_front();
}
double result = 0;
for (size_t i = 0; i < A.size(); i++)
{
if (B[i][0] > maxvalues[i])
result += pow(B[i][0] - maxvalues[i], 2);
else if (B[i][0] < minvalues[i])
result += pow(B[i][0] - minvalues[i], 2);
}
double calcul::distance_circleFifth(int idx1, int idx2)
{
double distance = std::abs(idx1 - idx2);
if (distance > 6)
distance = 6 - (distance - 6);
return distance;
}
double calcul::distance_cosine(vtr<double> const &u, vtr<double> const &v)
double sumAB = 0;
for (size_t i = 0; i < u.size(); i++)
sumAB += u[i] * v[i];
double sumA = 0;
for (size_t i = 0; i < u.size(); i++)
sumA += pow(u[i], 2);
double sumB = 0;
for (size_t i = 0; i < u.size(); i++)
sumB += pow(v[i], 2);
return sumAB / (sqrt(sumA) * sqrt(sumB));
}
int calcul::dtw_wpassStart(size_t row, int win, double coeficient)
{
return std::max(1, (int)(ceil((row - 1) * coeficient + 0.0000000001) - win));
int calcul::dtw_wpassEnd(size_t row, int win, double coeficient, int lenB)
return std::min(lenB + 1, (int)(ceil(row * coeficient) + 1) + win);
//const size_t end = min(lenB + 1, (int)(ceil(i * lenB / (double)lenA) + 1) + w);
bool calcul::dtw_isFlexiblePass(int row, int col, coord const &past, int w)
//return std::abs((row - past.row) - (col - past.col)) < w;
return std::abs((past.row - row) - (past.col - col)) < w;
double calcul::vtr_mean(vtr<double> const &v)
{
double sum = 0;
for (auto &i : v)
sum += i;
return sum / v.size();
}
double calcul::vtr_std(vtr<double> const &v)
{
double mean = vtr_mean(v);
double sum = 0;
for (auto &i : v)
sum += pow(i - mean, 2);
return sqrt(sum / v.size());
}
template <typename T>
T calcul::vtr_max(vtr<T> const &input)
{
for (auto &i : input)
if (i > max)
max = i;
return max;
}
template int calcul::vtr_max<int>(vtr<int> const &input);
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
template double calcul::vtr_max<double>(vtr<double> const &input);
template <typename T>
T calcul::vtr_max(vtr2<T> const &input)
{
double max = constant::MIN_double;
for (auto &&i : input)
for (auto &&j : i)
if (j > max)
max = j;
return max;
}
template double calcul::vtr_max<double>(vtr2<double> const &input);
template <typename T>
T calcul::vtr_max(vtr3<T> const &input)
{
double max = constant::MIN_double;
for (auto &i : input) {
auto tmp = vtr_findMax(i);
if (tmp > max)
max = tmp;
}
return max;
}
template <typename T>
T calcul::vtr_min(vtr2<T> const &input)
{
double min = constant::MAX_double;
for (auto &&i : input)
for (auto &&j : i)
if (j < min)
min = j;
return min;
}
template double calcul::vtr_min<double>(vtr2<double> const &input);
vtr<double> calcul::vtr_mean(vtr2<double> const &serie)
{
vtr<double> average(serie.size());
for (size_t i = 0; i < serie.size(); i++) {
double avg = 0;
for (size_t j = 0; j < serie[0].size(); j++) {
avg += serie[i][j];
}
average[i] = avg / serie[0].size();
}
return average;