Newer
Older
Paul Marshall
committed
# Blender EdgeTools
#
# This is a toolkit for edge manipulation based on several of mesh manipulation
# abilities of several CAD/CAE packages, notably CATIA's Geometric Workbench
# from which most of these tools have a functional basis based on the paradims
# that platform enables. These tools are a collection of scripts that I needed
# at some point, and so I will probably add and improve these as I continue to
# use and model with them.
#
# It might be good to eventually merge the tinyCAD VTX tools for unification
# purposes, and as these are edge-based tools, it would make sense. Or maybe
# merge this with tinyCAD instead?
#
# The GUI and Blender add-on structure shamelessly coded in imitation of the
# LoopTools addon.
#
# Examples:
# - "Ortho" inspired from CATIA's line creation tool which creates a line of a
# user specified length at a user specified angle to a curve at a chosen
# point. The user then selects the plane the line is to be created in.
# - "Shaft" is inspired from CATIA's tool of the same name. However, instead
# of a curve around an axis, this will instead shaft a line, a point, or
# a fixed radius about the selected axis.
# - "Slice" is from CATIA's ability to split a curve on a plane. When
# completed this be a Python equivalent with all the same basic
# functionality, though it will sadly be a little clumsier to use due
# to Blender's selection limitations.
#
Paul Marshall
committed
# Notes:
# - Buggy parts have been hidden behind bpy.app.debug. Run Blender in debug
# to expose those. Example: Shaft with more than two edges selected.
Paul Marshall
committed
# - Some functions have started to crash, despite working correctly before.
# What could be causing that? Blender bug? Or coding bug?
Paul Marshall
committed
#
# Paul "BrikBot" Marshall
# Created: January 28, 2012
Paul Marshall
committed
# Last Modified: October 6, 2012
Paul Marshall
committed
# Homepage (blog): http://post.darkarsenic.com/
# //blog.darkarsenic.com/
#
Paul Marshall
committed
# Coded in IDLE, tested in Blender 2.6.
Paul Marshall
committed
# Search for "@todo" to quickly find sections that need work.
#
# Remeber -
# Functional code comes before fast code. Once it works, then worry about
# making it faster/more efficient.
#
# ##### BEGIN GPL LICENSE BLOCK #####
#
# The Blender Edgetools is to bring CAD tools to Blender.
# Copyright (C) 2012 Paul Marshall
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
# ^^ Maybe. . . . :P
bl_info = {
"name": "EdgeTools",
"author": "Paul Marshall",
"version": (0, 8),
"blender": (2, 68, 0),
"location": "View3D > Toolbar and View3D > Specials (W-key)",
"warning": "",
"description": "CAD style edge manipulation tools",
CoDEmanX
committed
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Modeling/EdgeTools",
"tracker_url": "",
Paul Marshall
committed
CoDEmanX
committed
Paul Marshall
committed
import bpy, bmesh, mathutils
Paul Marshall
committed
from math import acos, pi, radians, sqrt, tan
Paul Marshall
committed
from mathutils import Matrix, Vector
from mathutils.geometry import (distance_point_to_plane,
interpolate_bezier,
intersect_point_line,
intersect_line_line,
intersect_line_plane)
from bpy.props import (BoolProperty,
BoolVectorProperty,
IntProperty,
FloatProperty,
EnumProperty)
Paul Marshall
committed
integrated = False
Paul Marshall
committed
# Quick an dirty method for getting the sign of a number:
def sign(number):
return (number > 0) - (number < 0)
# is_parallel
#
# Checks to see if two lines are parallel
def is_parallel(v1, v2, v3, v4):
CoDEmanX
committed
result = intersect_line_line(v1, v2, v3, v4)
Paul Marshall
committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
return result == None
# is_axial
#
# This is for the special case where the edge is parallel to an axis. In this
# the projection onto the XY plane will fail so it will have to be handled
# differently. This tells us if and how:
def is_axial(v1, v2, error = 0.000002):
vector = v2 - v1
# Don't need to store, but is easier to read:
vec0 = vector[0] > -error and vector[0] < error
vec1 = vector[1] > -error and vector[1] < error
vec2 = vector[2] > -error and vector[2] < error
if (vec0 or vec1) and vec2:
return 'Z'
elif vec0 and vec1:
return 'Y'
return None
# is_same_co
#
# For some reason "Vector = Vector" does not seem to look at the actual
# coordinates. This provides a way to do so.
def is_same_co(v1, v2):
if len(v1) != len(v2):
return False
else:
for co1, co2 in zip(v1, v2):
if co1 != co2:
return False
return True
Paul Marshall
committed
# is_face_planar
#
# Tests a face to see if it is planar.
Paul Marshall
committed
def is_face_planar(face, error = 0.0005):
Paul Marshall
committed
for v in face.verts:
d = distance_point_to_plane(v.co, face.verts[0].co, face.normal)
Paul Marshall
committed
if bpy.app.debug:
print("Distance: " + str(d))
Paul Marshall
committed
if d < -error or d > error:
return False
return True
Paul Marshall
committed
# other_joined_edges
#
# Starts with an edge. Then scans for linked, selected edges and builds a
# list with them in "order", starting at one end and moving towards the other.
def order_joined_edges(edge, edges = [], direction = 1):
if len(edges) == 0:
edges.append(edge)
edges[0] = edge
if bpy.app.debug:
print(edge, end = ", ")
print(edges, end = ", ")
print(direction, end = "; ")
# Robustness check: direction cannot be zero
if direction == 0:
direction = 1
Paul Marshall
committed
newList = []
for e in edge.verts[0].link_edges:
if e.select and edges.count(e) == 0:
if direction > 0:
edges.insert(0, e)
newList.extend(order_joined_edges(e, edges, direction + 1))
newList.extend(edges)
else:
edges.append(e)
newList.extend(edges)
newList.extend(order_joined_edges(e, edges, direction - 1))
# This will only matter at the first level:
direction = direction * -1
Paul Marshall
committed
for e in edge.verts[1].link_edges:
if e.select and edges.count(e) == 0:
if direction > 0:
edges.insert(0, e)
newList.extend(order_joined_edges(e, edges, direction + 2))
newList.extend(edges)
else:
edges.append(e)
newList.extend(edges)
newList.extend(order_joined_edges(e, edges, direction))
if bpy.app.debug:
print(newList, end = ", ")
print(direction)
Paul Marshall
committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
return newList
# --------------- GEOMETRY CALCULATION METHODS --------------
# distance_point_line
#
# I don't know why the mathutils.geometry API does not already have this, but
# it is trivial to code using the structures already in place. Instead of
# returning a float, I also want to know the direction vector defining the
# distance. Distance can be found with "Vector.length".
def distance_point_line(pt, line_p1, line_p2):
int_co = intersect_point_line(pt, line_p1, line_p2)
distance_vector = int_co[0] - pt
return distance_vector
# interpolate_line_line
#
# This is an experiment into a cubic Hermite spline (c-spline) for connecting
# two edges with edges that obey the general equation.
# This will return a set of point coordinates (Vectors).
#
# A good, easy to read background on the mathematics can be found at:
# http://cubic.org/docs/hermite.htm
#
# Right now this is . . . less than functional :P
# @todo
# - C-Spline and Bezier curves do not end on p2_co as they are supposed to.
# - B-Spline just fails. Epically.
# - Add more methods as I come across them. Who said flexibility was bad?
def interpolate_line_line(p1_co, p1_dir, p2_co, p2_dir, segments, tension = 1,
typ = 'BEZIER', include_ends = False):
pieces = []
fraction = 1 / segments
# Form: p1, tangent 1, p2, tangent 2
if typ == 'HERMITE':
poly = [[2, -3, 0, 1], [1, -2, 1, 0],
[-2, 3, 0, 0], [1, -1, 0, 0]]
elif typ == 'BEZIER':
poly = [[-1, 3, -3, 1], [3, -6, 3, 0],
[1, 0, 0, 0], [-3, 3, 0, 0]]
p1_dir = p1_dir + p1_co
p2_dir = -p2_dir + p2_co
elif typ == 'BSPLINE':
## Supposed poly matrix for a cubic b-spline:
## poly = [[-1, 3, -3, 1], [3, -6, 3, 0],
## [-3, 0, 3, 0], [1, 4, 1, 0]]
# My own invention to try to get something that somewhat acts right.
# This is semi-quadratic rather than fully cubic:
poly = [[0, -1, 0, 1], [1, -2, 1, 0],
[0, -1, 2, 0], [1, -1, 0, 0]]
if include_ends:
pieces.append(p1_co)
# Generate each point:
for i in range(segments - 1):
t = fraction * (i + 1)
if bpy.app.debug:
print(t)
s = [t ** 3, t ** 2, t, 1]
h00 = (poly[0][0] * s[0]) + (poly[0][1] * s[1]) + (poly[0][2] * s[2]) + (poly[0][3] * s[3])
h01 = (poly[1][0] * s[0]) + (poly[1][1] * s[1]) + (poly[1][2] * s[2]) + (poly[1][3] * s[3])
h10 = (poly[2][0] * s[0]) + (poly[2][1] * s[1]) + (poly[2][2] * s[2]) + (poly[2][3] * s[3])
h11 = (poly[3][0] * s[0]) + (poly[3][1] * s[1]) + (poly[3][2] * s[2]) + (poly[3][3] * s[3])
pieces.append((h00 * p1_co) + (h01 * p1_dir) + (h10 * p2_co) + (h11 * p2_dir))
if include_ends:
pieces.append(p2_co)
# Return:
if len(pieces) == 0:
return None
else:
if bpy.app.debug:
print(pieces)
return pieces
# intersect_line_face
#
# Calculates the coordinate of intersection of a line with a face. It returns
# the coordinate if one exists, otherwise None. It can only deal with tris or
# quads for a face. A quad does NOT have to be planar. Thus the following.
#
# Quad math and theory:
# A quad may not be planar. Therefore the treated definition of the surface is
# that the surface is composed of all lines bridging two other lines defined by
# the given four points. The lines do not "cross".
CoDEmanX
committed
#
Paul Marshall
committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# The two lines in 3-space can defined as:
# ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐
# │x1│ │a11│ │b11│ │x2│ │a21│ │b21│
# │y1│ = (1-t1)│a12│ + t1│b12│, │y2│ = (1-t2)│a22│ + t2│b22│
# │z1│ │a13│ │b13│ │z2│ │a23│ │b23│
# └ ┘ └ ┘ └ ┘ └ ┘ └ ┘ └ ┘
# Therefore, the surface is the lines defined by every point alone the two
# lines with a same "t" value (t1 = t2). This is basically R = V1 + tQ, where
# Q = V2 - V1 therefore R = V1 + t(V2 - V1) -> R = (1 - t)V1 + tV2:
# ┌ ┐ ┌ ┐ ┌ ┐
# │x12│ │(1-t)a11 + t * b11│ │(1-t)a21 + t * b21│
# │y12│ = (1 - t12)│(1-t)a12 + t * b12│ + t12│(1-t)a22 + t * b22│
# │z12│ │(1-t)a13 + t * b13│ │(1-t)a23 + t * b23│
# └ ┘ └ ┘ └ ┘
# Now, the equation of our line can be likewise defined:
# ┌ ┐ ┌ ┐ ┌ ┐
# │x3│ │a31│ │b31│
# │y3│ = │a32│ + t3│b32│
# │z3│ │a33│ │b33│
# └ ┘ └ ┘ └ ┘
# Now we just have to find a valid solution for the two equations. This should
# be our point of intersection. Therefore, x12 = x3 -> x, y12 = y3 -> y,
# z12 = z3 -> z. Thus, to find that point we set the equation defining the
# surface as equal to the equation for the line:
# ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐
# │(1-t)a11 + t * b11│ │(1-t)a21 + t * b21│ │a31│ │b31│
# (1 - t12)│(1-t)a12 + t * b12│ + t12│(1-t)a22 + t * b22│ = │a32│ + t3│b32│
# │(1-t)a13 + t * b13│ │(1-t)a23 + t * b23│ │a33│ │b33│
# └ ┘ └ ┘ └ ┘ └ ┘
# This leaves us with three equations, three unknowns. Solving the system by
# hand is practically impossible, but using Mathematica we are given an insane
# series of three equations (not reproduced here for the sake of space: see
# http://www.mediafire.com/file/cc6m6ba3sz2b96m/intersect_line_surface.nb and
# http://www.mediafire.com/file/0egbr5ahg14talm/intersect_line_surface2.nb for
# Mathematica computation).
#
Paul Marshall
committed
# Additionally, the resulting series of equations may result in a div by zero
# exception if the line in question if parallel to one of the axis or if the
# quad is planar and parallel to either the XY, XZ, or YZ planes. However, the
# system is still solvable but must be dealt with a little differently to avaid
# these special cases. Because the resulting equations are a little different,
# we have to code them differently. Hence the special cases.
#
Paul Marshall
committed
# Tri math and theory:
# A triangle must be planar (three points define a plane). Therefore we just
# have to make sure that the line intersects inside the triangle.
Paul Marshall
committed
#
# If the point is within the triangle, then the angle between the lines that
# connect the point to the each individual point of the triangle will be
# equal to 2 * PI. Otherwise, if the point is outside the triangle, then the
# sum of the angles will be less.
#
# @todo
# - Figure out how to deal with n-gons. How the heck is a face with 8 verts
# definied mathematically? How do I then find the intersection point of
# a line with said vert? How do I know if that point is "inside" all the
# verts? I have no clue, and haven't been able to find anything on it so
# far. Maybe if someone (actually reads this and) who knows could note?
Paul Marshall
committed
def intersect_line_face(edge, face, is_infinite = False, error = 0.000002):
int_co = None
# If we are dealing with a non-planar quad:
if len(face.verts) == 4 and not is_face_planar(face):
Paul Marshall
committed
edgeA = face.edges[0]
edgeB = None
flipB = False
Paul Marshall
committed
for i in range(len(face.edges)):
if face.edges[i].verts[0] not in edgeA.verts and face.edges[i].verts[1] not in edgeA.verts:
edgeB = face.edges[i]
break
Paul Marshall
committed
# I haven't figured out a way to mix this in with the above. Doing so might remove a
# few extra instructions from having to be executed saving a few clock cycles:
for i in range(len(face.edges)):
if face.edges[i] == edgeA or face.edges[i] == edgeB:
continue
if (edgeA.verts[0] in face.edges[i].verts and edgeB.verts[1] in face.edges[i].verts) or (edgeA.verts[1] in face.edges[i].verts and edgeB.verts[0] in face.edges[i].verts):
flipB = True
break
Paul Marshall
committed
# Define calculation coefficient constants:
# "xx1" is the x coordinate, "xx2" is the y coordinate, and "xx3" is the z
# coordinate.
a11, a12, a13 = edgeA.verts[0].co[0], edgeA.verts[0].co[1], edgeA.verts[0].co[2]
b11, b12, b13 = edgeA.verts[1].co[0], edgeA.verts[1].co[1], edgeA.verts[1].co[2]
if flipB:
a21, a22, a23 = edgeB.verts[1].co[0], edgeB.verts[1].co[1], edgeB.verts[1].co[2]
b21, b22, b23 = edgeB.verts[0].co[0], edgeB.verts[0].co[1], edgeB.verts[0].co[2]
else:
a21, a22, a23 = edgeB.verts[0].co[0], edgeB.verts[0].co[1], edgeB.verts[0].co[2]
b21, b22, b23 = edgeB.verts[1].co[0], edgeB.verts[1].co[1], edgeB.verts[1].co[2]
a31, a32, a33 = edge.verts[0].co[0], edge.verts[0].co[1], edge.verts[0].co[2]
b31, b32, b33 = edge.verts[1].co[0], edge.verts[1].co[1], edge.verts[1].co[2]
Paul Marshall
committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# There are a bunch of duplicate "sub-calculations" inside the resulting
# equations for t, t12, and t3. Calculate them once and store them to
# reduce computational time:
m01 = a13 * a22 * a31
m02 = a12 * a23 * a31
m03 = a13 * a21 * a32
m04 = a11 * a23 * a32
m05 = a12 * a21 * a33
m06 = a11 * a22 * a33
m07 = a23 * a32 * b11
m08 = a22 * a33 * b11
m09 = a23 * a31 * b12
m10 = a21 * a33 * b12
m11 = a22 * a31 * b13
m12 = a21 * a32 * b13
m13 = a13 * a32 * b21
m14 = a12 * a33 * b21
m15 = a13 * a31 * b22
m16 = a11 * a33 * b22
m17 = a12 * a31 * b23
m18 = a11 * a32 * b23
m19 = a13 * a22 * b31
m20 = a12 * a23 * b31
m21 = a13 * a32 * b31
m22 = a23 * a32 * b31
m23 = a12 * a33 * b31
m24 = a22 * a33 * b31
m25 = a23 * b12 * b31
m26 = a33 * b12 * b31
m27 = a22 * b13 * b31
m28 = a32 * b13 * b31
m29 = a13 * b22 * b31
m30 = a33 * b22 * b31
m31 = a12 * b23 * b31
m32 = a32 * b23 * b31
m33 = a13 * a21 * b32
m34 = a11 * a23 * b32
m35 = a13 * a31 * b32
m36 = a23 * a31 * b32
m37 = a11 * a33 * b32
m38 = a21 * a33 * b32
m39 = a23 * b11 * b32
m40 = a33 * b11 * b32
m41 = a21 * b13 * b32
m42 = a31 * b13 * b32
m43 = a13 * b21 * b32
m44 = a33 * b21 * b32
m45 = a11 * b23 * b32
m46 = a31 * b23 * b32
m47 = a12 * a21 * b33
m48 = a11 * a22 * b33
m49 = a12 * a31 * b33
m50 = a22 * a31 * b33
m51 = a11 * a32 * b33
m52 = a21 * a32 * b33
m53 = a22 * b11 * b33
m54 = a32 * b11 * b33
m55 = a21 * b12 * b33
m56 = a31 * b12 * b33
m57 = a12 * b21 * b33
m58 = a32 * b21 * b33
m59 = a11 * b22 * b33
m60 = a31 * b22 * b33
m61 = a33 * b12 * b21
m62 = a32 * b13 * b21
m63 = a33 * b11 * b22
m64 = a31 * b13 * b22
m65 = a32 * b11 * b23
m66 = a31 * b12 * b23
m67 = b13 * b22 * b31
m68 = b12 * b23 * b31
m69 = b13 * b21 * b32
m70 = b11 * b23 * b32
m71 = b12 * b21 * b33
m72 = b11 * b22 * b33
n01 = m01 - m02 - m03 + m04 + m05 - m06
n02 = -m07 + m08 + m09 - m10 - m11 + m12 + m13 - m14 - m15 + m16 + m17 - m18 - m25 + m27 + m29 - m31 + m39 - m41 - m43 + m45 - m53 + m55 + m57 - m59
n03 = -m19 + m20 + m33 - m34 - m47 + m48
n04 = m21 - m22 - m23 + m24 - m35 + m36 + m37 - m38 + m49 - m50 - m51 + m52
n05 = m26 - m28 - m30 + m32 - m40 + m42 + m44 - m46 + m54 - m56 - m58 + m60
n06 = m61 - m62 - m63 + m64 + m65 - m66 - m67 + m68 + m69 - m70 - m71 + m72
n07 = 2 * n01 + n02 + 2 * n03 + n04 + n05
n08 = n01 + n02 + n03 + n06
Paul Marshall
committed
# Calculate t, t12, and t3:
t = (n07 - sqrt(pow(-n07, 2) - 4 * (n01 + n03 + n04) * n08)) / (2 * n08)
Paul Marshall
committed
# t12 can be greatly simplified by defining it with t in it:
Paul Marshall
committed
# If block used to help prevent any div by zero error.
t12 = 0
Paul Marshall
committed
if a31 == b31:
# The line is parallel to the z-axis:
if a32 == b32:
t12 = ((a11 - a31) + (b11 - a11) * t) / ((a21 - a11) + (a11 - a21 - b11 + b21) * t)
# The line is parallel to the y-axis:
elif a33 == b33:
t12 = ((a11 - a31) + (b11 - a11) * t) / ((a21 - a11) + (a11 - a21 - b11 + b21) * t)
# The line is along the y/z-axis but is not parallel to either:
else:
t12 = -(-(a33 - b33) * (-a32 + a12 * (1 - t) + b12 * t) + (a32 - b32) * (-a33 + a13 * (1 - t) + b13 * t)) / (-(a33 - b33) * ((a22 - a12) * (1 - t) + (b22 - b12) * t) + (a32 - b32) * ((a23 - a13) * (1 - t) + (b23 - b13) * t))
elif a32 == b32:
# The line is parallel to the x-axis:
if a33 == b33:
t12 = ((a12 - a32) + (b12 - a12) * t) / ((a22 - a12) + (a12 - a22 - b12 + b22) * t)
# The line is along the x/z-axis but is not parallel to either:
else:
t12 = -(-(a33 - b33) * (-a31 + a11 * (1 - t) + b11 * t) + (a31 - b31) * (-a33 + a13 * (1 - t) + b13 * t)) / (-(a33 - b33) * ((a21 - a11) * (1 - t) + (b21 - b11) * t) + (a31 - b31) * ((a23 - a13) * (1 - t) + (b23 - b13) * t))
# The line is along the x/y-axis but is not parallel to either:
else:
t12 = -(-(a32 - b32) * (-a31 + a11 * (1 - t) + b11 * t) + (a31 - b31) * (-a32 + a12 * (1 - t) + b12 * t)) / (-(a32 - b32) * ((a21 - a11) * (1 - t) + (b21 - b11) * t) + (a31 - b31) * ((a22 - a21) * (1 - t) + (b22 - b12) * t))
Paul Marshall
committed
# Likewise, t3 is greatly simplified by defining it in terms of t and t12:
Paul Marshall
committed
# If block used to prevent a div by zero error.
t3 = 0
if a31 != b31:
t3 = (-a11 + a31 + (a11 - b11) * t + (a11 - a21) * t12 + (a21 - a11 + b11 - b21) * t * t12) / (a31 - b31)
elif a32 != b32:
t3 = (-a12 + a32 + (a12 - b12) * t + (a12 - a22) * t12 + (a22 - a12 + b12 - b22) * t * t12) / (a32 - b32)
elif a33 != b33:
t3 = (-a13 + a33 + (a13 - b13) * t + (a13 - a23) * t12 + (a23 - a13 + b13 - b23) * t * t12) / (a33 - b33)
else:
print("The second edge is a zero-length edge")
Paul Marshall
committed
return None
Paul Marshall
committed
# Calculate the point of intersection:
x = (1 - t3) * a31 + t3 * b31
y = (1 - t3) * a32 + t3 * b32
z = (1 - t3) * a33 + t3 * b33
Paul Marshall
committed
int_co = Vector((x, y, z))
CoDEmanX
committed
if bpy.app.debug:
print(int_co)
Paul Marshall
committed
# If the line does not intersect the quad, we return "None":
Paul Marshall
committed
if (t < -1 or t > 1 or t12 < -1 or t12 > 1) and not is_infinite:
Paul Marshall
committed
int_co = None
Paul Marshall
committed
elif len(face.verts) == 3:
p1, p2, p3 = face.verts[0].co, face.verts[1].co, face.verts[2].co
int_co = intersect_line_plane(edge.verts[0].co, edge.verts[1].co, p1, face.normal)
Paul Marshall
committed
# Only check if the triangle is not being treated as an infinite plane:
Paul Marshall
committed
# Math based from http://paulbourke.net/geometry/linefacet/
Paul Marshall
committed
if int_co != None and not is_infinite:
Paul Marshall
committed
pA = p1 - int_co
pB = p2 - int_co
pC = p3 - int_co
Paul Marshall
committed
# These must be unit vectors, else we risk a domain error:
pA.length = 1
pB.length = 1
pC.length = 1
Paul Marshall
committed
aAB = acos(pA.dot(pB))
aBC = acos(pB.dot(pC))
aCA = acos(pC.dot(pA))
sumA = aAB + aBC + aCA
Paul Marshall
committed
# If the point is outside the triangle:
Paul Marshall
committed
if (sumA > (pi + error) and sumA < (pi - error)):
Paul Marshall
committed
int_co = None
# This is the default case where we either have a planar quad or an n-gon.
else:
int_co = intersect_line_plane(edge.verts[0].co, edge.verts[1].co,
face.verts[0].co, face.normal)
Paul Marshall
committed
return int_co
Paul Marshall
committed
# project_point_plane
#
# Projects a point onto a plane. Returns a tuple of the projection vector
# and the projected coordinate.
def project_point_plane(pt, plane_co, plane_no):
proj_co = intersect_line_plane(pt, pt + plane_no, plane_co, plane_no)
proj_ve = proj_co - pt
return (proj_ve, proj_co)
CoDEmanX
committed
Paul Marshall
committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# ------------ FILLET/CHAMPHER HELPER METHODS -------------
# get_next_edge
#
# The following is used to return edges that might be possible edges for
# propagation. If an edge is connected to the end vert, but is also a part
# of the on of the faces that the current edge composes, then it is a
# "corner edge" and is not valid as a propagation edge. If the edge is
# part of two faces that a in the same plane, then we cannot fillet/chamfer
# it because there is no angle between them.
def get_next_edge(edge, vert):
invalidEdges = [e for f in edge.link_faces for e in f.edges if e != edge]
invalidEdges.append(edge)
if bpy.app.debug:
print(invalidEdges)
newEdge = [e for e in vert.link_edges if e not in invalidEdges and not is_planar_edge(e)]
if len(newEdge) == 0:
return None
elif len(newEdge) == 1:
return newEdge[0]
else:
return newEdge
def is_planar_edge(edge, error = 0.000002):
angle = edge.calc_face_angle()
return (angle < error and angle > -error) or (angle < (180 + error) and angle > (180 - error))
# fillet_axis
#
# Calculates the base geometry data for the fillet. This assumes that the faces
# are planar:
Paul Marshall
committed
#
# @todo
# - Redesign so that the faces do not have to be planar
#
# There seems to be issues some of the vector math right now. Will need to be
# debuged.
Paul Marshall
committed
def fillet_axis(edge, radius):
vectors = [None, None, None, None]
CoDEmanX
committed
Paul Marshall
committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
origin = Vector((0, 0, 0))
axis = edge.verts[1].co - edge.verts[0].co
# Get the "adjacency" base vectors for face 0:
for e in edge.link_faces[0].edges:
if e == edge:
continue
if e.verts[0] == edge.verts[0]:
vectors[0] = e.verts[1].co - e.verts[0].co
elif e.verts[1] == edge.verts[0]:
vectors[0] = e.verts[0].co - e.verts[1].co
elif e.verts[0] == edge.verts[1]:
vectors[1] = e.verts[1].co - e.verts[0].co
elif e.verts[1] == edge.verts[1]:
vectors[1] = e.verts[0].co - e.verts[1].co
# Get the "adjacency" base vectors for face 1:
for e in edge.link_faces[1].edges:
if e == edge:
continue
if e.verts[0] == edge.verts[0]:
vectors[2] = e.verts[1].co - e.verts[0].co
elif e.verts[1] == edge.verts[0]:
vectors[2] = e.verts[0].co - e.verts[1].co
elif e.verts[0] == edge.verts[1]:
vectors[3] = e.verts[1].co - e.verts[0].co
elif e.verts[1] == edge.verts[1]:
vectors[3] = e.verts[0].co - e.verts[1].co
# Get the normal for face 0 and face 1:
norm1 = edge.link_faces[0].normal
norm2 = edge.link_faces[1].normal
CoDEmanX
committed
Paul Marshall
committed
# We need to find the angle between the two faces, then bisect it:
theda = (pi - edge.calc_face_angle()) / 2
CoDEmanX
committed
Paul Marshall
committed
# We are dealing with a triangle here, and we will need the length
# of its adjacent side. The opposite is the radius:
adj_len = radius / tan(theda)
# Vectors can be thought of as being at the origin, and we need to make sure
# that the base vectors are planar with the "normal" definied by the edge to
# be filleted. Then we set the length of the vector and shift it into a
# coordinate:
for i in range(len(vectors)):
vectors[i] = project_point_plane(vectors[i], origin, axis)[1]
vectors[i].length = adj_len
vectors[i] = vectors[i] + edge.verts[i % 2].co
CoDEmanX
committed
Paul Marshall
committed
# Compute fillet axis end points:
v1 = intersect_line_line(vectors[0], vectors[0] + norm1, vectors[2], vectors[2] + norm2)[0]
v2 = intersect_line_line(vectors[1], vectors[1] + norm1, vectors[3], vectors[3] + norm2)[0]
return [v1, v2]
def fillet_point(t, face1, face2):
return
Paul Marshall
committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
# ------------------- EDGE TOOL METHODS -------------------
# Extends an "edge" in two directions:
# - Requires two vertices to be selected. They do not have to form an edge.
# - Extends "length" in both directions
class Extend(bpy.types.Operator):
bl_idname = "mesh.edgetools_extend"
bl_label = "Extend"
bl_description = "Extend the selected edges of vertice pair."
bl_options = {'REGISTER', 'UNDO'}
di1 = BoolProperty(name = "Forwards",
description = "Extend the edge forwards",
default = True)
di2 = BoolProperty(name = "Backwards",
description = "Extend the edge backwards",
default = False)
length = FloatProperty(name = "Length",
description = "Length to extend the edge",
min = 0.0, max = 1024.0,
default = 1.0)
def draw(self, context):
layout = self.layout
layout.prop(self, "di1")
layout.prop(self, "di2")
layout.prop(self, "length")
CoDEmanX
committed
Paul Marshall
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
CoDEmanX
committed
Paul Marshall
committed
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bEdges = bm.edges
bVerts = bm.verts
edges = [e for e in bEdges if e.select]
verts = [v for v in bVerts if v.select]
if len(edges) > 0:
for e in edges:
vector = e.verts[0].co - e.verts[1].co
vector.length = self.length
CoDEmanX
committed
Paul Marshall
committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
if self.di1:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = e.verts[1].co - vector
newE = bEdges.new((e.verts[1], v))
else:
v.co = e.verts[0].co + vector
newE = bEdges.new((e.verts[0], v))
if self.di2:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = e.verts[0].co + vector
newE = bEdges.new((e.verts[0], v))
else:
v.co = e.verts[1].co - vector
newE = bEdges.new((e.verts[1], v))
else:
vector = verts[0].co - verts[1].co
vector.length = self.length
if self.di1:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = verts[1].co - vector
e = bEdges.new((verts[1], v))
else:
v.co = verts[0].co + vector
e = bEdges.new((verts[0], v))
if self.di2:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = verts[0].co + vector
e = bEdges.new((verts[0], v))
else:
v.co = verts[1].co - vector
e = bEdges.new((verts[1], v))
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# Creates a series of edges between two edges using spline interpolation.
# This basically just exposes existing functionality in addition to some
# other common methods: Hermite (c-spline), Bezier, and b-spline. These
# alternates I coded myself after some extensive research into spline
# theory.
#
# @todo Figure out what's wrong with the Blender bezier interpolation.
class Spline(bpy.types.Operator):
bl_idname = "mesh.edgetools_spline"
bl_label = "Spline"
bl_description = "Create a spline interplopation between two edges"
bl_options = {'REGISTER', 'UNDO'}
CoDEmanX
committed
Paul Marshall
committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
alg = EnumProperty(name = "Spline Algorithm",
items = [('Blender', 'Blender', 'Interpolation provided through \"mathutils.geometry\"'),
('Hermite', 'C-Spline', 'C-spline interpolation'),
('Bezier', 'Bézier', 'Bézier interpolation'),
('B-Spline', 'B-Spline', 'B-Spline interpolation')],
default = 'Bezier')
segments = IntProperty(name = "Segments",
description = "Number of segments to use in the interpolation",
min = 2, max = 4096,
soft_max = 1024,
default = 32)
flip1 = BoolProperty(name = "Flip Edge",
description = "Flip the direction of the spline on edge 1",
default = False)
flip2 = BoolProperty(name = "Flip Edge",
description = "Flip the direction of the spline on edge 2",
default = False)
ten1 = FloatProperty(name = "Tension",
description = "Tension on edge 1",
min = -4096.0, max = 4096.0,
soft_min = -8.0, soft_max = 8.0,
default = 1.0)
ten2 = FloatProperty(name = "Tension",
description = "Tension on edge 2",
min = -4096.0, max = 4096.0,
soft_min = -8.0, soft_max = 8.0,
default = 1.0)
def draw(self, context):
layout = self.layout
layout.prop(self, "alg")
layout.prop(self, "segments")
layout.label("Edge 1:")
layout.prop(self, "ten1")
layout.prop(self, "flip1")
layout.label("Edge 2:")
layout.prop(self, "ten2")
layout.prop(self, "flip2")
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
CoDEmanX
committed
Paul Marshall
committed
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bEdges = bm.edges
bVerts = bm.verts
CoDEmanX
committed
Paul Marshall
committed
seg = self.segments
edges = [e for e in bEdges if e.select]
verts = [edges[v // 2].verts[v % 2] for v in range(4)]
if self.flip1:
v1 = verts[1]
p1_co = verts[1].co
p1_dir = verts[1].co - verts[0].co
else:
v1 = verts[0]
p1_co = verts[0].co
p1_dir = verts[0].co - verts[1].co
if self.ten1 < 0:
p1_dir = -1 * p1_dir
p1_dir.length = -self.ten1
else:
p1_dir.length = self.ten1
if self.flip2:
v2 = verts[3]
p2_co = verts[3].co
p2_dir = verts[2].co - verts[3].co
else:
v2 = verts[2]
p2_co = verts[2].co
CoDEmanX
committed
p2_dir = verts[3].co - verts[2].co
Paul Marshall
committed
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
if self.ten2 < 0:
p2_dir = -1 * p2_dir
p2_dir.length = -self.ten2
else:
p2_dir.length = self.ten2
# Get the interploted coordinates:
if self.alg == 'Blender':
pieces = interpolate_bezier(p1_co, p1_dir, p2_dir, p2_co, self.segments)
elif self.alg == 'Hermite':
pieces = interpolate_line_line(p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'HERMITE')
elif self.alg == 'Bezier':
pieces = interpolate_line_line(p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'BEZIER')
elif self.alg == 'B-Spline':
pieces = interpolate_line_line(p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'BSPLINE')
verts = []
verts.append(v1)
# Add vertices and set the points:
for i in range(seg - 1):
v = bVerts.new()
v.co = pieces[i]
verts.append(v)
verts.append(v2)
# Connect vertices:
for i in range(seg):
e = bEdges.new((verts[i], verts[i + 1]))
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# Creates edges normal to planes defined between each of two edges and the
# normal or the plane defined by those two edges.
# - Select two edges. The must form a plane.
# - On running the script, eight edges will be created. Delete the
# extras that you don't need.
# - The length of those edges is defined by the variable "length"
#
# @todo Change method from a cross product to a rotation matrix to make the
# angle part work.
Paul Marshall
committed
# --- todo completed 2/4/2012, but still needs work ---
Paul Marshall
committed
# @todo Figure out a way to make +/- predictable
# - Maybe use angel between edges and vector direction definition?
# --- TODO COMPLETED ON 2/9/2012 ---
class Ortho(bpy.types.Operator):
bl_idname = "mesh.edgetools_ortho"
Paul Marshall
committed
bl_label = "Angle Off Edge"
Paul Marshall
committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
bl_description = ""
bl_options = {'REGISTER', 'UNDO'}
vert1 = BoolProperty(name = "Vertice 1",
description = "Enable edge creation for vertice 1.",
default = True)
vert2 = BoolProperty(name = "Vertice 2",
description = "Enable edge creation for vertice 2.",
default = True)
vert3 = BoolProperty(name = "Vertice 3",
description = "Enable edge creation for vertice 3.",
default = True)
vert4 = BoolProperty(name = "Vertice 4",
description = "Enable edge creation for vertice 4.",
default = True)
pos = BoolProperty(name = "+",
description = "Enable positive direction edges.",
default = True)
neg = BoolProperty(name = "-",
description = "Enable negitive direction edges.",
default = True)
angle = FloatProperty(name = "Angle",
description = "Angle off of the originating edge",
min = 0.0, max = 180.0,
default = 90.0)
length = FloatProperty(name = "Length",
description = "Length of created edges.",
min = 0.0, max = 1024.0,
default = 1.0)
# For when only one edge is selected (Possible feature to be testd):
plane = EnumProperty(name = "Plane",
items = [("XY", "X-Y Plane", "Use the X-Y plane as the plane of creation"),
("XZ", "X-Z Plane", "Use the X-Z plane as the plane of creation"),
("YZ", "Y-Z Plane", "Use the Y-Z plane as the plane of creation")],
default = "XY")
def draw(self, context):
layout = self.layout
layout.prop(self, "vert1")
layout.prop(self, "vert2")
layout.prop(self, "vert3")
layout.prop(self, "vert4")
row = layout.row(align = False)
row.alignment = 'EXPAND'
row.prop(self, "pos")
row.prop(self, "neg")
layout.prop(self, "angle")
layout.prop(self, "length")
CoDEmanX
committed
Paul Marshall
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
CoDEmanX
committed
Paul Marshall
committed
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bVerts = bm.verts
bEdges = bm.edges
edges = [e for e in bEdges if e.select]
vectors = []
# Until I can figure out a better way of handeling it:
if len(edges) < 2:
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'},
"You must select two edges.")
Paul Marshall
committed
return {'CANCELLED'}
verts = [edges[0].verts[0],
edges[0].verts[1],
edges[1].verts[0],
edges[1].verts[1]]
cos = intersect_line_line(verts[0].co, verts[1].co, verts[2].co, verts[3].co)