Newer
Older
Paul Marshall
committed
# If the two edges are parallel:
if cos == None:
self.report({'WARNING'},
"Selected lines are parallel: results may be unpredictable.")
Paul Marshall
committed
vectors.append(verts[0].co - verts[1].co)
vectors.append(verts[0].co - verts[2].co)
vectors.append(vectors[0].cross(vectors[1]))
vectors.append(vectors[2].cross(vectors[0]))
vectors.append(-vectors[3])
else:
# Warn the user if they have not chosen two planar edges:
if not is_same_co(cos[0], cos[1]):
self.report({'WARNING'},
"Selected lines are not planar: results may be unpredictable.")
Paul Marshall
committed
# This makes the +/- behavior predictable:
if (verts[0].co - cos[0]).length < (verts[1].co - cos[0]).length:
verts[0], verts[1] = verts[1], verts[0]
if (verts[2].co - cos[0]).length < (verts[3].co - cos[0]).length:
verts[2], verts[3] = verts[3], verts[2]
vectors.append(verts[0].co - verts[1].co)
vectors.append(verts[2].co - verts[3].co)
CoDEmanX
committed
Paul Marshall
committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
# Normal of the plane formed by vector1 and vector2:
vectors.append(vectors[0].cross(vectors[1]))
# Possible directions:
vectors.append(vectors[2].cross(vectors[0]))
vectors.append(vectors[1].cross(vectors[2]))
# Set the length:
vectors[3].length = self.length
vectors[4].length = self.length
# Perform any additional rotations:
matrix = Matrix.Rotation(radians(90 + self.angle), 3, vectors[2])
vectors.append(matrix * -vectors[3]) # vectors[5]
matrix = Matrix.Rotation(radians(90 - self.angle), 3, vectors[2])
vectors.append(matrix * vectors[4]) # vectors[6]
vectors.append(matrix * vectors[3]) # vectors[7]
matrix = Matrix.Rotation(radians(90 + self.angle), 3, vectors[2])
vectors.append(matrix * -vectors[4]) # vectors[8]
# Perform extrusions and displacements:
# There will be a total of 8 extrusions. One for each vert of each edge.
# It looks like an extrusion will add the new vert to the end of the verts
# list and leave the rest in the same location.
# ----------- EDIT -----------
Paul Marshall
committed
# It looks like I might be able to do this within "bpy.data" with the ".add"
Paul Marshall
committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
# function.
# ------- BMESH UPDATE -------
# BMesh uses ".new()"
for v in range(len(verts)):
vert = verts[v]
if (v == 0 and self.vert1) or (v == 1 and self.vert2) or (v == 2 and self.vert3) or (v == 3 and self.vert4):
if self.pos:
new = bVerts.new()
new.co = vert.co - vectors[5 + (v // 2) + ((v % 2) * 2)]
bEdges.new((vert, new))
if self.neg:
new = bVerts.new()
new.co = vert.co + vectors[5 + (v // 2) + ((v % 2) * 2)]
bEdges.new((vert, new))
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# Usage:
# Select an edge and a point or an edge and specify the radius (default is 1 BU)
# You can select two edges but it might be unpredicatble which edge it revolves
# around so you might have to play with the switch.
class Shaft(bpy.types.Operator):
bl_idname = "mesh.edgetools_shaft"
bl_label = "Shaft"
bl_description = "Create a shaft mesh around an axis"
bl_options = {'REGISTER', 'UNDO'}
# Selection defaults:
Paul Marshall
committed
shaftType = 0
# For tracking if the user has changed selection:
last_edge = IntProperty(name = "Last Edge",
description = "Tracks if user has changed selected edge",
min = 0, max = 1,
default = 0)
last_flip = False
CoDEmanX
committed
Paul Marshall
committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
edge = IntProperty(name = "Edge",
description = "Edge to shaft around.",
min = 0, max = 1,
default = 0)
flip = BoolProperty(name = "Flip Second Edge",
description = "Flip the percieved direction of the second edge.",
default = False)
radius = FloatProperty(name = "Radius",
description = "Shaft Radius",
min = 0.0, max = 1024.0,
default = 1.0)
start = FloatProperty(name = "Starting Angle",
description = "Angle to start the shaft at.",
min = -360.0, max = 360.0,
default = 0.0)
finish = FloatProperty(name = "Ending Angle",
description = "Angle to end the shaft at.",
min = -360.0, max = 360.0,
default = 360.0)
segments = IntProperty(name = "Shaft Segments",
description = "Number of sgements to use in the shaft.",
min = 1, max = 4096,
soft_max = 512,
default = 32)
def draw(self, context):
layout = self.layout
if self.shaftType == 0:
layout.prop(self, "edge")
layout.prop(self, "flip")
elif self.shaftType == 3:
layout.prop(self, "radius")
layout.prop(self, "segments")
layout.prop(self, "start")
layout.prop(self, "finish")
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
# Make sure these get reset each time we run:
self.last_edge = 0
self.edge = 0
Paul Marshall
committed
return self.execute(context)
CoDEmanX
committed
Paul Marshall
committed
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bFaces = bm.faces
bEdges = bm.edges
bVerts = bm.verts
active = None
edges = []
verts = []
# Pre-caclulated values:
Paul Marshall
committed
rotRange = [radians(self.start), radians(self.finish)]
rads = radians((self.finish - self.start) / self.segments)
numV = self.segments + 1
numE = self.segments
edges = [e for e in bEdges if e.select]
# Robustness check: there should at least be one edge selected
if len(edges) < 1:
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'},
"At least one edge must be selected.")
return {'CANCELLED'}
Paul Marshall
committed
# If two edges are selected:
Paul Marshall
committed
if len(edges) == 2:
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
# default:
edge = [0, 1]
vert = [0, 1]
# Edge selection:
#
# By default, we want to shaft around the last selected edge (it
# will be the active edge). We know we are using the default if
# the user has not changed which edge is being shafted around (as
# is tracked by self.last_edge). When they are not the same, then
# the user has changed selection.
#
# We then need to make sure that the active object really is an edge
# (robustness check).
#
# Finally, if the active edge is not the inital one, we flip them
# and have the GUI reflect that.
if self.last_edge == self.edge:
if isinstance(bm.select_history.active, bmesh.types.BMEdge):
if bm.select_history.active != edges[edge[0]]:
self.last_edge, self.edge = edge[1], edge[1]
edge = [edge[1], edge[0]]
else:
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'},
"Active geometry is not an edge.")
return {'CANCELLED'}
elif self.edge == 1:
edge = [1, 0]
CoDEmanX
committed
verts.append(edges[edge[0]].verts[0])
verts.append(edges[edge[0]].verts[1])
Paul Marshall
committed
if self.flip:
verts = [1, 0]
verts.append(edges[edge[1]].verts[vert[0]])
verts.append(edges[edge[1]].verts[vert[1]])
Paul Marshall
committed
self.shaftType = 0
# If there is more than one edge selected:
Paul Marshall
committed
# There are some issues with it ATM, so don't expose is it to normal users
# @todo Fix edge connection ordering issue
elif len(edges) > 2 and bpy.app.debug:
Paul Marshall
committed
if isinstance(bm.select_history.active, bmesh.types.BMEdge):
active = bm.select_history.active
edges.remove(active)
# Get all the verts:
# edges = order_joined_edges(edges[0])
Paul Marshall
committed
verts = []
for e in edges:
if verts.count(e.verts[0]) == 0:
verts.append(e.verts[0])
if verts.count(e.verts[1]) == 0:
verts.append(e.verts[1])
else:
Paul Marshall
committed
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'},
"Active geometry is not an edge.")
Paul Marshall
committed
return {'CANCELLED'}
self.shaftType = 1
else:
verts.append(edges[0].verts[0])
verts.append(edges[0].verts[1])
Paul Marshall
committed
for v in bVerts:
if v.select and verts.count(v) == 0:
verts.append(v)
v.select = False
if len(verts) == 2:
self.shaftType = 3
else:
self.shaftType = 2
# The vector denoting the axis of rotation:
if self.shaftType == 1:
axis = active.verts[1].co - active.verts[0].co
else:
axis = verts[1].co - verts[0].co
Paul Marshall
committed
# We will need a series of rotation matrices. We could use one which
# would be faster but also might cause propagation of error.
## matrices = []
## for i in range(numV):
## matrices.append(Matrix.Rotation((rads * i) + rotRange[0], 3, axis))
matrices = [Matrix.Rotation((rads * i) + rotRange[0], 3, axis) for i in range(numV)]
Paul Marshall
committed
# New vertice coordinates:
verts_out = []
# If two edges were selected:
# - If the lines are not parallel, then it will create a cone-like shaft
if self.shaftType == 0:
for i in range(len(verts) - 2):
init_vec = distance_point_line(verts[i + 2].co, verts[0].co, verts[1].co)
co = init_vec + verts[i + 2].co
# These will be rotated about the orgin so will need to be shifted:
Paul Marshall
committed
for j in range(numV):
verts_out.append(co - (matrices[j] * init_vec))
elif self.shaftType == 1:
for i in verts:
init_vec = distance_point_line(i.co, active.verts[0].co, active.verts[1].co)
co = init_vec + i.co
# These will be rotated about the orgin so will need to be shifted:
Paul Marshall
committed
for j in range(numV):
verts_out.append(co - (matrices[j] * init_vec))
CoDEmanX
committed
# Else if a line and a point was selected:
Paul Marshall
committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
elif self.shaftType == 2:
init_vec = distance_point_line(verts[2].co, verts[0].co, verts[1].co)
# These will be rotated about the orgin so will need to be shifted:
verts_out = [(verts[i].co - (matrices[j] * init_vec)) for i in range(2) for j in range(numV)]
# Else the above are not possible, so we will just use the edge:
# - The vector defined by the edge is the normal of the plane for the shaft
# - The shaft will have radius "radius".
else:
if is_axial(verts[0].co, verts[1].co) == None:
proj = (verts[1].co - verts[0].co)
proj[2] = 0
norm = proj.cross(verts[1].co - verts[0].co)
vec = norm.cross(verts[1].co - verts[0].co)
vec.length = self.radius
elif is_axial(verts[0].co, verts[1].co) == 'Z':
vec = verts[0].co + Vector((0, 0, self.radius))
else:
vec = verts[0].co + Vector((0, self.radius, 0))
init_vec = distance_point_line(vec, verts[0].co, verts[1].co)
# These will be rotated about the orgin so will need to be shifted:
verts_out = [(verts[i].co - (matrices[j] * init_vec)) for i in range(2) for j in range(numV)]
# We should have the coordinates for a bunch of new verts. Now add the verts
# and build the edges and then the faces.
newVerts = []
if self.shaftType == 1:
# Vertices:
for i in range(numV * len(verts)):
new = bVerts.new()
new.co = verts_out[i]
new.select = True
newVerts.append(new)
# Edges:
for i in range(numE):
for j in range(len(verts)):
e = bEdges.new((newVerts[i + (numV * j)], newVerts[i + (numV * j) + 1]))
e.select = True
for i in range(numV):
for j in range(len(verts) - 1):
e = bEdges.new((newVerts[i + (numV * j)], newVerts[i + (numV * (j + 1))]))
e.select = True
# Faces:
Paul Marshall
committed
# There is a problem with this right now
## for i in range(len(edges)):
## for j in range(numE):
## f = bFaces.new((newVerts[i], newVerts[i + 1],
## newVerts[i + (numV * j) + 1], newVerts[i + (numV * j)]))
## f.normal_update()
Paul Marshall
committed
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
else:
# Vertices:
for i in range(numV * 2):
new = bVerts.new()
new.co = verts_out[i]
new.select = True
newVerts.append(new)
# Edges:
for i in range(numE):
e = bEdges.new((newVerts[i], newVerts[i + 1]))
e.select = True
e = bEdges.new((newVerts[i + numV], newVerts[i + numV + 1]))
e.select = True
for i in range(numV):
e = bEdges.new((newVerts[i], newVerts[i + numV]))
e.select = True
# Faces:
for i in range(numE):
f = bFaces.new((newVerts[i], newVerts[i + 1],
newVerts[i + numV + 1], newVerts[i + numV]))
f.normal_update()
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# "Slices" edges crossing a plane defined by a face.
Paul Marshall
committed
# @todo Selecting a face as the cutting plane will cause Blender to crash when
# using "Rip".
Paul Marshall
committed
class Slice(bpy.types.Operator):
bl_idname = "mesh.edgetools_slice"
bl_label = "Slice"
bl_description = "Cuts edges at the plane defined by a selected face."
bl_options = {'REGISTER', 'UNDO'}
Paul Marshall
committed
make_copy = BoolProperty(name = "Make Copy",
description = "Make new vertices at intersection points instead of spliting the edge",
default = False)
rip = BoolProperty(name = "Rip",
description = "Split into two edges that DO NOT share an intersection vertice.",
default = False)
Paul Marshall
committed
pos = BoolProperty(name = "Positive",
description = "Remove the portion on the side of the face normal",
default = False)
neg = BoolProperty(name = "Negative",
description = "Remove the portion on the side opposite of the face normal",
default = False)
def draw(self, context):
layout = self.layout
Paul Marshall
committed
layout.prop(self, "make_copy")
if not self.make_copy:
layout.prop(self, "rip")
layout.label("Remove Side:")
layout.prop(self, "pos")
layout.prop(self, "neg")
Paul Marshall
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
CoDEmanX
committed
Paul Marshall
committed
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(context.active_object.data)
bm.normal_update()
# For easy access to verts, edges, and faces:
bVerts = bm.verts
bEdges = bm.edges
bFaces = bm.faces
Paul Marshall
committed
face = None
Paul Marshall
committed
normal = None
# Find the selected face. This will provide the plane to project onto:
Paul Marshall
committed
# - First check to use the active face. This allows users to just
# select a bunch of faces with the last being the cutting plane.
# This is try and make the tool act more like a built-in Blender
# function.
# - If that fails, then use the first found selected face in the BMesh
# face list.
if isinstance(bm.select_history.active, bmesh.types.BMFace):
face = bm.select_history.active
normal = bm.select_history.active.normal
bm.select_history.active.select = False
else:
for f in bFaces:
if f.select:
face = f
normal = f.normal
f.select = False
break
Paul Marshall
committed
Paul Marshall
committed
# If we don't find a selected face, we have problem. Exit:
Paul Marshall
committed
if face == None:
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'},
"You must select a face as the cutting plane.")
Paul Marshall
committed
return {'CANCELLED'}
Paul Marshall
committed
# Warn the user if they are using an n-gon. We can work with it, but it
# might lead to some odd results.
elif len(face.verts) > 4 and not is_face_planar(face):
self.report({'WARNING'},
"Selected face is an n-gon. Results may be unpredictable.")
Paul Marshall
committed
Paul Marshall
committed
# @todo DEBUG TRACKER - DELETE WHEN FINISHED:
dbg = 0
if bpy.app.debug:
print(len(bEdges))
# Iterate over the edges:
Paul Marshall
committed
for e in bEdges:
Paul Marshall
committed
# @todo DEBUG TRACKER - DELETE WHEN FINISHED:
if bpy.app.debug:
print(dbg)
dbg = dbg + 1
Paul Marshall
committed
# Get the end verts on the edge:
Paul Marshall
committed
v1 = e.verts[0]
v2 = e.verts[1]
CoDEmanX
committed
Paul Marshall
committed
# Make sure that verts are not a part of the cutting plane:
Paul Marshall
committed
if e.select and (v1 not in face.verts and v2 not in face.verts):
if len(face.verts) < 5: # Not an n-gon
intersection = intersect_line_face(e, face, True)
else:
intersection = intersect_line_plane(v1.co, v2.co, face.verts[0].co, normal)
Paul Marshall
committed
# More debug info - I think this can stay.
if bpy.app.debug:
print("Intersection", end = ': ')
print(intersection)
# If an intersection exists find the distance of each of the end
# points from the plane, with "positive" being in the direction
# of the cutting plane's normal. If the points are on opposite
# side of the plane, then it intersects and we need to cut it.
Paul Marshall
committed
if intersection != None:
Paul Marshall
committed
d1 = distance_point_to_plane(v1.co, face.verts[0].co, normal)
d2 = distance_point_to_plane(v2.co, face.verts[0].co, normal)
Paul Marshall
committed
# If they have different signs, then the edge crosses the
# cutting plane:
Paul Marshall
committed
if abs(d1 + d2) < abs(d1 - d2):
# Make the first vertice the positive vertice:
if d1 < d2:
v2, v1 = v1, v2
Paul Marshall
committed
if self.make_copy:
new = bVerts.new()
new.co = intersection
Paul Marshall
committed
new.select = True
Paul Marshall
committed
elif self.rip:
newV1 = bVerts.new()
newV1.co = intersection
Paul Marshall
committed
if bpy.app.debug:
print("newV1 created", end = '; ')
Paul Marshall
committed
newV2 = bVerts.new()
newV2.co = intersection
Paul Marshall
committed
Paul Marshall
committed
if bpy.app.debug:
Paul Marshall
committed
print("newV2 created", end = '; ')
Paul Marshall
committed
newE1 = bEdges.new((v1, newV1))
newE2 = bEdges.new((v2, newV2))
Paul Marshall
committed
Paul Marshall
committed
if bpy.app.debug:
Paul Marshall
committed
print("new edges created", end = '; ')
Paul Marshall
committed
bEdges.remove(e)
Paul Marshall
committed
Paul Marshall
committed
if bpy.app.debug:
Paul Marshall
committed
print("old edge removed.")
print("We're done with this edge.")
Paul Marshall
committed
else:
new = list(bmesh.utils.edge_split(e, v1, 0.5))
new[1].co = intersection
e.select = False
new[0].select = False
if self.pos:
Paul Marshall
committed
bEdges.remove(new[0])
Paul Marshall
committed
if self.neg:
Paul Marshall
committed
bEdges.remove(e)
Paul Marshall
committed
bm.to_mesh(context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
Paul Marshall
committed
# This projects the selected edges onto the selected plane. This projects both
# points on the selected edge.
Paul Marshall
committed
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
class Project(bpy.types.Operator):
bl_idname = "mesh.edgetools_project"
bl_label = "Project"
bl_description = "Projects the selected vertices/edges onto the selected plane."
bl_options = {'REGISTER', 'UNDO'}
make_copy = BoolProperty(name = "Make Copy",
description = "Make a duplicate of the vertices instead of moving it",
default = False)
def draw(self, context):
layout = self.layout
layout.prop(self, "make_copy")
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(context.active_object.data)
bm.normal_update()
bFaces = bm.faces
bEdges = bm.edges
bVerts = bm.verts
fVerts = []
# Find the selected face. This will provide the plane to project onto:
Paul Marshall
committed
# @todo Check first for an active face
Paul Marshall
committed
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
for f in bFaces:
if f.select:
for v in f.verts:
fVerts.append(v)
normal = f.normal
f.select = False
break
for v in bVerts:
if v.select:
if v in fVerts:
v.select = False
continue
d = distance_point_to_plane(v.co, fVerts[0].co, normal)
if self.make_copy:
temp = v
v = bVerts.new()
v.co = temp.co
vector = normal
vector.length = abs(d)
v.co = v.co - (vector * sign(d))
v.select = False
bm.to_mesh(context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# Project_End is for projecting/extending an edge to meet a plane.
# This is used be selecting a face to define the plane then all the edges.
# The add-on will then move the vertices in the edge that is closest to the
# plane to the coordinates of the intersection of the edge and the plane.
class Project_End(bpy.types.Operator):
bl_idname = "mesh.edgetools_project_end"
bl_label = "Project (End Point)"
bl_description = "Projects the vertice of the selected edges closest to a plane onto that plane."
bl_options = {'REGISTER', 'UNDO'}
make_copy = BoolProperty(name = "Make Copy",
description = "Make a duplicate of the vertice instead of moving it",
default = False)
keep_length = BoolProperty(name = "Keep Edge Length",
description = "Maintain edge lengths",
default = False)
use_force = BoolProperty(name = "Use opposite vertices",
description = "Force the usage of the vertices at the other end of the edge",
default = False)
use_normal = BoolProperty(name = "Project along normal",
description = "Use the plane's normal as the projection direction",
default = False)
def draw(self, context):
layout = self.layout
## layout.prop(self, "keep_length")
if not self.keep_length:
layout.prop(self, "use_normal")
## else:
## self.report({'ERROR_INVALID_INPUT'}, "Maintaining edge length not yet supported")
## self.report({'WARNING'}, "Projection may result in unexpected geometry")
layout.prop(self, "make_copy")
layout.prop(self, "use_force")
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(context.active_object.data)
bm.normal_update()
bFaces = bm.faces
bEdges = bm.edges
bVerts = bm.verts
fVerts = []
# Find the selected face. This will provide the plane to project onto:
for f in bFaces:
if f.select:
for v in f.verts:
fVerts.append(v)
normal = f.normal
f.select = False
break
for e in bEdges:
if e.select:
v1 = e.verts[0]
v2 = e.verts[1]
if v1 in fVerts or v2 in fVerts:
e.select = False
continue
intersection = intersect_line_plane(v1.co, v2.co, fVerts[0].co, normal)
if intersection != None:
# Use abs because we don't care what side of plane we're on:
d1 = distance_point_to_plane(v1.co, fVerts[0].co, normal)
d2 = distance_point_to_plane(v2.co, fVerts[0].co, normal)
# If d1 is closer than we use v1 as our vertice:
# "xor" with 'use_force':
if (abs(d1) < abs(d2)) is not self.use_force:
if self.make_copy:
v1 = bVerts.new()
v1.co = e.verts[0].co
if self.keep_length:
v1.co = intersection
elif self.use_normal:
vector = normal
vector.length = abs(d1)
v1.co = v1.co - (vector * sign(d1))
else:
v1.co = intersection
else:
if self.make_copy:
v2 = bVerts.new()
v2.co = e.verts[1].co
if self.keep_length:
v2.co = intersection
elif self.use_normal:
vector = normal
vector.length = abs(d2)
v2.co = v2.co - (vector * sign(d2))
else:
v2.co = intersection
e.select = False
bm.to_mesh(context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# Edge Fillet
#
# Blender currently does not have a CAD-style edge-based fillet function. This
# is my atempt to create one. It should take advantage of BMesh and the ngon
# capabilities for non-destructive modeling, if possible. This very well may
# not result in nice quads and it will be up to the artist to clean up the mesh
# back into quads if necessary.
#
# Assumptions:
# - Faces are planar. This should, however, do a check an warn otherwise.
#
# Developement Process:
# Because this will eventaully prove to be a great big jumble of code and
# various functionality, this is to provide an outline for the developement
# and functionality wanted at each milestone.
# 1) intersect_line_face: function to find the intersection point, if it
# exists, at which a line intersects a face. The face does not have to
# be planar, and can be an ngon. This will allow for a point to be placed
# on the actual mesh-face for non-planar faces.
# 2) Minimal propagation, single edge: Filleting of a single edge without
# propagation of the fillet along "tangent" edges.
# 3) Minimal propagation, multiple edges: Perform said fillet along/on
# multiple edges.
# 4) "Tangency" detection code: because we have a mesh based geometry, this
# have to make an educated guess at what is actually supposed to be
# treated as tangent and what constitutes a sharp edge. This should
# respect edges marked as sharp (does not propagate passed an
# intersecting edge that is marked as sharp).
# 5) Tangent propagation, single edge: Filleting of a single edge using the
# above tangency detection code to continue the fillet to adjacent
# "tangent" edges.
# 6) Tangent propagation, multiple edges: Same as above, but with multiple
# edges selected. If multiple edges were selected along the same
# tangency path, only one edge will be filleted. The others must be
# ignored/discarded.
class Fillet(bpy.types.Operator):
bl_idname = "mesh.edgetools_fillet"
bl_label = "Edge Fillet"
bl_description = "Fillet the selected edges."
bl_options = {'REGISTER', 'UNDO'}
radius = FloatProperty(name = "Radius",
description = "Radius of the edge fillet",
Paul Marshall
committed
min = 0.00001, max = 1024.0,
Paul Marshall
committed
default = 0.5)
prop = EnumProperty(name = "Propagation",
items = [("m", "Minimal", "Minimal edge propagation"),
("t", "Tangential", "Tangential edge propagation")],
default = "m")
prop_fac = FloatProperty(name = "Propagation Factor",
description = "Corner detection sensitivity factor for tangential propagation",
min = 0.0, max = 100.0,
default = 25.0)
deg_seg = FloatProperty(name = "Degrees/Section",
description = "Approximate degrees per section",
min = 0.00001, max = 180.0,
default = 10.0)
Paul Marshall
committed
res = IntProperty(name = "Resolution",
description = "Resolution of the fillet",
Paul Marshall
committed
min = 1, max = 1024,
Paul Marshall
committed
default = 8)
def draw(self, context):
layout = self.layout
layout.prop(self, "radius")
layout.prop(self, "prop")
if self.prop == "t":
layout.prop(self, "prop_fac")
layout.prop(self, "deg_seg")
Paul Marshall
committed
layout.prop(self, "res")
CoDEmanX
committed
Paul Marshall
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bFaces = bm.faces
bEdges = bm.edges
bVerts = bm.verts
# Robustness check: this does not support n-gons (at least for now)
# because I have no idea how to handle them righ now. If there is
# an n-gon in the mesh, warn the user that results may be nuts because
# of it.
#
# I'm not going to cause it to exit if there are n-gons, as they may
# not be encountered.
# @todo I would like this to be a confirmation dialoge of some sort
# @todo I would REALLY like this to just handle n-gons. . . .
for f in bFaces:
if len(face.verts) > 4:
self.report({'WARNING'},
"Mesh contains n-gons which are not supported. Operation may fail.")
break
Paul Marshall
committed
# Get the selected edges:
# Robustness check: boundary and wire edges are not fillet-able.
Paul Marshall
committed
edges = [e for e in bEdges if e.select and not e.is_boundary and not e.is_wire]
for e in edges:
Paul Marshall
committed
axis_points = fillet_axis(e, self.radius)
CoDEmanX
committed
Paul Marshall
committed
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
Paul Marshall
committed
return {'FINISHED'}
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
# For testing the mess that is "intersect_line_face" for possible math errors.
# This will NOT be directly exposed to end users: it will always require running
# Blender in debug mode.
# So far no errors have been found. Thanks to anyone who tests and reports bugs!
class Intersect_Line_Face(bpy.types.Operator):
bl_idname = "mesh.edgetools_ilf"
bl_label = "ILF TEST"
bl_description = "TEST ONLY: INTERSECT_LINE_FACE"
bl_options = {'REGISTER', 'UNDO'}
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
def execute(self, context):
# Make sure we really are in debug mode:
if not bpy.app.debug:
self.report({'ERROR_INVALID_INPUT'},
"This is for debugging only: you should not be able to run this!")
return {'CANCELLED'}
CoDEmanX
committed
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bFaces = bm.faces
bEdges = bm.edges
bVerts = bm.verts
face = None
for f in bFaces:
if f.select:
face = f
break
edge = None
for e in bEdges:
if e.select and not e in face.edges:
edge = e
break
point = intersect_line_face(edge, face, True)
if point != None:
new = bVerts.new()
new.co = point
else:
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'}, "point was \"None\"")
return {'CANCELLED'}
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
Paul Marshall
committed
class VIEW3D_MT_edit_mesh_edgetools(bpy.types.Menu):
bl_label = "EdgeTools"
CoDEmanX
committed
Paul Marshall
committed
def draw(self, context):
Paul Marshall
committed
global integrated
Paul Marshall
committed
layout = self.layout
CoDEmanX
committed
Paul Marshall
committed
layout.operator("mesh.edgetools_extend")
layout.operator("mesh.edgetools_spline")
layout.operator("mesh.edgetools_ortho")
layout.operator("mesh.edgetools_shaft")
layout.operator("mesh.edgetools_slice")
layout.operator("mesh.edgetools_project")
layout.operator("mesh.edgetools_project_end")
if bpy.app.debug:
## Not ready for prime-time yet:
layout.operator("mesh.edgetools_fillet")
## For internal testing ONLY:
layout.operator("mesh.edgetools_ilf")
Paul Marshall
committed
# If TinyCAD VTX exists, add it to the menu.
# @todo This does not work.
if integrated and bpy.app.debug:
layout.operator(EdgeIntersections.bl_idname, text="Edges V Intersection").mode = -1
layout.operator(EdgeIntersections.bl_idname, text="Edges T Intersection").mode = 0
layout.operator(EdgeIntersections.bl_idname, text="Edges X Intersection").mode = 1
Paul Marshall
committed
def menu_func(self, context):
self.layout.menu("VIEW3D_MT_edit_mesh_edgetools")
self.layout.separator()
# define classes for registration
classes = [VIEW3D_MT_edit_mesh_edgetools,
Extend,
Spline,
Ortho,
Shaft,
Slice,
Project,
Paul Marshall
committed
Project_End,
Fillet,
Intersect_Line_Face]
Paul Marshall
committed
# registering and menu integration
def register():
Paul Marshall
committed
global integrated
Paul Marshall
committed
for c in classes:
bpy.utils.register_class(c)
Paul Marshall
committed
# I would like this script to integrate the TinyCAD VTX menu options into
# the edge tools menu if it exists. This should make the UI a little nicer
# for users.
# @todo Remove TinyCAD VTX menu entries and add them too EdgeTool's menu
import inspect, os.path
path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
if os.path.isfile(path + "\mesh_edge_intersection_tools.py"):
print("EdgeTools UI integration test - TinyCAD VTX Found")
integrated = True
CoDEmanX
committed
Paul Marshall
committed
bpy.types.VIEW3D_MT_edit_mesh_specials.prepend(menu_func)
# unregistering and removing menus
def unregister():
for c in classes:
bpy.utils.unregister_class(c)
Paul Marshall
committed
Paul Marshall
committed
bpy.types.VIEW3D_MT_edit_mesh_specials.remove(menu_func)
if __name__ == "__main__":
register()