Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
Martin Buerbaum
committed
"author": "Buerbaum Martin (Pontiac), Elod Csirmaz",
"version": (0, 3, 8),
Jonathan Smith
committed
"location": "View3D > Add > Mesh",
"description": "Create Objects using Math Formulas",
"warning": "",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\
"Scripts/Add_Mesh/Add_3d_Function_Surface",
"tracker_url": "https://projects.blender.org/tracker/index.php?"\
import bpy
from mathutils import *
from math import *
from bpy.props import *
# List of safe functions for eval()
safe_list = ['math', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'cos', 'cosh',
'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hypot',
'ldexp', 'log', 'log10', 'modf', 'pi', 'pow', 'radians',
'sin', 'sinh', 'sqrt', 'tan', 'tanh']
# Use the list to filter the local namespace
safe_dict = dict((k, globals().get(k, None)) for k in safe_list)
# Stores the values of a list of properties and the
# operator id in a property group ('recall_op') inside the object.
# Could (in theory) be used for non-objects.
# Note: Replaces any existing property group with the same name!
# ob ... Object to store the properties in.
# op ... The operator that should be used.
# op_args ... A dictionary with valid Blender
# properties (operator arguments/parameters).
# Create a new mesh (object) from verts/edges/faces.
# verts/edges/faces ... List of vertices/edges/faces for the
# new mesh (as used in from_pydata).
# name ... Name of the new mesh (& object).
def create_mesh_object(context, verts, edges, faces, name):
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Make a mesh from a list of verts/edges/faces.
mesh.from_pydata(verts, edges, faces)
mesh.update()
Campbell Barton
committed
from bpy_extras import object_utils
return object_utils.object_data_add(context, mesh, operator=None)
# A very simple "bridge" tool.
# Connects two equally long vertex rows with faces.
# Returns a list of the new faces (list of lists)
#
# vertIdx1 ... First vertex list (list of vertex indices).
# vertIdx2 ... Second vertex list (list of vertex indices).
# closed ... Creates a loop (first & last are closed).
# flipped ... Invert the normal of the face(s).
#
# Note: You can set vertIdx1 to a single vertex index to create
# a fan/star of faces.
# Note: If both vertex idx list are the same length they have
# to have at least 2 vertices.
def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
if len(vertIdx1) < 2 and len(vertIdx2) < 2:
return None
fan = False
if (len(vertIdx1) != len(vertIdx2)):
if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
fan = True
else:
return None
total = len(vertIdx2)
if flipped:
face = [
vertIdx1[0],
vertIdx2[0],
vertIdx2[total - 1]]
if not fan:
face.append(vertIdx1[total - 1])
faces.append(face)
else:
face = [vertIdx2[0], vertIdx1[0]]
if not fan:
face.append(vertIdx1[total - 1])
face.append(vertIdx2[total - 1])
faces.append(face)
# Bridge the rest of the faces.
for num in range(total - 1):
if flipped:
if fan:
face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
else:
face = [vertIdx2[num], vertIdx1[num],
vertIdx1[num + 1], vertIdx2[num + 1]]
faces.append(face)
else:
if fan:
face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
else:
face = [vertIdx1[num], vertIdx2[num],
vertIdx2[num + 1], vertIdx1[num + 1]]
faces.append(face)
class AddZFunctionSurface(bpy.types.Operator):
"""Add a surface defined defined by a function z=f(x,y)"""
bl_idname = "mesh.primitive_z_function_surface"
bl_label = "Add Z Function Surface"
equation = StringProperty(name="Z Equation",
description="Equation for z=f(x,y)",
default="1 - ( x**2 + y**2 )")
div_x = IntProperty(name="X Subdivisions",
description="Number of vertices in x direction",
default=16,
min=3,
max=256)
div_y = IntProperty(name="Y Subdivisions",
description="Number of vertices in y direction",
default=16,
min=3,
max=256)
size_x = FloatProperty(name="X Size",
description="Size of the x axis",
default=2.0,
min=0.01,
max=100.0,
unit="LENGTH")
size_y = FloatProperty(name="Y Size",
description="Size of the y axis",
default=2.0,
min=0.01,
max=100.0,
unit="LENGTH")
def execute(self, context):
Thomas Dinges
committed
equation = self.equation
div_x = self.div_x
div_y = self.div_y
size_x = self.size_x
size_y = self.size_y
verts = []
faces = []
delta_x = size_x / float(div_x - 1)
delta_y = size_y / float(div_y - 1)
start_x = -(size_x / 2.0)
start_y = -(size_y / 2.0)
edgeloop_prev = []
expr_args = (
compile(equation, __file__, 'eval'),
{"__builtins__": None},
safe_dict)
except:
import traceback
self.report({'ERROR'}, "Error parsing expression: "
+ traceback.format_exc(limit=1))
for row_x in range(div_x):
edgeloop_cur = []
x = start_x + row_x * delta_x
for row_y in range(div_y):
y = start_y + row_y * delta_y
z = 0.0
safe_dict['x'] = x
safe_dict['y'] = y
# Try to evaluate the equation.
try:
z = float(eval(*expr_args))
self.report({'ERROR'}, "Error evaluating expression: "
+ traceback.format_exc(limit=1))
return {'CANCELLED'}
edgeloop_cur.append(len(verts))
faces.extend(faces_row)
edgeloop_prev = edgeloop_cur
base = create_mesh_object(context, verts, [], faces, "Z Function")
def xyz_function_surface_faces(self, x_eq, y_eq, z_eq,
range_u_min, range_u_max, range_u_step, wrap_u,
Martin Buerbaum
committed
range_v_min, range_v_max, range_v_step, wrap_v,
a_eq, b_eq, c_eq, f_eq, g_eq, h_eq, n, close_v):
uStep = (range_u_max - range_u_min) / range_u_step
vStep = (range_v_max - range_v_min) / range_v_step
Martin Buerbaum
committed
# Number of steps in the vertex creation loops.
# Number of steps is the number of faces
# => Number of points is +1 unless wrapped.
Martin Buerbaum
committed
if wrap_u:
uRange = uRange - 1
if wrap_v:
vRange = vRange - 1
expr_args_x = (
compile(x_eq, __file__.replace(".py", "_x.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_y = (
compile(y_eq, __file__.replace(".py", "_y.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_z = (
compile(z_eq, __file__.replace(".py", "_z.py"), 'eval'),
{"__builtins__": None},
safe_dict)
Martin Buerbaum
committed
expr_args_a = (
compile(a_eq, __file__.replace(".py", "_a.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_b = (
compile(b_eq, __file__.replace(".py", "_b.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_c = (
compile(c_eq, __file__.replace(".py", "_c.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_f = (
compile(f_eq, __file__.replace(".py", "_f.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_g = (
compile(g_eq, __file__.replace(".py", "_g.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_h = (
compile(h_eq, __file__.replace(".py", "_h.py"), 'eval'),
{"__builtins__": None},
safe_dict)
except:
import traceback
self.report({'ERROR'}, "Error parsing expression: "
+ traceback.format_exc(limit=1))
for vN in range(vRange):
v = range_v_min + (vN * vStep)
for uN in range(uRange):
u = range_u_min + (uN * uStep)
safe_dict['u'] = u
safe_dict['v'] = v
Martin Buerbaum
committed
safe_dict['n'] = n
# Try to evaluate the equations.
Martin Buerbaum
committed
a = float(eval(*expr_args_a))
b = float(eval(*expr_args_b))
c = float(eval(*expr_args_c))
safe_dict['a'] = a
safe_dict['b'] = b
safe_dict['c'] = c
f = float(eval(*expr_args_f))
g = float(eval(*expr_args_g))
h = float(eval(*expr_args_h))
safe_dict['f'] = f
safe_dict['g'] = g
safe_dict['h'] = h
verts.append((
float(eval(*expr_args_x)),
float(eval(*expr_args_y)),
float(eval(*expr_args_z))))
self.report({'ERROR'}, "Error evaluating expression: "
+ traceback.format_exc(limit=1))
Martin Buerbaum
committed
for vN in range(range_v_step):
vNext = vN + 1
Martin Buerbaum
committed
if wrap_v and (vNext >= vRange):
vNext = 0
for uN in range(range_u_step):
uNext = uN + 1
Martin Buerbaum
committed
if wrap_u and (uNext >= uRange):
uNext = 0
Martin Buerbaum
committed
faces.append([(vNext * uRange) + uNext,
(vNext * uRange) + uN,
(vN * uRange) + uN,
(vN * uRange) + uNext])
Martin Buerbaum
committed
if close_v and wrap_u and (not wrap_v):
for uN in range(1, range_u_step - 1):
faces.append([
range_u_step - 1,
range_u_step - 1 - uN,
range_u_step - 2 - uN])
faces.append([
range_v_step * uRange,
range_v_step * uRange + uN,
range_v_step * uRange + uN + 1])
return verts, faces
# Original Script "Parametric.py" by Ed Mackey.
# -> http://www.blinken.com/blender-plugins.php
# Partly converted for Blender 2.5 by tuga3d.
#
# Sphere:
# x = sin(2*pi*u)*sin(pi*v)
# y = cos(2*pi*u)*sin(pi*v)
# z = cos(pi*v)
# u_min = v_min = 0
# u_max = v_max = 1
#
# "Snail shell"
# x = 1.2**v*(sin(u)**2 *sin(v))
# y = 1.2**v*(sin(u)*cos(u))
# z = 1.2**v*(sin(u)**2 *cos(v))
# u_min = 0
# u_max = pi
# v_min = -pi/4,
# v max = 5*pi/2
class AddXYZFunctionSurface(bpy.types.Operator):
"""Add a surface defined defined by 3 functions:""" \
""" x=F1(u,v), y=F2(u,v) and z=F3(u,v)"""
bl_idname = "mesh.primitive_xyz_function_surface"
bl_label = "Add X,Y,Z Function Surface"
Martin Buerbaum
committed
x_eq = StringProperty(name="X equation",
description="Equation for x=F(u,v). " \
"Also available: n, a, b, c, f, g, h",
default="cos(v)*(1+cos(u))*sin(v/8)")
Martin Buerbaum
committed
y_eq = StringProperty(name="Y equation",
description="Equation for y=F(u,v). " \
"Also available: n, a, b, c, f, g, h",
default="sin(u)*sin(v/8)+cos(v/8)*1.5")
Martin Buerbaum
committed
z_eq = StringProperty(name="Z equation",
description="Equation for z=F(u,v). " \
"Also available: n, a, b, c, f, g, h",
default="sin(v)*(1+cos(u))*sin(v/8)")
range_u_min = FloatProperty(name="U min",
description="Minimum U value. Lower boundary of U range",
min=-100.00,
max=0.00,
default=0.00)
range_u_max = FloatProperty(name="U max",
description="Maximum U value. Upper boundary of U range",
Martin Buerbaum
committed
default=2 * pi)
range_u_step = IntProperty(name="U step",
description="U Subdivisions",
min=1,
max=1024,
default=32)
wrap_u = BoolProperty(name="U wrap",
description="U Wrap around",
default=True)
range_v_min = FloatProperty(name="V min",
description="Minimum V value. Lower boundary of V range",
Martin Buerbaum
committed
default=0.00)
range_v_max = FloatProperty(name="V max",
description="Maximum V value. Upper boundary of V range",
Martin Buerbaum
committed
default=4 * pi)
range_v_step = IntProperty(name="V step",
description="V Subdivisions",
min=1,
max=1024,
Martin Buerbaum
committed
default=128)
wrap_v = BoolProperty(name="V wrap",
description="V Wrap around",
default=False)
Martin Buerbaum
committed
close_v = BoolProperty(name="Close V",
description="Create faces for first and last " \
"V values (only if U is wrapped)",
default=False)
n_eq = IntProperty(name="Number of objects (n=0..N-1)",
description="The parameter n will be the index " \
"of the current object, 0 to N-1",
min=1,
max=100,
default=1)
Martin Buerbaum
committed
a_eq = StringProperty(name="A helper function",
description="Equation for a=F(u,v). Also available: n",
default="0")
Martin Buerbaum
committed
b_eq = StringProperty(name="B helper function",
description="Equation for b=F(u,v). Also available: n",
default="0")
c_eq = StringProperty(name="C helper function",
description="Equation for c=F(u,v). Also available: n",
default="0")
f_eq = StringProperty(name="F helper function",
description="Equation for f=F(u,v). Also available: n, a, b, c",
default="0")
g_eq = StringProperty(name="G helper function",
description="Equation for g=F(u,v). Also available: n, a, b, c",
default="0")
Martin Buerbaum
committed
h_eq = StringProperty(name="H helper function",
description="Equation for h=F(u,v). Also available: n, a, b, c",
default="0")
Martin Buerbaum
committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
def execute(self, context):
for n in range(0, self.n_eq):
verts, faces = xyz_function_surface_faces(
self,
self.x_eq,
self.y_eq,
self.z_eq,
self.range_u_min,
self.range_u_max,
self.range_u_step,
self.wrap_u,
self.range_v_min,
self.range_v_max,
self.range_v_step,
self.wrap_v,
self.a_eq,
self.b_eq,
self.c_eq,
self.f_eq,
self.g_eq,
self.h_eq,
n,
self.close_v)
if not verts:
return {'CANCELLED'}
obj = create_mesh_object(context, verts, [], faces, "XYZ Function")
return {'FINISHED'}