Skip to content
Snippets Groups Projects
mesh_discombobulator.py 30.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • # GPL # Original Authors: Evan J. Rosky (syrux), Chichiri, Jace Priester #
    
    
    import bpy
    import random
    import math
    
    from bpy.types import (
                    Operator,
                    Menu,
                    )
    from mathutils import (
                    Vector,
                    Quaternion,
                    )
    
    from bpy.props import (
                    BoolProperty,
                    IntProperty,
                    FloatProperty,
                    StringProperty,
                    )
    
    
    # ################### Globals #################### #
    
    
    doprots = True
    
    # Datas in which we will build the new discombobulated mesh
    nPolygons = []
    nVerts = []
    Verts = []
    Polygons = []
    dVerts = []
    dPolygons = []
    
    i_prots = []        # index of the top polygons on which we"ll generate the doodads
    
    i_dood_type = []    # type of doodad (given by index of the doodad obj)
    
    
    # ############### Utility Functions ############### #
    
    
    def randnum(a, b):
    
        return random.random() * (b - a) + a
    
    
    
    def randVertex(a, b, c, d, Verts):
        """Return a vector of a random vertex on a quad-polygon"""
    
        i = random.randint(1, 2)
    
        A, B, C, D = 0, 0, 0, 0
    
            A, B, C, D = a, b, c, d
        else:
            A, B, C, D = a, d, c, b
    
        i = randnum(0.1, 0.9)
    
    
        vecAB = Verts[B] - Verts[A]
        E = Verts[A] + vecAB * i
    
        vecDC = Verts[C] - Verts[D]
        F = Verts[D] + vecDC * i
    
    
        i = randnum(0.1, 0.9)
    
        vecEF = F - E
    
        O = E + vecEF * i
    
    
    # ################## Protusions #################### #
    
    
    def fill_older_datas(verts, polygon):
    
        """ Specifically coded to be called by the function addProtusionToPolygon,
            its sets up a tuple which contains the vertices from the base and the top of the protusions.
        """
    
        temp_vertices = []
        temp_vertices.append(verts[polygon[0]].copy())
        temp_vertices.append(verts[polygon[1]].copy())
        temp_vertices.append(verts[polygon[2]].copy())
        temp_vertices.append(verts[polygon[3]].copy())
        temp_vertices.append(verts[polygon[0]].copy())
        temp_vertices.append(verts[polygon[1]].copy())
        temp_vertices.append(verts[polygon[2]].copy())
        temp_vertices.append(verts[polygon[3]].copy())
        return temp_vertices
    
    
    def extrude_top(temp_vertices, normal, height):
    
        """ This function extrude the polygon composed of the four first members of the tuple
            temp_vertices along the normal multiplied by the height of the extrusion.
        """
    
        j = 0
        while j < 3:
    
            temp_vertices[0][j] += normal[j] * height
            temp_vertices[1][j] += normal[j] * height
            temp_vertices[2][j] += normal[j] * height
            temp_vertices[3][j] += normal[j] * height
            j += 1
    
    
    
    def scale_top(temp_vertices, center, normal, height, scale_ratio):
        """ This function scale the polygon composed of the four first members of the tuple temp_vertices. """
        vec1 = [0, 0, 0]
        vec2 = [0, 0, 0]
        vec3 = [0, 0, 0]
        vec4 = [0, 0, 0]
    
        j = 0
        while j < 3:
    
            center[j] += normal[j] * height
    
            vec1[j] = temp_vertices[0][j] - center[j]
            vec2[j] = temp_vertices[1][j] - center[j]
            vec3[j] = temp_vertices[2][j] - center[j]
            vec4[j] = temp_vertices[3][j] - center[j]
    
            temp_vertices[0][j] = center[j] + vec1[j] * (1 - scale_ratio)
            temp_vertices[1][j] = center[j] + vec2[j] * (1 - scale_ratio)
            temp_vertices[2][j] = center[j] + vec3[j] * (1 - scale_ratio)
            temp_vertices[3][j] = center[j] + vec4[j] * (1 - scale_ratio)
            j += 1
    
    
    
    def add_prot_polygons(temp_vertices):
    
        """ Specifically coded to be called by addProtusionToPolygon, this function
            put the data from the generated protusion at the end the tuples Verts and Polygons,
            which will later used to generate the final mesh.
        """
    
        global Verts
        global Polygons
        global i_prots
    
        findex = len(Verts)
    
        Verts += temp_vertices
    
        polygontop = [findex + 0, findex + 1, findex + 2, findex + 3]
        polygon1 = [findex + 0, findex + 1, findex + 5, findex + 4]
        polygon2 = [findex + 1, findex + 2, findex + 6, findex + 5]
        polygon3 = [findex + 2, findex + 3, findex + 7, findex + 6]
        polygon4 = [findex + 3, findex + 0, findex + 4, findex + 7]
    
    
        Polygons.append(polygontop)
    
        i_prots.append(len(Polygons) - 1)
    
        Polygons.append(polygon1)
        Polygons.append(polygon2)
        Polygons.append(polygon3)
        Polygons.append(polygon4)
    
    
    def addProtusionToPolygon(obpolygon, verts, minHeight, maxHeight, minTaper, maxTaper):
    
        """Create a protusion from the polygon "obpolygon" of the original object and use
           several values sent by the user. It calls in this order the following functions:
    
           - fill_older_data;
           - extrude_top;
           - scale_top;
           - add_prot_polygons;
       """
        # some useful variables
        polygon = obpolygon.vertices
    
    
        tVerts = list(fill_older_datas(verts, polygon))     # list of temp vertices
        height = randnum(minHeight, maxHeight)              # height of generated protusion
    
        scale_ratio = randnum(minTaper, maxTaper)
    
        # extrude the top polygon
        extrude_top(tVerts, obpolygon.normal, height)
        # Now, we scale, the top polygon along its normal
    
        scale_top(tVerts, GetPolyCentroid(obpolygon, verts), obpolygon.normal, height, scale_ratio)
    
        # Finally, we add the protusions to the list of polygons
        add_prot_polygons(tVerts)
    
    
    
    # ################# Divide a polygon ############### #
    
    
    def divide_one(list_polygons, list_vertices, verts, polygon, findex):
        """ called by divide_polygon, to generate a polygon from one polygon, maybe I could simplify this process """
        temp_vertices = []
        temp_vertices.append(verts[polygon[0]].copy())
        temp_vertices.append(verts[polygon[1]].copy())
        temp_vertices.append(verts[polygon[2]].copy())
        temp_vertices.append(verts[polygon[3]].copy())
    
    
        list_vertices += temp_vertices
    
        list_polygons.append([findex + 0, findex + 1, findex + 2, findex + 3])
    
    
    
    def divide_two(list_polygons, list_vertices, verts, polygon, findex):
    
        """ called by divide_polygon, to generate two polygons from one polygon and
            add them to the list of polygons and vertices which form the discombobulated mesh
        """
    
        temp_vertices = []
        temp_vertices.append(verts[polygon[0]].copy())
        temp_vertices.append(verts[polygon[1]].copy())
        temp_vertices.append(verts[polygon[2]].copy())
        temp_vertices.append(verts[polygon[3]].copy())
    
        temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2)
        temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2)
    
        list_vertices += temp_vertices
    
        list_polygons.append([findex + 0, findex + 4, findex + 5, findex + 3])
        list_polygons.append([findex + 1, findex + 2, findex + 5, findex + 4])
    
    
    
    def divide_three(list_polygons, list_vertices, verts, polygon, findex, center):
    
        """ called by divide_polygon, to generate three polygons from one polygon and
            add them to the list of polygons and vertices which form the discombobulated mesh
        """
    
        temp_vertices = []
        temp_vertices.append(verts[polygon[0]].copy())
        temp_vertices.append(verts[polygon[1]].copy())
        temp_vertices.append(verts[polygon[2]].copy())
        temp_vertices.append(verts[polygon[3]].copy())
    
        temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2)
        temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2)
        temp_vertices.append((verts[polygon[1]] + verts[polygon[2]]) / 2)
    
        temp_vertices.append(center.copy())
    
    
        list_vertices += temp_vertices
    
        list_polygons.append([findex + 0, findex + 4, findex + 5, findex + 3])
        list_polygons.append([findex + 1, findex + 6, findex + 7, findex + 4])
        list_polygons.append([findex + 6, findex + 2, findex + 5, findex + 7])
    
    
    
    def divide_four(list_polygons, list_vertices, verts, polygon, findex, center):
    
        """ called by divide_polygon, to generate four polygons from one polygon and
            add them to the list of polygons and vertices which form the discombobulated mesh
        """
    
        temp_vertices = []
        temp_vertices.append(verts[polygon[0]].copy())
        temp_vertices.append(verts[polygon[1]].copy())
        temp_vertices.append(verts[polygon[2]].copy())
        temp_vertices.append(verts[polygon[3]].copy())
    
        temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2)
        temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2)
        temp_vertices.append((verts[polygon[1]] + verts[polygon[2]]) / 2)
    
        temp_vertices.append(center.copy())
    
        temp_vertices.append((verts[polygon[0]] + verts[polygon[3]]) / 2)
    
        temp_vertices.append(center.copy())
    
    
        list_vertices += temp_vertices
    
        list_polygons.append([findex + 0, findex + 4, findex + 7, findex + 8])
        list_polygons.append([findex + 1, findex + 6, findex + 7, findex + 4])
        list_polygons.append([findex + 6, findex + 2, findex + 5, findex + 7])
        list_polygons.append([findex + 8, findex + 7, findex + 5, findex + 3])
    
    
    
    def dividepolygon(obpolygon, verts, number):
        """Divide the poly into the wanted number of polygons"""
        global nPolygons
        global nVerts
    
        poly = obpolygon.vertices
    
    
        if(number == 1):
    
            divide_one(nPolygons, nVerts, verts, poly, len(nVerts))
    
        elif(number == 2):
    
            divide_two(nPolygons, nVerts, verts, poly, len(nVerts))
    
        elif(number == 3):
            divide_three(nPolygons, nVerts, verts, poly, len(nVerts), GetPolyCentroid(obpolygon, verts))
        elif(number == 4):
            divide_four(nPolygons, nVerts, verts, poly, len(nVerts), GetPolyCentroid(obpolygon, verts))
    
    
    # ################## Discombobulate ################ #
    
    def GetPolyCentroid(obpolygon, allvertcoords):
        centroid = Vector((0, 0, 0))
    
        for vindex in obpolygon.vertices:
    
            centroid += Vector(allvertcoords[vindex])
        centroid /= len(obpolygon.vertices)
    
        return centroid
    
    
    def division(obpolygons, verts, sf1, sf2, sf3, sf4):
        """Function to divide each of the selected polygons"""
        divide = []
    
        if (sf1):
            divide.append(1)
        if (sf2):
            divide.append(2)
        if (sf3):
            divide.append(3)
        if (sf4):
            divide.append(4)
    
    
        for poly in obpolygons:
    
            if(poly.select is True and len(poly.vertices) == 4):
                a = random.randint(0, len(divide) - 1)
    
                dividepolygon(poly, verts, divide[a])
    
    
    def protusion(obverts, obpolygons, minHeight, maxHeight, minTaper, maxTaper):
        """function to generate the protusions"""
        verts = []
        for vertex in obverts:
            verts.append(vertex.co)
    
        for polygon in obpolygons:
    
            if(polygon.select is True):
    
                if(len(polygon.vertices) == 4):
                    addProtusionToPolygon(polygon, verts, minHeight, maxHeight, minTaper, maxTaper)
    
    
    def test_v2_near_v1(v1, v2):
    
        if (v1.x - 0.1 <= v2.x <= v1.x + 0.1 and
           v1.y - 0.1 <= v2.y <= v1.y + 0.1 and
           v1.z - 0.1 <= v2.z <= v1.z + 0.1):
    
            return True
    
        return False
    
    
    def angle_between_nor(nor_orig, nor_result):
        angle = math.acos(nor_orig.dot(nor_result))
        axis = nor_orig.cross(nor_result).normalized()
    
    
        q = Quaternion()
        q.x = axis.x * math.sin(angle / 2)
        q.y = axis.y * math.sin(angle / 2)
        q.z = axis.z * math.sin(angle / 2)
        q.w = math.cos(angle / 2)
    
    def doodads(self, object1, mesh1, dmin, dmax):
    
        """function to generate the doodads"""
        global dVerts
        global dPolygons
        i = 0
        # on parcoure cette boucle pour ajouter des doodads a toutes les polygons
        # english translation: this loops adds doodads to all polygons
    
        while(i < len(object1.data.polygons)):
            if object1.data.polygons[i].select is False:
    
            doods_nbr = random.randint(dmin, dmax)
            j = 0
    
    
            while(j <= doods_nbr):
                origin_dood = randVertex(object1.data.polygons[i].vertices[0], object1.data.polygons[i].vertices[1],
                                         object1.data.polygons[i].vertices[2], object1.data.polygons[i].vertices[3], Verts)
    
                type_dood = random.randint(0, len(self.DISC_doodads) - 1)
    
                polygons_add = []
                verts_add = []
    
                # First we have to apply scaling and rotation to the mesh
    
                bpy.ops.object.select_pattern(pattern=self.DISC_doodads[type_dood], extend=False)
                bpy.context.view_layer.objects.active = bpy.data.objects[self.DISC_doodads[type_dood]]
    
                bpy.ops.object.transform_apply(location=False, rotation=True, scale=True)
    
                for polygon in bpy.data.objects[self.DISC_doodads[type_dood]].data.polygons:
    
                    polygons_add.append(polygon.vertices)
    
                for vertex in bpy.data.objects[self.DISC_doodads[type_dood]].data.vertices:
    
                    verts_add.append(vertex.co.copy())
                normal_original_polygon = object1.data.polygons[i].normal
    
    
                nor_def = Vector((0.0, 0.0, 1.0))
    
                qr = nor_def.rotation_difference(normal_original_polygon.normalized())
    
                if(test_v2_near_v1(nor_def, -normal_original_polygon)):
    
                    qr = Quaternion((0.0, 0.0, 0.0, 0.0))
    
                # qr = angle_between_nor(nor_def, normal_original_polygon)
    
                for vertex in verts_add:
                    vertex.rotate(qr)
    
                    vertex += origin_dood
    
                findex = len(dVerts)
    
                for polygon in polygons_add:
    
                    dPolygons.append([polygon[0] + findex, polygon[1] + findex, polygon[2] + findex, polygon[3] + findex])
    
                    i_dood_type.append(bpy.data.objects[self.DISC_doodads[type_dood]].name)
    
                for vertex in verts_add:
                    dVerts.append(vertex)
    
    
    def protusions_repeat(object1, mesh1, r_prot):
    
            for j in i_prots:
    
                if j < len(object1.data.polygons):
                    object1.data.polygons[j].select = True
    
                else:
                    print("Warning: hit end of polygons in object1")
    
    
    # add material to discombobulated mesh
    def setMatProt(discObj, origObj, sideProtMat, topProtMat):
        # First we put the materials in their slots
    
        bpy.ops.object.select_pattern(pattern=discObj.name, extend=False)
    
        bpy.context.view_layer.objects.active = bpy.data.objects[discObj.name]
    
        try:
            origObj.material_slots[topProtMat]
            origObj.material_slots[sideProtMat]
        except:
            return
    
        bpy.ops.object.material_slot_add()
        bpy.ops.object.material_slot_add()
        discObj.material_slots[0].material = origObj.material_slots[topProtMat].material
        discObj.material_slots[1].material = origObj.material_slots[sideProtMat].material
    
        # Then we assign materials to protusions
        for polygon in discObj.data.polygons:
            if polygon.index in i_prots:
                polygon.material_index = 0
            else:
                polygon.material_index = 1
    
    
    def setMatDood(self, doodObj):
    
        # First we add the materials slots
    
        bpy.ops.object.select_pattern(pattern=doodObj.name, extend=False)
    
        bpy.context.view_layer.objects.active = doodObj
    
        for name in self.DISC_doodads:
    
            try:
                bpy.ops.object.material_slot_add()
                doodObj.material_slots[-1].material = bpy.data.objects[name].material_slots[0].material
                for polygon in doodObj.data.polygons:
                    if i_dood_type[polygon.index] == name:
    
                        polygon.material_index = len(doodObj.material_slots) - 1
    
    def clean_doodads(self):
        current_doodads = list(self.DISC_doodads)
    
    
        for name in current_doodads:
            if name not in bpy.data.objects:
    
                self.DISC_doodads.remove(name)
    
    def discombobulate(self, minHeight, maxHeight, minTaper, maxTaper, sf1, sf2, sf3, sf4,
    
                       dmin, dmax, r_prot, sideProtMat, topProtMat, isLast):
    
        global doprots
        global nVerts
        global nPolygons
        global Verts
        global Polygons
        global dVerts
        global dPolygons
        global i_prots
    
        bpy.ops.object.mode_set(mode="OBJECT")
    
    
        # start by cleaning up doodads that don"t exist anymore
        clean_doodads(self)
    
    
        # Create the discombobulated mesh
        mesh = bpy.data.meshes.new("tmp")
        object = bpy.data.objects.new("tmp", mesh)
    
        bpy.context.collection.objects.link(object)
    
    
        # init final verts and polygons tuple
        nPolygons = []
        nVerts = []
        Polygons = []
        Verts = []
        dPolygons = []
        dVerts = []
    
        origObj = bpy.context.active_object
    
        # There we collect the rotation, translation and scaling datas from the original mesh
        to_translate = bpy.context.active_object.location
    
        to_scale = bpy.context.active_object.scale
        to_rotate = bpy.context.active_object.rotation_euler
    
        # First, we collect all the information we will need from the previous mesh
    
        obverts = bpy.context.active_object.data.vertices
        obpolygons = bpy.context.active_object.data.polygons
        verts = []
        for vertex in obverts:
            verts.append(vertex.co)
    
        division(obpolygons, verts, sf1, sf2, sf3, sf4)
    
        # Fill in the discombobulated mesh with the new polygons
        mesh.from_pydata(nVerts, [], nPolygons)
    
        mesh.update(calc_edges=True)
    
    
        # Reload the datas
        bpy.ops.object.select_all(action="DESELECT")
    
        bpy.ops.object.select_pattern(pattern=object.name, extend=False)
    
        bpy.context.view_layer.objects.active = bpy.data.objects[object.name]
    
        obverts = bpy.context.active_object.data.vertices
        obpolygons = bpy.context.active_object.data.polygons
    
        protusion(obverts, obpolygons, minHeight, maxHeight, minTaper, maxTaper)
    
        # Fill in the discombobulated mesh with the new polygons
        mesh1 = bpy.data.meshes.new("discombobulated_object")
        object1 = bpy.data.objects.new("discombobulated_mesh", mesh1)
    
        bpy.context.collection.objects.link(object1)
    
        mesh1.from_pydata(Verts, [], Polygons)
    
        mesh1.update(calc_edges=True)
    
        # Set the material"s of discombobulated object
    
        setMatProt(object1, origObj, sideProtMat, topProtMat)
    
    
        bpy.ops.object.select_pattern(pattern=object1.name, extend=False)
    
        bpy.context.view_layer.objects.active = bpy.data.objects[object1.name]
    
        bpy.ops.object.mode_set(mode="EDIT")
    
        bpy.ops.mesh.normals_make_consistent(inside=False)
    
        bpy.ops.mesh.select_all(action="DESELECT")
        bpy.ops.object.mode_set(mode="OBJECT")
    
        # if(bpy.context.scene.repeatprot):
    
        protusions_repeat(object1, mesh1, r_prot)
    
    
        if(len(self.DISC_doodads) != 0 and self.dodoodads and isLast):
    
            doodads(self, object1, mesh1, dmin, dmax)
    
            mesh2 = bpy.data.meshes.new("dood_mesh")
            object2 = bpy.data.objects.new("dood_obj", mesh2)
    
            bpy.context.collection.objects.link(object2)
    
            mesh2.from_pydata(dVerts, [], dPolygons)
    
            mesh2.update(calc_edges=True)
    
            setMatDood(self, object2)
    
            object2.location = to_translate
            object2.rotation_euler = to_rotate
            object2.scale = to_scale
    
        bpy.ops.object.select_pattern(pattern=object.name, extend=False)
    
        bpy.context.view_layer.objects.active = bpy.data.objects[object.name]
    
        bpy.ops.object.delete()
    
    
        bpy.ops.object.select_pattern(pattern=object1.name, extend=False)
    
        bpy.context.view_layer.objects.active = bpy.data.objects[object1.name]
    
        bpy.context.view_layer.update()
    
    
        # translate, scale and rotate discombobulated results
    
        object1.location = to_translate
        object1.rotation_euler = to_rotate
        object1.scale = to_scale
    
        # set all polys to selected. this allows recursive discombobulating.
    
        for poly in mesh1.polygons:
    
            poly.select = True
    
    
    # ### Operators for selecting and deselecting an object as a doodad ### #
    
    class chooseDoodad(Operator):
    
        bl_idname = "object.discombobulate_set_doodad"
        bl_label = "Discombobulate set doodad object"
    
        bl_description = ("Save the Active Object as Doodad \n"
                          "Object has to be quads only")
    
        bl_options = {"REGISTER"}
    
    
        @classmethod
        def poll(cls, context):
            obj = bpy.context.active_object
            if (obj is not None and obj.type == "MESH"):
                mesh = obj.data
    
                for polygon in mesh.polygons:
                    is_ok = len(polygon.vertices)
                    if is_ok != 4:
                        return False
                return True
    
            return False
    
    
        def execute(self, context):
    
            obj_name = bpy.context.active_object.name
            msg = "Object with this name already saved"
    
    
            DISC_doodads = context.scene.discombobulator.DISC_doodads
    
            if obj_name not in DISC_doodads:
                DISC_doodads.append(obj_name)
    
                msg = "Saved Doodad object: {}".format(obj_name)
    
    
            self.report({"INFO"}, message=msg)
    
    
        def invoke(self, context, event):
            self.execute(context)
    
            return {"FINISHED"}
    
    
    class unchooseDoodad(Operator):
    
        bl_idname = "object.discombobulate_unset_doodad"
        bl_label = "Discombobulate unset doodad object"
    
        bl_description = "Remove the saved Doodad Object(s)"
    
        bl_options = {"REGISTER"}
    
        remove_all: bpy.props.BoolProperty(
    
                            name="Remove all Doodads",
                            default=False,
                            )
    
    
        def execute(self, context):
    
            msg = ("No doodads to remove")
    
            DISC_doodads = context.scene.discombobulator.DISC_doodads
            if len(DISC_doodads) > 0:
    
                if not self.remove_all:
                    name = bpy.context.active_object.name
    
                    if name in DISC_doodads:
                        DISC_doodads.remove(name)
    
                        msg = ("Removed Doodad object: {}".format(name))
                else:
    
                    msg = "Removed all Doodads"
            else:
                msg = "No Doodads to Remove"
    
    
            self.report({"INFO"}, message=msg)
    
    
        def invoke(self, context, event):
            self.execute(context)
    
            return {"FINISHED"}
    
    # ################## Interpolygon ################## #
    
    class discombobulator(Operator):
    
        bl_idname = "object.discombobulate"
        bl_label = "Discombobulate"
    
        bl_description = "Apply"
    
        bl_options = {"REGISTER", "UNDO"}
    
    
        def execute(self, context):
    
            while i < self.repeatprot:
    
                isLast = False
    
                if i == self.repeatprot - 1:
    
                    isLast = True
    
                discombobulate(self.minHeight, self.maxHeight, self.minTaper, self.maxTaper, self.subpolygon1,
                               self.subpolygon2, self.subpolygon3, self.subpolygon4, self.mindoodads, self.maxdoodads,
                               self.repeatprot, self.sideProtMat, self.topProtMat, isLast)
    
            return {"FINISHED"}
    
    
    class discombobulator_dodads_list(Menu):
    
        bl_idname = "OBJECT_MT_discombobulator_dodad_list"
    
        bl_label = "List of saved Doodads"
        bl_description = "List of the saved Doodad Object Names"
    
        bl_options = {"REGISTER"}
    
        def draw(self, context):
            layout = self.layout
    
            DISC_doodads = context.scene.discombobulator.DISC_doodads
    
            layout.label(text="Saved doodads : {}".format(doodle))
    
            layout.separator()
            if doodle > 0:
    
                    layout.label(text=name)
    
    class discombob_help(Menu):
    
        bl_idname = "HELP_MT_discombobulator"
    
        bl_label = "Usage Information"
        bl_description = "Help"
    
        bl_options = {"REGISTER"}
    
        def draw(self, context):
            layout = self.layout
            layout.label(text="Usage Information:", icon="INFO")
            layout.separator()
            layout.label(text="Quads only, not Triangles or Ngons", icon="ERROR")
    
            layout.label(text="Works only with Mesh object that have faces")
    
            layout.separator()
    
            layout.label(text="Select a face or faces")
            layout.label(text="Press Discombobulate to create greebles")
            layout.label(text="In object mode, still needs a selection in Edit Mode")
    
            layout.separator()
    
            layout.label(text="Doodads - additional objects layered on the mesh surface")
    
            layout.label(text="(Similar to dupliverts - but as one separate object)")
    
            layout.separator()
            layout.label(text="Limitations:", icon="MOD_EXPLODE")
    
            layout.label(text="Be careful with the repeat protusions setting")
    
            layout.label(text="If possible, avoid using on a high polycount base mesh")
    
            layout.label(text="(It can run out of memory and take a long time to compute)")
    
    
    class VIEW3D_OT_tools_discombobulate(Operator):
        bl_idname = "discombobulate.ops"
    
        bl_label = "Discombobulator"
    
        bl_description = ("Easily add sci-fi details to a surface \n"
                          "Needs an existing active Mesh with Faces")
    
        bl_options = {"REGISTER"}
    
    
        executing = False
    
        # Protusions Buttons:
        repeatprot: IntProperty(
                name="Repeat protusions",
                description=("Make several layers of protusion \n"
                             "Use carefully, runs recursively the discombulator"),
                default=1, min=1, max=4  # set to 4 because it's 2**n reqursive
                )
        doprots: BoolProperty(
                name="Make protusions",
                description="Check if we want to add protusions to the mesh",
                default=True
                )
        subpolygon1: BoolProperty(
                name="1",
                default=True
                )
        subpolygon2: BoolProperty(
                name="2",
                default=True
                )
        subpolygon3: BoolProperty(
                name="3",
                default=True
                )
        subpolygon4: BoolProperty(
                name="4",
                default=True
                )
        polygonschangedpercent: FloatProperty(
                name="Polygon %",
                description="Percentage of changed polygons",
                default=1.0
                )
        minHeight: FloatProperty(
                name="Min height",
                description="Minimal height of the protusions",
                default=0.2
                )
        maxHeight: FloatProperty(
                name="Max height",
                description="Maximal height of the protusions",
                default=0.4
                )
        minTaper: FloatProperty(
                name="Min taper",
                description="Minimal height of the protusions",
                default=0.15, min=0.0, max=1.0,
                subtype='PERCENTAGE'
                )
        maxTaper: FloatProperty(
                name="Max taper",
                description="Maximal height of the protusions",
                default=0.35, min=0.0, max=1.0,
                subtype='PERCENTAGE'
                )
        # Doodads buttons:
        dodoodads: BoolProperty(
                name="Make doodads",
                description="Check if we want to generate doodads",
                default=False
                )
        mindoodads: IntProperty(
                name="Minimum doodads number",
                description="Ask for the minimum number of doodads to generate per polygon",
                default=1, min=0, max=50
                )
        maxdoodads: IntProperty(
                name="Maximum doodads number",
                description="Ask for the maximum number of doodads to generate per polygon",
                default=6, min=1, max=50
                )
        doodMinScale: FloatProperty(
                name="Scale min", description="Minimum scaling of doodad",
                default=0.5, min=0.0, max=1.0,
                subtype='PERCENTAGE'
                )
        doodMaxScale: FloatProperty(
                name="Scale max",
                description="Maximum scaling of doodad",
                default=1.0, min=0.0, max=1.0,
                subtype='PERCENTAGE'
                )
        # Materials buttons:
        sideProtMat: IntProperty(
                name="Side's prot mat",
                description="Material of protusion's sides",
                default=0, min=0
                )
        topProtMat: IntProperty(
                name="Prot's top mat",
                description="Material of protusion's top",
                default=0, min=0
                )
    
    
        @classmethod
        def poll(cls, context):
            return (context.active_object is not None and
                    context.active_object.type == "MESH")
    
    
        def draw(self, context):
            layout = self.layout
    
            self.DISC_doodads = bpy.context.scene.discombobulator.DISC_doodads
    
            row = layout.row()
    
            row.menu("HELP_MT_discombobulator", icon="INFO")
    
            box = layout.box()
    
            box.label(text="Protusions settings")
    
            row = box.row()
    
            row.prop(self, "doprots")
    
            row = box.row()
    
            row.prop(self, "minHeight")
    
            row = box.row()
    
            row.prop(self, "maxHeight")
    
            row = box.row()
    
            row.prop(self, "minTaper")
    
            row = box.row()
    
            row.prop(self, "maxTaper")
    
            row = box.row()
    
            col1 = row.column(align=True)
    
            col1.prop(self, "subpolygon1")
    
            col2 = row.column(align=True)
    
            col2.prop(self, "subpolygon2")
    
            col3 = row.column(align=True)
    
            col3.prop(self, "subpolygon3")
    
            col4 = row.column(align=True)
    
            col4.prop(self, "subpolygon4")
    
            row = box.row()
    
            row.prop(self, "repeatprot")
    
            box = layout.box()
    
            box.label(text="Doodads settings")
    
            row = box.row()
    
            is_doodad = self.dodoodads
            row.prop(self, "dodoodads")
    
            row = box.row()
    
            row.enabled = is_doodad
    
            row.prop(self, "mindoodads")
    
            row = box.row()
    
            row.enabled = is_doodad
    
            row.prop(self, "maxdoodads")
    
            row = box.row()
    
            row.enabled = is_doodad
    
            oper = row.operator("object.discombobulate_set_doodad", text="Pick doodad")
    
            row = box.row()
    
            splits = row.split(factor = 0.5)
    
            splits.enabled = is_doodad
            splits.operator("object.discombobulate_unset_doodad",
                            text="Remove active doodad").remove_all = False
            splits.operator("object.discombobulate_unset_doodad",
                            text="Remove all doodads").remove_all = True
    
            col = box.column(align=True)
    
            doodle = len(self.DISC_doodads)
    
    
            col.enabled = (True if doodle > 0 else False)
    
            col.menu("OBJECT_MT_discombobulator_dodad_list",
    
                         text="List of saved Doodads ({})".format(doodle))
    
    
            box = layout.box()
    
            box.label(text="Materials settings")
    
            row = box.row()
    
            row.prop(self, "topProtMat")
    
            row = box.row()
    
            row.prop(self, "sideProtMat")
    
        def invoke(self, context, event):
    
            return context.window_manager.invoke_props_dialog(self, width=300)
    
        def check(self, context):
            return not self.executing
    
        def execute(self, context):
            self.executing = True
    
            i = 0
            while i < self.repeatprot:
                isLast = False
                if i == self.repeatprot - 1:
                    isLast = True
                discombobulate(self, self.minHeight, self.maxHeight, self.minTaper, self.maxTaper, self.subpolygon1,
                               self.subpolygon2, self.subpolygon3, self.subpolygon4, self.mindoodads, self.maxdoodads,
                               self.repeatprot, self.sideProtMat, self.topProtMat, isLast)
                i += 1
            return {"FINISHED"}
            #bpy.ops.object.discombobulate("INVOKE_DEFAULT")