Skip to content
Snippets Groups Projects
export_x3d.py 37.9 KiB
Newer Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

# <pep8 compliant>

# Contributors: bart:neeneenee*de, http://www.neeneenee.de/vrml, Campbell Barton

"""
This script exports to X3D format.

Usage:
Run this script from "File->Export" menu.  A pop-up will ask whether you
want to export only selected or all relevant objects.

Known issues:
    Doesn't handle multiple materials (don't use material indices);<br>
    Doesn't handle multiple UV textures on a single mesh (create a mesh for each texture);<br>
    Can't get the texture array associated with material * not the UV ones;
"""

import math
import os

import bpy
import mathutils

from io_utils import create_derived_objects, free_derived_objects


def round_color(col, cp):
    return tuple([round(max(min(c, 1.0), 0.0), cp) for c in col])


def matrix_direction(mtx):
    return (mathutils.Vector((0.0, 0.0, -1.0)) * mtx.to_3x3()).normalized()[:]


##########################################################
# Functions for writing output file
##########################################################


class x3d_class:

    def __init__(self, filepath):
        #--- public you can change these ---
        self.proto = 1
        self.billnode = 0
        self.halonode = 0
        self.collnode = 0
        self.verbose = 2	 # level of verbosity in console 0-none, 1-some, 2-most
        self.cp = 3		  # decimals for material color values	 0.000 - 1.000
        self.vp = 3		  # decimals for vertex coordinate values  0.000 - n.000
        self.tp = 3		  # decimals for texture coordinate values 0.000 - 1.000
        self.it = 3

        self.global_matrix = mathutils.Matrix.Rotation(-(math.pi / 2.0), 4, 'X')

        #--- class private don't touch ---
        self.indentLevel = 0  # keeps track of current indenting
        self.filepath = filepath
        self.file = None
        if filepath.lower().endswith('.x3dz'):
            try:
                import gzip
                self.file = gzip.open(filepath, "w")
            except:
                print("failed to import compression modules, exporting uncompressed")
                self.filepath = filepath[:-1]  # remove trailing z

        if self.file is None:
            self.file = open(self.filepath, "w", encoding="utf8", newline="\n")
        self.namesReserved = {"Anchor", "Appearance", "Arc2D", "ArcClose2D", "AudioClip", "Background", "Billboard",
                             "BooleanFilter", "BooleanSequencer", "BooleanToggle", "BooleanTrigger", "Box", "Circle2D",
                             "Collision", "Color", "ColorInterpolator", "ColorRGBA", "component", "Cone", "connect",
                             "Contour2D", "ContourPolyline2D", "Coordinate", "CoordinateDouble", "CoordinateInterpolator",
                             "CoordinateInterpolator2D", "Cylinder", "CylinderSensor", "DirectionalLight", "Disk2D",
                             "ElevationGrid", "EspduTransform", "EXPORT", "ExternProtoDeclare", "Extrusion", "field",
                             "fieldValue", "FillProperties", "Fog", "FontStyle", "GeoCoordinate", "GeoElevationGrid",
                             "GeoLocationLocation", "GeoLOD", "GeoMetadata", "GeoOrigin", "GeoPositionInterpolator",
                             "GeoTouchSensor", "GeoViewpoint", "Group", "HAnimDisplacer", "HAnimHumanoid", "HAnimJoint",
                             "HAnimSegment", "HAnimSite", "head", "ImageTexture", "IMPORT", "IndexedFaceSet",
                             "IndexedLineSet", "IndexedTriangleFanSet", "IndexedTriangleSet", "IndexedTriangleStripSet",
                             "Inline", "IntegerSequencer", "IntegerTrigger", "IS", "KeySensor", "LineProperties", "LineSet",
                             "LoadSensor", "LOD", "Material", "meta", "MetadataDouble", "MetadataFloat", "MetadataInteger",
                             "MetadataSet", "MetadataString", "MovieTexture", "MultiTexture", "MultiTextureCoordinate",
                             "MultiTextureTransform", "NavigationInfo", "Normal", "NormalInterpolator", "NurbsCurve",
                             "NurbsCurve2D", "NurbsOrientationInterpolator", "NurbsPatchSurface",
                             "NurbsPositionInterpolator", "NurbsSet", "NurbsSurfaceInterpolator", "NurbsSweptSurface",
                             "NurbsSwungSurface", "NurbsTextureCoordinate", "NurbsTrimmedSurface", "OrientationInterpolator",
                             "PixelTexture", "PlaneSensor", "PointLight", "PointSet", "Polyline2D", "Polypoint2D",
                             "PositionInterpolator", "PositionInterpolator2D", "ProtoBody", "ProtoDeclare", "ProtoInstance",
                             "ProtoInterface", "ProximitySensor", "ReceiverPdu", "Rectangle2D", "ROUTE", "ScalarInterpolator",
                             "Scene", "Script", "Shape", "SignalPdu", "Sound", "Sphere", "SphereSensor", "SpotLight", "StaticGroup",
                             "StringSensor", "Switch", "Text", "TextureBackground", "TextureCoordinate", "TextureCoordinateGenerator",
                             "TextureTransform", "TimeSensor", "TimeTrigger", "TouchSensor", "Transform", "TransmitterPdu",
                             "TriangleFanSet", "TriangleSet", "TriangleSet2D", "TriangleStripSet", "Viewpoint", "VisibilitySensor",
                             "WorldInfo", "X3D", "XvlShell", "VertexShader", "FragmentShader", "MultiShaderAppearance", "ShaderAppearance"}

        self.namesFog = ("", "LINEAR", "EXPONENTIAL", "")

##########################################################
# Writing nodes routines
##########################################################

    def writeHeader(self):
        #bfile = sys.expandpath( Blender.Get('filepath') ).replace('<', '&lt').replace('>', '&gt')
        bfile = repr(os.path.basename(self.filepath).replace('<', '&lt').replace('>', '&gt'))[1:-1]  # use outfile name
        self.file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
        self.file.write("<!DOCTYPE X3D PUBLIC \"ISO//Web3D//DTD X3D 3.0//EN\" \"http://www.web3d.org/specifications/x3d-3.0.dtd\">\n")
        self.file.write("<X3D version=\"3.0\" profile=\"Immersive\" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema-instance\" xsd:noNamespaceSchemaLocation=\"http://www.web3d.org/specifications/x3d-3.0.xsd\">\n")
        self.file.write("<head>\n")
        self.file.write("\t<meta name=\"filename\" content=\"%s\" />\n" % bfile)
        # self.file.write("\t<meta name=\"filename\" content=\"%s\" />\n" % sys.basename(bfile))
        self.file.write("\t<meta name=\"generator\" content=\"Blender %s\" />\n" % bpy.app.version_string)
        # self.file.write("\t<meta name=\"generator\" content=\"Blender %s\" />\n" % Blender.Get('version'))
        self.file.write("\t<meta name=\"translator\" content=\"X3D exporter v1.55 (2006/01/17)\" />\n")
        self.file.write("</head>\n")
        self.file.write("<Scene>\n")

    # This functionality is poorly defined, disabling for now - campbell
    '''
    def writeScript(self):
        textEditor = Blender.Text.Get()
        alltext = len(textEditor)
        for i in xrange(alltext):
            nametext = textEditor[i].name
            nlines = textEditor[i].getNLines()
            if (self.proto == 1):
                if (nametext == "proto" or nametext == "proto.js" or nametext == "proto.txt") and (nlines != None):
                    nalllines = len(textEditor[i].asLines())
                    alllines = textEditor[i].asLines()
                    for j in xrange(nalllines):
                        self.write_indented(alllines[j] + "\n")
            elif (self.proto == 0):
                if (nametext == "route" or nametext == "route.js" or nametext == "route.txt") and (nlines != None):
                    nalllines = len(textEditor[i].asLines())
                    alllines = textEditor[i].asLines()
                    for j in xrange(nalllines):
                        self.write_indented(alllines[j] + "\n")
        self.write_indented("\n")
    '''

    def writeViewpoint(self, ob, mat, scene):
        loc, quat, scale = mat.decompose()
        self.file.write("<Viewpoint DEF=\"%s\" " % (self.cleanStr(ob.name)))
        self.file.write("description=\"%s\" " % (ob.name))
        self.file.write("centerOfRotation=\"0 0 0\" ")
        self.file.write("position=\"%3.2f %3.2f %3.2f\" " % loc[:])
        self.file.write("orientation=\"%3.2f %3.2f %3.2f %3.2f\" " % (quat.axis[:] + (quat.angle, )))
        self.file.write("fieldOfView=\"%.3f\" " % ob.data.angle)
        self.file.write(" />\n\n")

    def writeFog(self, world):
        if world:
            mtype = world.mist_settings.falloff
            mparam = world.mist_settings
        else:
            return
        if (mtype == 'LINEAR' or mtype == 'INVERSE_QUADRATIC'):
            mtype = 1 if mtype == 'LINEAR' else 2
        # if (mtype == 1 or mtype == 2):
            self.file.write("<Fog fogType=\"%s\" " % self.namesFog[mtype])
            self.file.write("color=\"%s %s %s\" " % round_color(world.horizon_color, self.cp))
            self.file.write("visibilityRange=\"%s\" />\n\n" % round(mparam[2], self.cp))
        else:
            return

    def writeNavigationInfo(self, scene):
        self.file.write('<NavigationInfo headlight="false" visibilityLimit="0.0" type=\'"EXAMINE","ANY"\' avatarSize="0.25, 1.75, 0.75" />\n')

    def writeSpotLight(self, ob, mtx, lamp, world):
        safeName = self.cleanStr(ob.name)
        if world:
            ambi = world.ambient_color
            amb_intensity = ((ambi[0] + ambi[1] + ambi[2]) / 3.0) / 2.5

        # compute cutoff and beamwidth
        intensity = min(lamp.energy / 1.75, 1.0)
        beamWidth = lamp.spot_size * 0.37
        # beamWidth=((lamp.spotSize*math.pi)/180.0)*.37
        cutOffAngle = beamWidth * 1.3

        dx, dy, dz = matrix_direction(mtx)

        location = mtx.to_translation()[:]

        radius = lamp.distance * math.cos(beamWidth)
        # radius = lamp.dist*math.cos(beamWidth)
        self.file.write("<SpotLight DEF=\"%s\" " % safeName)
        self.file.write("radius=\"%.4f\" " % radius)
        self.file.write("ambientIntensity=\"%.4f\" " % amb_intensity)
        self.file.write("intensity=\"%.4f\" " % intensity)
        self.file.write("color=\"%.4f %.4f %.4f\" " % round_color(lamp.color, 4))
        self.file.write("beamWidth=\"%.4f\" " % beamWidth)
        self.file.write("cutOffAngle=\"%.4f\" " % cutOffAngle)
        self.file.write("direction=\"%.4f %.4f %.4f\" " % (dx, dy, dz))
        self.file.write("location=\"%.4f %.4f %.4f\" />\n\n" % location)

    def writeDirectionalLight(self, ob, mtx, lamp, world):
        safeName = self.cleanStr(ob.name)
        if world:
            ambi = world.ambient_color
            # ambi = world.amb
            amb_intensity = ((float(ambi[0] + ambi[1] + ambi[2])) / 3.0) / 2.5

        intensity = min(lamp.energy / 1.75, 1.0)
        dx, dy, dz = matrix_direction(mtx)
        self.file.write("<DirectionalLight DEF=\"%s\" " % safeName)
        self.file.write("ambientIntensity=\"%.4f\" " % amb_intensity)
        self.file.write("color=\"%.4f %.4f %.4f\" " % round_color(lamp.color, 4))
        self.file.write("intensity=\"%.4f\" " % intensity)
        self.file.write("direction=\"%.4f %.4f %.4f\" />\n\n" % (dx, dy, dz))

    def writePointLight(self, ob, mtx, lamp, world):
        safeName = self.cleanStr(ob.name)
        if world:
            ambi = world.ambient_color
            # ambi = world.amb
            amb_intensity = ((float(ambi[0] + ambi[1] + ambi[2])) / 3) / 2.5
            ambi = 0.0
            amb_intensity = 0.0
        intensity = min(lamp.energy / 1.75, 1.0)
        location = mtx.to_translation()[:]

        self.file.write("<PointLight DEF=\"%s\" " % safeName)
        self.file.write("ambientIntensity=\"%.4f\" " % amb_intensity)
        self.file.write("color=\"%.4f %.4f %.4f\" " % round_color(lamp.color, 4))
        self.file.write("intensity=\"%.4f\" " % intensity)
        self.file.write("radius=\"%.4f\" " % lamp.distance)
        self.file.write("location=\"%.4f %.4f %.4f\" />\n\n" % location)

    def secureName(self, name):
        name = name + str(self.nodeID)
        self.nodeID = self.nodeID + 1
        if len(name) <= 3:
            newname = "_" + str(self.nodeID)
            return "%s" % (newname)
        else:
            for bad in ('"', '#', "'", ', ', '.', '[', '\\', ']', '{', '}'):
                name = name.replace(bad, "_")
            if name in self.namesReserved:
                newname = name[0:3] + "_" + str(self.nodeID)
                return "%s" % (newname)
            elif name[0].isdigit():
                newname = "_" + name + str(self.nodeID)
                return "%s" % (newname)
            else:
                newname = name
                return "%s" % (newname)

    def writeIndexedFaceSet(self, ob, mesh, mtx, world, EXPORT_TRI=False):
        fw = self.file.write
        shape_name_x3d = self.cleanStr(ob.name)
        mesh_name_x3d = self.cleanStr(mesh.name)

        if not mesh.faces:
            return

        mode = []
        # mode = 0
        if mesh.uv_textures.active:
        # if mesh.faceUV:
            for face in mesh.uv_textures.active.data:
            # for face in mesh.faces:
                if face.use_halo and 'HALO' not in mode:
                    mode += ['HALO']
                if face.use_billboard and 'BILLBOARD' not in mode:
                    mode += ['BILLBOARD']
                if face.use_object_color and 'OBJECT_COLOR' not in mode:
                    mode += ['OBJECT_COLOR']
                if face.use_collision and 'COLLISION' not in mode:
                    mode += ['COLLISION']
                # mode |= face.mode

        if 'HALO' in mode and self.halonode == 0:
        # if mode & Mesh.FaceModes.HALO and self.halonode == 0:
            self.write_indented("<Billboard axisOfRotation=\"0 0 0\">\n", 1)
            self.halonode = 1
        elif 'BILLBOARD' in mode and self.billnode == 0:
        # elif mode & Mesh.FaceModes.BILLBOARD and self.billnode == 0:
            self.write_indented("<Billboard axisOfRotation=\"0 1 0\">\n", 1)
            self.billnode = 1
        elif 'COLLISION' not in mode and self.collnode == 0:
        # elif not mode & Mesh.FaceModes.DYNAMIC and self.collnode == 0:
            self.write_indented("<Collision enabled=\"false\">\n", 1)
            self.collnode = 1

        loc, quat, sca = mtx.decompose()

        self.write_indented("<Transform DEF=\"%s\" " % shape_name_x3d, 1)
        fw("translation=\"%.6f %.6f %.6f\" " % loc[:])
        fw("scale=\"%.6f %.6f %.6f\" " % sca[:])
        fw("rotation=\"%.6f %.6f %.6f %.6f\" " % (quat.axis[:] + (quat.angle, )))
        fw(">\n")

        if mesh.tag:
            self.write_indented("<Group USE=\"G_%s\" />\n" % mesh_name_x3d, 1)
        else:
            mesh.tag = True

            self.write_indented("<Group DEF=\"G_%s\">\n" % mesh_name_x3d, 1)

            is_uv = bool(mesh.uv_textures.active)
            # is_col, defined for each material

            is_coords_written = False

            mesh_materials = mesh.materials[:]
            if not mesh_materials:
                mesh_materials = [None]

            mesh_material_tex = [None] * len(mesh_materials)
            mesh_material_mtex = [None] * len(mesh_materials)
            mesh_material_images = [None] * len(mesh_materials)

            for i, material in enumerate(mesh_materials):
                if material:
                    for mtex in material.texture_slots:
                        if mtex:
                            tex = mtex.texture
                            if tex and tex.type == 'IMAGE':
                                image = tex.image
                                if image:
                                    mesh_material_tex[i] = tex
                                    mesh_material_mtex[i] = mtex
                                    mesh_material_images[i] = image
                                    break

            mesh_materials_use_face_texture = [getattr(material, "use_face_texture", True) for material in mesh_materials]

            mesh_faces = mesh.faces[:]
            mesh_faces_materials = [f.material_index for f in mesh_faces]
            if is_uv and True in mesh_materials_use_face_texture:
                mesh_faces_image = [(fuv.image if (mesh_materials_use_face_texture[mesh_faces_materials[i]] and fuv.use_image) else mesh_material_images[mesh_faces_materials[i]]) for i, fuv in enumerate(mesh.uv_textures.active.data)]
                mesh_faces_image_unique = set(mesh_faces_image)
            elif len(set(mesh_material_images) | {None}) > 1:  # make sure there is at least one image
                mesh_faces_image = [mesh_material_images[material_index] for material_index in mesh_faces_materials]
                mesh_faces_image_unique = set(mesh_faces_image)
            else:
                mesh_faces_image = [None] * len(mesh_faces)
                mesh_faces_image_unique = {None}

            # group faces
            face_groups = {}
            for material_index in range(len(mesh_materials)):
                for image in mesh_faces_image_unique:
                    face_groups[material_index, image] = []
            del mesh_faces_image_unique

            for i, (material_index, image) in enumerate(zip(mesh_faces_materials, mesh_faces_image)):
                face_groups[material_index, image].append(i)

            # same as face_groups.items() but sorted so we can get predictable output.
            face_groups_items = list(face_groups.items())
            face_groups_items.sort(key=lambda m: (m[0][0], getattr(m[0][1], "name", "")))

            for (material_index, image), face_group in face_groups_items:  # face_groups.items()
                if face_group:
                    material = mesh_materials[material_index]

                    self.write_indented("<Shape>\n", 1)
                    is_smooth = False
                    is_col = (mesh.vertex_colors.active and (material is None or material.use_vertex_color_paint))

                    # kludge but as good as it gets!
                    for i in face_group:
                        if mesh_faces[i].use_smooth:
                            is_smooth = True
                            break

                    if image:
                        self.writeImageTexture(image)

                        if mesh_materials_use_face_texture[material_index]:
                            if image.use_tiles:
                                self.write_indented("<TextureTransform scale=\"%s %s\" />\n" % (image.tiles_x, image.tiles_y))
                        else:
                            # transform by mtex
                            loc = mesh_material_mtex[material_index].offset[:2]

                            # mtex_scale * tex_repeat
                            sca_x, sca_y = mesh_material_mtex[material_index].scale[:2]

                            sca_x *= mesh_material_tex[material_index].repeat_x
                            sca_y *= mesh_material_tex[material_index].repeat_y

                            # flip x/y is a sampling feature, convert to transform
                            if mesh_material_tex[material_index].use_flip_axis:
                                rot = math.pi / -2.0
                                sca_x, sca_y = sca_y, -sca_x
                            else:
                                rot = 0.0

                            self.write_indented("<TextureTransform ", 0)
                            # fw("center=\"%.6f %.6f\" " % (0.0, 0.0))
                            fw("translation=\"%.6f %.6f\" " % loc)
                            fw("scale=\"%.6f %.6f\" " % (sca_x, sca_y))
                            fw("rotation=\"%.6f\" " % rot)
                            fw("/>\n")

                        self.writeMaterial(material, self.cleanStr(material.name, ""), world)

                    #-- IndexedFaceSet or IndexedLineSet

                    self.write_indented("<IndexedFaceSet ", 1)

                    # --- Write IndexedFaceSet Attributes
                    if mesh.show_double_sided:
                        fw("solid=\"true\" ")
                    else:
                        fw("solid=\"false\" ")

                    if is_smooth:
                        fw("creaseAngle=\"%.4f\" " % mesh.auto_smooth_angle)

                    if is_uv:
                        # "texCoordIndex"
                        fw("\n\t\t\ttexCoordIndex=\"")
                        j = 0
                        for i in face_group:
                            if len(mesh_faces[i].vertices) == 4:
                                fw("%d %d %d %d -1, " % (j, j + 1, j + 2, j + 3))
                                j += 4
                            else:
                                fw("%d %d %d -1, " % (j, j + 1, j + 2))
                                j += 3
                        fw("\" ")
                        # --- end texCoordIndex

                    if is_col:
                        fw("colorPerVertex=\"false\" ")

                    if True:
                        # "coordIndex"
                        fw('coordIndex="')
                        if EXPORT_TRI:
                            for i in face_group:
                                fv = mesh_faces[i].vertices[:]
                                if len(fv) == 3:
                                    fw("%i %i %i -1, " % fv)
                                else:
                                    fw("%i %i %i -1, " % (fv[0], fv[1], fv[2]))
                                    fw("%i %i %i -1, " % (fv[0], fv[2], fv[3]))
                        else:
                            for i in face_group:
                                fv = mesh_faces[i].vertices[:]
                                if len(fv) == 3:
                                    fw("%i %i %i -1, " % fv)
                                else:
                                    fw("%i %i %i %i -1, " % fv)

                        fw("\" ")
                        # --- end coordIndex

                    # close IndexedFaceSet
                    fw(">\n")

                    # --- Write IndexedFaceSet Elements
                    if True:
                        if is_coords_written:
                            self.write_indented("<Coordinate USE=\"%s%s\" />\n" % ("coord_", mesh_name_x3d))
                        else:
                            self.write_indented("<Coordinate DEF=\"%s%s\" \n" % ("coord_", mesh_name_x3d), 1)
                            fw("\t\t\t\tpoint=\"")
                            for v in mesh.vertices:
                                fw("%.6f %.6f %.6f, " % v.co[:])
                            fw("\" />")
                            self.write_indented("\n", -1)
                            is_coords_written = True

                    if is_uv:
                        self.write_indented("<TextureCoordinate point=\"", 1)
                        fw = fw
                        mesh_faces_uv = mesh.uv_textures.active.data
                        for i in face_group:
                            for uv in mesh_faces_uv[i].uv:
                                fw("%.4f %.4f, " % uv[:])
                        del mesh_faces_uv
                        fw("\" />")
                        self.write_indented("\n", -1)

                    if is_col:
                        self.write_indented("<Color color=\"", 1)
                        # XXX, 1 color per face, only
                        mesh_faces_col = mesh.vertex_colors.active.data
                        for i in face_group:
                            fw("%.3f %.3f %.3f, " % mesh_faces_col[i].color1[:])
                        del mesh_faces_col
                        fw("\" />")
                        self.write_indented("\n", -1)

                    #--- output vertexColors

                    #--- output closing braces
                    self.write_indented("</IndexedFaceSet>\n", -1)
                    self.write_indented("</Shape>\n", -1)

            self.write_indented("</Group>\n", -1)

        self.write_indented("</Transform>\n", -1)

        if self.halonode == 1:
            self.write_indented("</Billboard>\n", -1)
            self.halonode = 0

        if self.billnode == 1:
            self.write_indented("</Billboard>\n", -1)
            self.billnode = 0

        if self.collnode == 1:
            self.write_indented("</Collision>\n", -1)
            self.collnode = 0

        fw("\n")

    def writeMaterial(self, mat, matName, world):
        # look up material name, use it if available
        if mat.tag:
            self.write_indented("<Material USE=\"MA_%s\" />\n" % matName)
        else:
            mat.tag = True

            emit = mat.emit
            ambient = mat.ambient / 3.0
            diffuseColor = tuple(mat.diffuse_color)
            if world:
                ambiColor = tuple(((c * mat.ambient) * 2.0) for c in world.ambient_color)
            else:
                ambiColor = 0.0, 0.0, 0.0

            emitColor = tuple(((c * emit) + ambiColor[i]) / 2.0 for i, c in enumerate(diffuseColor))
            shininess = mat.specular_hardness / 512.0
            specColor = tuple((c + 0.001) / (1.25 / (mat.specular_intensity + 0.001)) for c in mat.specular_color)
            transp = 1.0 - mat.alpha

            if mat.use_shadeless:
                ambient = 1.0
                shininess = 0.0
                specColor = emitColor = diffuseColor

            self.write_indented("<Material DEF=\"MA_%s\" " % matName, 1)
            self.file.write("diffuseColor=\"%s %s %s\" " % round_color(diffuseColor, self.cp))
            self.file.write("specularColor=\"%s %s %s\" " % round_color(specColor, self.cp))
            self.file.write("emissiveColor=\"%s %s %s\" \n" % round_color(emitColor, self.cp))
            self.write_indented("ambientIntensity=\"%s\" " % (round(ambient, self.cp)))
            self.file.write("shininess=\"%s\" " % (round(shininess, self.cp)))
            self.file.write("transparency=\"%s\" />" % (round(transp, self.cp)))
            self.write_indented("\n", -1)

    def writeImageTexture(self, image):
        name = image.name
        if image.tag:
            self.write_indented("<ImageTexture USE=\"%s\" />\n" % self.cleanStr(name))
        else:
            image.tag = True

            self.write_indented("<ImageTexture DEF=\"%s\" " % self.cleanStr(name), 1)
            relpath = os.path.dirname(self.filepath)  # could cache
            filepath_full = bpy.path.abspath(filepath)
            # collect image paths, can load multiple
            if bpy.path.is_subdir(filepath_full, relpath):
                images.append(os.path.relpath(filepath_full, relpath))

            images.append(os.path.basename(filepath_full))
            self.file.write("url='%s' />" % " ".join(["\"%s\"" % f.replace("\\", "/") for f in images]))
            self.write_indented("\n", -1)

    def writeBackground(self, world, alltextures):
        if world:
            worldname = world.name
        else:
            return

        blending = world.use_sky_blend, world.use_sky_paper, world.use_sky_real

        grd_triple = round_color(world.horizon_color, self.cp)
        sky_triple = round_color(world.zenith_color, self.cp)
        mix_triple = round_color(((grd_triple[i] + sky_triple[i]) / 2.0 for i in range(3)), self.cp)

        self.file.write("<Background DEF=\"%s\" " % self.secureName(worldname))
        # No Skytype - just Hor color
        if blending == (False, False, False):
            self.file.write("groundColor=\"%s %s %s\" " % grd_triple)
            self.file.write("skyColor=\"%s %s %s\" " % grd_triple)
        # Blend Gradient
        elif blending == (True, False, False):
            self.file.write("groundColor=\"%s %s %s, " % grd_triple)
            self.file.write("%s %s %s\" groundAngle=\"1.57, 1.57\" " % mix_triple)
            self.file.write("skyColor=\"%s %s %s, " % sky_triple)
            self.file.write("%s %s %s\" skyAngle=\"1.57, 1.57\" " % mix_triple)
        # Blend+Real Gradient Inverse
        elif blending == (True, False, True):
            self.file.write("groundColor=\"%s %s %s, %s %s %s\" " % (sky_triple + grd_triple))
            self.file.write("groundAngle=\"1.57\" ")
            self.file.write("skyColor=\"%s %s %s, %s %s %s, %s %s %s\" " % (sky_triple + grd_triple + sky_triple))
            self.file.write("skyAngle=\"1.57, 3.14159\" ")
        # Paper - just Zen Color
        elif blending == (False, False, True):
            self.file.write("groundColor=\"%s %s %s\" " % sky_triple)
            self.file.write("skyColor=\"%s %s %s\" " % sky_triple)
        # Blend+Real+Paper - komplex gradient
        elif blending == (True, True, True):
            self.write_indented("groundColor=\"%s %s %s, " % sky_triple)
            self.write_indented("%s %s %s\" groundAngle=\"1.57, 1.57\" " % grd_triple)
            self.write_indented("skyColor=\"%s %s %s, " % sky_triple)
            self.write_indented("%s %s %s\" skyAngle=\"1.57, 1.57\" " % grd_triple)
        # Any Other two colors
        else:
            self.file.write("groundColor=\"%s %s %s\" " % grd_triple)
            self.file.write("skyColor=\"%s %s %s\" " % sky_triple)

        alltexture = len(alltextures)

        for i in range(alltexture):
            tex = alltextures[i]

            if tex.type != 'IMAGE' or tex.image is None:
                continue

            namemat = tex.name
            # namemat = alltextures[i].name

            pic = tex.image

            # using .expandpath just in case, os.path may not expect //
            basename = os.path.basename(bpy.path.abspath(pic.filepath))

            pic = alltextures[i].image
            if (namemat == "back") and (pic != None):
                self.file.write("\n\tbackUrl=\"%s\" " % basename)
            elif (namemat == "bottom") and (pic != None):
                self.write_indented("bottomUrl=\"%s\" " % basename)
            elif (namemat == "front") and (pic != None):
                self.write_indented("frontUrl=\"%s\" " % basename)
            elif (namemat == "left") and (pic != None):
                self.write_indented("leftUrl=\"%s\" " % basename)
            elif (namemat == "right") and (pic != None):
                self.write_indented("rightUrl=\"%s\" " % basename)
            elif (namemat == "top") and (pic != None):
                self.write_indented("topUrl=\"%s\" " % basename)
        self.write_indented("/>\n\n")

##########################################################
# export routine
##########################################################

    def export(self, scene, world, alltextures,
                EXPORT_TRI=False,
                ):

        # tag un-exported IDs
        bpy.data.meshes.tag(False)
        bpy.data.materials.tag(False)
        bpy.data.images.tag(False)

        print("Info: starting X3D export to %r..." % self.filepath)
        self.writeHeader()
        # self.writeScript()
        self.writeNavigationInfo(scene)
        self.writeBackground(world, alltextures)
        self.writeFog(world)
        self.proto = 0

        if use_selection:
            objects = (o for o in scene.objects if o.is_visible(scene) and o.select)
        else:
            objects = (o for o in scene.objects if o.is_visible(scene))

        for ob_main in objects:

            free, derived = create_derived_objects(scene, ob_main)

            if derived is None:
                continue

            for ob, ob_mat in derived:
                objType = ob.type
                objName = ob.name
                ob_mat = self.global_matrix * ob_mat

                if objType == 'CAMERA':
                    self.writeViewpoint(ob, ob_mat, scene)
                elif objType in ('MESH', 'CURVE', 'SURF', 'FONT'):
                    if (objType != 'MESH') or (use_apply_modifiers and ob.is_modified(scene, 'PREVIEW')):
                            me = ob.to_mesh(scene, use_apply_modifiers, 'PREVIEW')
                    if me is not None:
                        self.writeIndexedFaceSet(ob, me, ob_mat, world, EXPORT_TRI=EXPORT_TRI)
                        # free mesh created with create_mesh()
                        if me != ob.data:
                            bpy.data.meshes.remove(me)

                elif objType == 'LAMP':
                    data = ob.data
                    datatype = data.type
                    if datatype == 'POINT':
                        self.writePointLight(ob, ob_mat, data, world)
                    elif datatype == 'SPOT':
                        self.writeSpotLight(ob, ob_mat, data, world)
                    elif datatype == 'SUN':
                        self.writeDirectionalLight(ob, ob_mat, data, world)
                    else:
                        self.writeDirectionalLight(ob, ob_mat, data, world)
                else:
                    #print "Info: Ignoring [%s], object type [%s] not handle yet" % (object.name,object.getType)
                    pass

            if free:
                free_derived_objects(ob_main)

        self.file.write("\n</Scene>\n</X3D>")

        # 	if containerMesh:
        # 		containerMesh.vertices = None

        self.cleanup()

##########################################################
# Utility methods
##########################################################

    def cleanup(self):
        self.file.close()
        self.indentLevel = 0
        print("Info: finished X3D export to %r" % self.filepath)

    def cleanStr(self, name, prefix='rsvd_'):
        """cleanStr(name,prefix) - try to create a valid VRML DEF name from object name"""

        newName = name
        if len(newName) == 0:
            self.nNodeID += 1
            return "%s%d" % (prefix, self.nNodeID)

        if newName in self.namesReserved:
            newName = '%s%s' % (prefix, newName)

        if newName[0].isdigit():
            newName = "%s%s" % ('_', newName)

        for bad in [' ', '"', '#', "'", ', ', '.', '[', '\\', ']', '{', '}']:
            newName = newName.replace(bad, '_')
        return newName

    def faceToString(self, face):

        print("Debug: face.flag=0x%x (bitflags)" % face.flag)
        if face.sel:
            print("Debug: face.sel=true")

        print("Debug: face.mode=0x%x (bitflags)" % face.mode)
        if face.mode & Mesh.FaceModes.TWOSIDE:
            print("Debug: face.mode twosided")

        print("Debug: face.transp=0x%x (enum)" % face.blend_type)
        if face.blend_type == Mesh.FaceTranspModes.SOLID:
            print("Debug: face.transp.SOLID")

        if face.image:
            print("Debug: face.image=%s" % face.image.name)
        print("Debug: face.materialIndex=%d" % face.materialIndex)

    def meshToString(self, mesh):
        # print("Debug: mesh.hasVertexUV=%d" % mesh.vertexColors)
        print("Debug: mesh.faceUV=%d" % (len(mesh.uv_textures) > 0))
        # print("Debug: mesh.faceUV=%d" % mesh.faceUV)
        print("Debug: mesh.hasVertexColours=%d" % (len(mesh.vertex_colors) > 0))
        # print("Debug: mesh.hasVertexColours=%d" % mesh.hasVertexColours())
        print("Debug: mesh.vertices=%d" % len(mesh.vertices))
        print("Debug: mesh.faces=%d" % len(mesh.faces))
        print("Debug: mesh.materials=%d" % len(mesh.materials))

        # s="%s %s %s" % (
        # 	round(c.r/255.0,self.cp),
        # 	round(c.g/255.0,self.cp),
        # 	round(c.b/255.0,self.cp))
        return s

    # For writing well formed VRML code
    #------------------------------------------------------------------------
    def write_indented(self, s, inc=0):
        if inc < 1:
            self.indentLevel = self.indentLevel + inc

        self.file.write((self.indentLevel * "\t") + s)

        if inc > 0:
            self.indentLevel = self.indentLevel + inc

##########################################################
# Callbacks, needed before Main
##########################################################


def save(operator, context, filepath="",
          use_apply_modifiers=False,
          use_triangulate=False,
          use_compress=False):

    if use_compress:
        if not filepath.lower().endswith('.x3dz'):
            filepath = '.'.join(filepath.split('.')[:-1]) + '.x3dz'
    else:
        if not filepath.lower().endswith('.x3d'):
            filepath = '.'.join(filepath.split('.')[:-1]) + '.x3d'

    scene = context.scene
    world = scene.world

    if bpy.ops.object.mode_set.poll():
        bpy.ops.object.mode_set(mode='OBJECT')

    # XXX these are global textures while .Get() returned only scene's?
    alltextures = bpy.data.textures
    # alltextures = Blender.Texture.Get()

    wrlexport = x3d_class(filepath)
    wrlexport.export(scene,
                     world,
                     alltextures,
                     use_apply_modifiers=use_apply_modifiers,
                     use_selection=use_selection,
                     EXPORT_TRI=use_triangulate,
                     )

    return {'FINISHED'}