Skip to content
Snippets Groups Projects
add_mesh_archimedean_solids.py 18.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    bl_addon_info = {
        'name': 'Add Mesh: Archimedean Solids',
        'author': 'Buerbaum Martin (Pontiac)',
        'version': '0.1',
        'blender': (2, 5, 3),
        'location': 'View3D > Add > Mesh > Archimedean Solids',
        'description': 'Adds various archimedean solids to the Add Mesh menu',
        'url':
        'http://wiki.blender.org/index.php/Extensions:2.5/Py/' \
            'Scripts/Add_Mesh/',  # @todo Create wiki page and fix this link.
        'category': 'Add Mesh'}
    
    import bpy
    from math import sqrt
    from mathutils import *
    from bpy.props import *
    
    
    # Stores the values of a list of properties and the
    # operator id in a property group ('recall_op') inside the object.
    # Could (in theory) be used for non-objects.
    # Note: Replaces any existing property group with the same name!
    # ob ... Object to store the properties in.
    # op ... The operator that should be used.
    # op_args ... A dictionary with valid Blender
    #             properties (operator arguments/parameters).
    def store_recall_properties(ob, op, op_args):
        if ob and op and op_args:
            recall_properties = {}
    
            # Add the operator identifier and op parameters to the properties.
            recall_properties['op'] = op.bl_idname
            recall_properties['args'] = op_args
    
            # Store new recall properties.
            ob['recall'] = recall_properties
    
    
    # Apply view rotation to objects if "Align To" for
    # new objects was set to "VIEW" in the User Preference.
    def apply_object_align(context, ob):
        obj_align = bpy.context.user_preferences.edit.object_align
    
        if (context.space_data.type == 'VIEW_3D'
            and obj_align == 'VIEW'):
                view3d = context.space_data
                region = view3d.region_3d
                viewMatrix = region.view_matrix
                rot = viewMatrix.rotation_part()
                ob.rotation_euler = rot.invert().to_euler()
    
    
    # Create a new mesh (object) from verts/edges/faces.
    # verts/edges/faces ... List of vertices/edges/faces for the
    #                       new mesh (as used in from_pydata).
    # name ... Name of the new mesh (& object).
    # edit ... Replace existing mesh data.
    # Note: Using "edit" will destroy/delete existing mesh data.
    def create_mesh_object(context, verts, edges, faces, name, edit):
        scene = context.scene
        obj_act = scene.objects.active
    
        # Can't edit anything, unless we have an active obj.
        if edit and not obj_act:
            return None
    
        # Create new mesh
        mesh = bpy.data.meshes.new(name)
    
        # Make a mesh from a list of verts/edges/faces.
        mesh.from_pydata(verts, edges, faces)
    
        # Update mesh geometry after adding stuff.
        mesh.update()
    
        # Deselect all objects.
        bpy.ops.object.select_all(action='DESELECT')
    
        if edit:
            # Replace geometry of existing object
    
            # Use the active obj and select it.
            ob_new = obj_act
            ob_new.selected = True
    
            if obj_act.mode == 'OBJECT':
                # Get existing mesh datablock.
                old_mesh = ob_new.data
    
                # Set object data to nothing
                ob_new.data = None
    
                # Clear users of existing mesh datablock.
                old_mesh.user_clear()
    
                # Remove old mesh datablock if no users are left.
                if (old_mesh.users == 0):
                    bpy.data.meshes.remove(old_mesh)
    
                # Assign new mesh datablock.
                ob_new.data = mesh
    
        else:
            # Create new object
            ob_new = bpy.data.objects.new(name, mesh)
    
            # Link new object to the given scene and select it.
            scene.objects.link(ob_new)
            ob_new.selected = True
    
            # Place the object at the 3D cursor location.
            ob_new.location = scene.cursor_location
    
            apply_object_align(context, ob_new)
    
        if obj_act and obj_act.mode == 'EDIT':
            if not edit:
                # We are in EditMode, switch to ObjectMode.
                bpy.ops.object.mode_set(mode='OBJECT')
    
                # Select the active object as well.
                obj_act.selected = True
    
                # Apply location of new object.
                scene.update()
    
                # Join new object into the active.
                bpy.ops.object.join()
    
                # Switching back to EditMode.
                bpy.ops.object.mode_set(mode='EDIT')
    
                ob_new = obj_act
    
        else:
            # We are in ObjectMode.
            # Make the new object the active one.
            scene.objects.active = ob_new
    
        return ob_new
    
    
    # A very simple "bridge" tool.
    # Connects two equally long vertex rows with faces.
    # Returns a list of the new faces (list of  lists)
    #
    # vertIdx1 ... First vertex list (list of vertex indices).
    # vertIdx2 ... Second vertex list (list of vertex indices).
    # closed ... Creates a loop (first & last are closed).
    # flipped ... Invert the normal of the face(s).
    #
    # Note: You can set vertIdx1 to a single vertex index to create
    #       a fan/star of faces.
    # Note: If both vertex idx list are the same length they have
    #       to have at least 2 vertices.
    def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
        faces = []
    
        if not vertIdx1 or not vertIdx2:
            return None
    
        if len(vertIdx1) < 2 and len(vertIdx2) < 2:
            return None
    
        fan = False
        if (len(vertIdx1) != len(vertIdx2)):
            if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
                fan = True
            else:
                return None
    
        total = len(vertIdx2)
    
        if closed:
            # Bridge the start with the end.
            if flipped:
                face = [
                    vertIdx1[0],
                    vertIdx2[0],
                    vertIdx2[total - 1]]
                if not fan:
                    face.append(vertIdx1[total - 1])
                faces.append(face)
    
            else:
                face = [vertIdx2[0], vertIdx1[0]]
                if not fan:
                    face.append(vertIdx1[total - 1])
                face.append(vertIdx2[total - 1])
                faces.append(face)
    
        # Bridge the rest of the faces.
        for num in range(total - 1):
            if flipped:
                if fan:
                    face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
                else:
                    face = [vertIdx2[num], vertIdx1[num],
                        vertIdx1[num + 1], vertIdx2[num + 1]]
                faces.append(face)
            else:
                if fan:
                    face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
                else:
                    face = [vertIdx1[num], vertIdx2[num],
                        vertIdx2[num + 1], vertIdx1[num + 1]]
                faces.append(face)
    
        return faces
    
    
    def add_rhombicuboctahedron(quad_size=sqrt(2.0) / (1.0 + sqrt(2) / 2.0)):
        faces = []
        verts = []
    
        size = 2.0
    
        # Top & bottom faces (quads)
        face_top = []
        face_bot = []
        for z, up in [(size / 2.0, True), (-size / 2.0, False)]:
            face = []
            face.append(len(verts))
            verts.append(Vector(quad_size / 2.0, quad_size / 2.0, z))
            face.append(len(verts))
            verts.append(Vector(quad_size / 2.0, -quad_size / 2.0, z))
            face.append(len(verts))
            verts.append(Vector(-quad_size / 2.0, -quad_size / 2.0, z))
            face.append(len(verts))
            verts.append(Vector(-quad_size / 2.0, quad_size / 2.0, z))
    
            if up:
                # Top face (quad)
                face_top = face
            else:
                # Bottom face (quad)
                face_bot = face
    
        edgeloop_up = []
        edgeloop_low = []
        for z, up in [(quad_size / 2.0, True), (-quad_size / 2.0, False)]:
            edgeloop = []
    
            edgeloop.append(len(verts))
            verts.append(Vector(size / 2.0, quad_size / 2.0, z))
            edgeloop.append(len(verts))
            verts.append(Vector(size / 2.0, -quad_size / 2.0, z))
            edgeloop.append(len(verts))
            verts.append(Vector(quad_size / 2.0, -size / 2.0, z))
            edgeloop.append(len(verts))
            verts.append(Vector(-quad_size / 2.0, -size / 2.0, z))
            edgeloop.append(len(verts))
            verts.append(Vector(-size / 2.0, -quad_size / 2.0, z))
            edgeloop.append(len(verts))
            verts.append(Vector(-size / 2.0, quad_size / 2.0, z))
            edgeloop.append(len(verts))
            verts.append(Vector(-quad_size / 2.0, size / 2.0, z))
            edgeloop.append(len(verts))
            verts.append(Vector(quad_size / 2.0, size / 2.0, z))
    
            if up:
                # Upper 8-sider
                edgeloop_up = edgeloop
            else:
                # Lower 8-sider
                edgeloop_low = edgeloop
    
        face_top_idx = len(faces)
        faces.append(face_top)
        faces.append(face_bot)
        faces_middle = createFaces(edgeloop_low, edgeloop_up, closed=True)
        faces.extend(faces_middle)
    
        # Upper Quads
        faces.append([edgeloop_up[0], face_top[0], face_top[1], edgeloop_up[1]])
        faces.append([edgeloop_up[2], face_top[1], face_top[2], edgeloop_up[3]])
        faces.append([edgeloop_up[4], face_top[2], face_top[3], edgeloop_up[5]])
        faces.append([edgeloop_up[6], face_top[3], face_top[0], edgeloop_up[7]])
    
        # Upper Tris
        faces.append([face_top[0], edgeloop_up[0], edgeloop_up[7]])
        faces.append([face_top[1], edgeloop_up[2], edgeloop_up[1]])
        faces.append([face_top[2], edgeloop_up[4], edgeloop_up[3]])
        faces.append([face_top[3], edgeloop_up[6], edgeloop_up[5]])
    
        # Lower Quads
        faces.append([edgeloop_low[0], edgeloop_low[1], face_bot[1], face_bot[0]])
        faces.append([edgeloop_low[2], edgeloop_low[3], face_bot[2], face_bot[1]])
        faces.append([edgeloop_low[4], edgeloop_low[5], face_bot[3], face_bot[2]])
        faces.append([edgeloop_low[6], edgeloop_low[7], face_bot[0], face_bot[3]])
    
        # Lower Tris
        faces.append([face_bot[0], edgeloop_low[7], edgeloop_low[0]])
        faces.append([face_bot[1], edgeloop_low[1], edgeloop_low[2]])
        faces.append([face_bot[2], edgeloop_low[3], edgeloop_low[4]])
        faces.append([face_bot[3], edgeloop_low[5], edgeloop_low[6]])
    
        # Invert face normal
        f = faces[face_top_idx]
        faces[face_top_idx] = [f[0]] + list(reversed(f[1:]))
    
        return verts, faces
    
    
    # Returns the middle location of a _regular_ polygon.
    def get_polygon_center(verts, ngons):
        faces = []
    
        for f in ngons:
            loc = Vector(0.0, 0.0, 0.0)
    
            for vert_idx in f:
                loc = loc + Vector(verts[vert_idx])
    
            loc = loc / len(f)
    
            vert_idx_new = len(verts)
            verts.append(loc)
    
            face_star = createFaces([vert_idx_new], f, closed=True)
            faces.extend(face_star)
    
        return verts, faces
    
    
    def subdivide_edge_2_cuts(v1, v2, edgelength_middle):
        v1 = Vector(v1)
        v2 = Vector(v2)
    
        length = (v2 - v1).length
        vn = (v2 - v1).normalize()
    
        edgelength_1a_b2 = (length - edgelength_middle) / 2.0
    
        va = v1 + vn * edgelength_1a_b2
        vb = v1 + vn * (edgelength_1a_b2 + edgelength_middle)
    
        return (va, vb)
    
    
    def add_truncated_tetrahedron(hexagon_side=2.0 * sqrt(2.0) / 3.0,
        star_ngons=False):
        verts = []
        faces = []
    
        # Vertices of a simple Tetrahedron
        verts_tet = [
            (1.0, 1.0, -1.0),    # tip 0
            (-1.0, 1.0, 1.0),    # tip 1
            (1.0, -1.0, 1.0),    # tip 2
            (-1.0, -1.0, -1.0)]  # tip 3
    
        # Calculate truncated vertices
        tri0 = []
        tri1 = []
        tri2 = []
        tri3 = []
    
        va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[1], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri0.append(va_idx)
        tri1.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[2], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri0.append(va_idx)
        tri2.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[3], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri0.append(va_idx)
        tri3.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_tet[1], verts_tet[2], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri1.append(va_idx)
        tri2.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_tet[1], verts_tet[3], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri1.append(va_idx)
        tri3.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_tet[2], verts_tet[3], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri2.append(va_idx)
        tri3.append(vb_idx)
    
        # Hexagon polygons (n-gons)
        ngon012 = [tri0[1], tri0[0], tri1[0], tri1[1], tri2[1], tri2[0]]
        ngon031 = [tri0[0], tri0[2], tri3[0], tri3[1], tri1[2], tri1[0]]
        ngon023 = [tri0[2], tri0[1], tri2[0], tri2[2], tri3[2], tri3[0]]
        ngon132 = [tri1[1], tri1[2], tri3[1], tri3[2], tri2[2], tri2[1]]
    
        if star_ngons:
            # Create stars from hexagons
            verts, faces_star = get_polygon_center(verts,
                [ngon012, ngon031, ngon023, ngon132])
            faces.extend(faces_star)
    
        else:
            # Create quads from hexagons
            (quad1, quad2) = (
                [ngon012[0], ngon012[1], ngon012[2], ngon012[3]],
                [ngon012[0], ngon012[3], ngon012[4], ngon012[5]])
            faces.extend([quad1, quad2])
            (quad1, quad2) = (
                [ngon031[0], ngon031[1], ngon031[2], ngon031[3]],
                [ngon031[0], ngon031[3], ngon031[4], ngon031[5]])
            faces.extend([quad1, quad2])
            (quad1, quad2) = (
                [ngon023[0], ngon023[1], ngon023[2], ngon023[3]],
                [ngon023[0], ngon023[3], ngon023[4], ngon023[5]])
            faces.extend([quad1, quad2])
            (quad1, quad2) = (
                [ngon132[0], ngon132[1], ngon132[2], ngon132[3]],
                [ngon132[0], ngon132[3], ngon132[4], ngon132[5]])
            faces.extend([quad1, quad2])
    
        # Invert face normals
        tri1 = [tri1[0]] + list(reversed(tri1[1:]))
        tri3 = [tri3[0]] + list(reversed(tri3[1:]))
    
        # Tri faces
        faces.extend([tri0, tri1, tri2, tri3])
    
        return verts, faces
    
    
    class AddRhombicuboctahedron(bpy.types.Operator):
        '''Add a mesh for a thombicuboctahedron.'''
        bl_idname = 'mesh.primitive_thombicuboctahedron_add'
        bl_label = 'Add Rhombicuboctahedron'
        bl_description = 'Create a mesh for a thombicuboctahedron.'
        bl_options = {'REGISTER', 'UNDO'}
    
        # edit - Whether to add or update.
        edit = BoolProperty(name='',
            description='',
            default=False,
            options={'HIDDEN'})
        quad_size = FloatProperty(name="Quad Size",
            description="Size of the orthogonal quad faces.",
            min=0.01,
            max=1.99,
            default=sqrt(2.0) / (1.0 + sqrt(2) / 2.0))
    
        def execute(self, context):
            props = self.properties
    
            verts, faces = add_rhombicuboctahedron(props.quad_size)
    
            obj = create_mesh_object(context, verts, [], faces,
                'Rhombicuboctahedron', props.edit)
    
            # Store 'recall' properties in the object.
            recall_args_list = {
                'edit': True,
                'quad_size': props.quad_size}
            store_recall_properties(obj, self, recall_args_list)
    
            return {'FINISHED'}
    
    
    class AddTruncatedTetrahedron(bpy.types.Operator):
        '''Add a mesh for a truncated tetrahedron.'''
        bl_idname = 'mesh.primitive_truncated_tetrahedron_add'
        bl_label = 'Add Truncated Tetrahedron'
        bl_description = 'Create a mesh for a truncated tetrahedron.'
        bl_options = {'REGISTER', 'UNDO'}
    
        # edit - Whether to add or update.
        edit = BoolProperty(name='',
            description='',
            default=False,
            options={'HIDDEN'})
        hexagon_side = FloatProperty(name='Hexagon Side',
            description='One length of the hexagon side' \
                ' (on the original tetrahedron edge).',
            min=0.01,
            max=2.0 * sqrt(2.0) - 0.01,
            default=2.0 * sqrt(2.0) / 3.0)
        star_ngons = BoolProperty(name='Star N-Gon',
            description='Create star-shaped hexagons.',
            default=False)
    
        def execute(self, context):
            props = self.properties
    
            verts, faces = add_truncated_tetrahedron(
                props.hexagon_side,
                props.star_ngons)
    
            obj = create_mesh_object(context, verts, [], faces,
                'TrTetrahedron', props.edit)
    
            # Store 'recall' properties in the object.
            recall_args_list = {
                'edit': True,
                'hexagon_side': props.hexagon_side,
                'star_ngons': props.star_ngons}
            store_recall_properties(obj, self, recall_args_list)
    
            return {'FINISHED'}
    
    
    class INFO_MT_mesh_archimedean_solids_add(bpy.types.Menu):
        # Define the "Archimedean Solids" menu
        bl_idname = "INFO_MT_mesh_archimedean_solids_add"
        bl_label = "Archimedean Solids"
    
        def draw(self, context):
            layout = self.layout
            layout.operator_context = 'INVOKE_REGION_WIN'
            layout.operator("mesh.primitive_truncated_tetrahedron_add",
                text="Truncated Tetrahedron")
            layout.operator("mesh.primitive_thombicuboctahedron_add",
                text="Rhombicuboctahedron")
    
    import space_info
    
    # Define "Archimedean Solids" menu
    menu_func = (lambda self, context: self.layout.menu(
        "INFO_MT_mesh_archimedean_solids_add", icon="PLUGIN"))
    
    
    def register():
        # Register the operators/menus.
        bpy.types.register(AddRhombicuboctahedron)
        bpy.types.register(AddTruncatedTetrahedron)
        bpy.types.register(INFO_MT_mesh_archimedean_solids_add)
    
        # Add "Archimedean Solids" menu to the "Add Mesh" menu
        space_info.INFO_MT_mesh_add.append(menu_func)
    
    
    def unregister():
        # Unregister the operators/menus.
        bpy.types.unregister(AddRhombicuboctahedron)
        bpy.types.unregister(AddTruncatedTetrahedron)
        bpy.types.unregister(INFO_MT_mesh_archimedean_solids_add)
    
        # Remove "Archimedean Solids" menu from the "Add Mesh" menu.
        space_info.INFO_MT_mesh_add.remove(menu_func)
    
    if __name__ == "__main__":
        register()