Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
bl_addon_info = {
'name': 'Add Mesh: Archimedean Solids',
'author': 'Buerbaum Martin (Pontiac)',
'version': '0.1',
'blender': (2, 5, 3),
'location': 'View3D > Add > Mesh > Archimedean Solids',
'description': 'Adds various archimedean solids to the Add Mesh menu',
'url':
'http://wiki.blender.org/index.php/Extensions:2.5/Py/' \
'Scripts/Add_Mesh/', # @todo Create wiki page and fix this link.
'category': 'Add Mesh'}
import bpy
from math import sqrt
from mathutils import *
from bpy.props import *
# Stores the values of a list of properties and the
# operator id in a property group ('recall_op') inside the object.
# Could (in theory) be used for non-objects.
# Note: Replaces any existing property group with the same name!
# ob ... Object to store the properties in.
# op ... The operator that should be used.
# op_args ... A dictionary with valid Blender
# properties (operator arguments/parameters).
def store_recall_properties(ob, op, op_args):
if ob and op and op_args:
recall_properties = {}
# Add the operator identifier and op parameters to the properties.
recall_properties['op'] = op.bl_idname
recall_properties['args'] = op_args
# Store new recall properties.
ob['recall'] = recall_properties
# Apply view rotation to objects if "Align To" for
# new objects was set to "VIEW" in the User Preference.
def apply_object_align(context, ob):
obj_align = bpy.context.user_preferences.edit.object_align
if (context.space_data.type == 'VIEW_3D'
and obj_align == 'VIEW'):
view3d = context.space_data
region = view3d.region_3d
viewMatrix = region.view_matrix
rot = viewMatrix.rotation_part()
ob.rotation_euler = rot.invert().to_euler()
# Create a new mesh (object) from verts/edges/faces.
# verts/edges/faces ... List of vertices/edges/faces for the
# new mesh (as used in from_pydata).
# name ... Name of the new mesh (& object).
# edit ... Replace existing mesh data.
# Note: Using "edit" will destroy/delete existing mesh data.
def create_mesh_object(context, verts, edges, faces, name, edit):
scene = context.scene
obj_act = scene.objects.active
# Can't edit anything, unless we have an active obj.
if edit and not obj_act:
return None
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Make a mesh from a list of verts/edges/faces.
mesh.from_pydata(verts, edges, faces)
# Update mesh geometry after adding stuff.
mesh.update()
# Deselect all objects.
bpy.ops.object.select_all(action='DESELECT')
if edit:
# Replace geometry of existing object
# Use the active obj and select it.
ob_new = obj_act
ob_new.selected = True
if obj_act.mode == 'OBJECT':
# Get existing mesh datablock.
old_mesh = ob_new.data
# Set object data to nothing
ob_new.data = None
# Clear users of existing mesh datablock.
old_mesh.user_clear()
# Remove old mesh datablock if no users are left.
if (old_mesh.users == 0):
bpy.data.meshes.remove(old_mesh)
# Assign new mesh datablock.
ob_new.data = mesh
else:
# Create new object
ob_new = bpy.data.objects.new(name, mesh)
# Link new object to the given scene and select it.
scene.objects.link(ob_new)
ob_new.selected = True
# Place the object at the 3D cursor location.
ob_new.location = scene.cursor_location
apply_object_align(context, ob_new)
if obj_act and obj_act.mode == 'EDIT':
if not edit:
# We are in EditMode, switch to ObjectMode.
bpy.ops.object.mode_set(mode='OBJECT')
# Select the active object as well.
obj_act.selected = True
# Apply location of new object.
scene.update()
# Join new object into the active.
bpy.ops.object.join()
# Switching back to EditMode.
bpy.ops.object.mode_set(mode='EDIT')
ob_new = obj_act
else:
# We are in ObjectMode.
# Make the new object the active one.
scene.objects.active = ob_new
return ob_new
# A very simple "bridge" tool.
# Connects two equally long vertex rows with faces.
# Returns a list of the new faces (list of lists)
#
# vertIdx1 ... First vertex list (list of vertex indices).
# vertIdx2 ... Second vertex list (list of vertex indices).
# closed ... Creates a loop (first & last are closed).
# flipped ... Invert the normal of the face(s).
#
# Note: You can set vertIdx1 to a single vertex index to create
# a fan/star of faces.
# Note: If both vertex idx list are the same length they have
# to have at least 2 vertices.
def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
faces = []
if not vertIdx1 or not vertIdx2:
return None
if len(vertIdx1) < 2 and len(vertIdx2) < 2:
return None
fan = False
if (len(vertIdx1) != len(vertIdx2)):
if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
fan = True
else:
return None
total = len(vertIdx2)
if closed:
# Bridge the start with the end.
if flipped:
face = [
vertIdx1[0],
vertIdx2[0],
vertIdx2[total - 1]]
if not fan:
face.append(vertIdx1[total - 1])
faces.append(face)
else:
face = [vertIdx2[0], vertIdx1[0]]
if not fan:
face.append(vertIdx1[total - 1])
face.append(vertIdx2[total - 1])
faces.append(face)
# Bridge the rest of the faces.
for num in range(total - 1):
if flipped:
if fan:
face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
else:
face = [vertIdx2[num], vertIdx1[num],
vertIdx1[num + 1], vertIdx2[num + 1]]
faces.append(face)
else:
if fan:
face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
else:
face = [vertIdx1[num], vertIdx2[num],
vertIdx2[num + 1], vertIdx1[num + 1]]
faces.append(face)
return faces
Martin Buerbaum
committed
# Converts regular ngons to quads
# Note: Exists because most "fill" functions can not be
# controlled as easily.
def ngon_fill(ngon, offset=0):
if offset > 0:
for i in range(offset):
ngon = ngon[1:] + [ngon[0]]
Martin Buerbaum
committed
if len(ngon) == 6:
# Hexagon
return [
[ngon[0], ngon[1], ngon[2], ngon[3]],
[ngon[0], ngon[3], ngon[4], ngon[5]]]
elif len(ngon) == 8:
# Octagon
return [
[ngon[0], ngon[1], ngon[2], ngon[3]],
[ngon[0], ngon[3], ngon[4], ngon[7]],
[ngon[7], ngon[4], ngon[5], ngon[6]]]
else:
return None
# Not supported (yet)
# Returns the middle location of a _regular_ polygon.
# verts ... List of vertex coordinates (Vector) used by the ngon.
# ngon ... List of ngones (vertex indices of each ngon point)
def get_polygon_center(verts, ngons):
faces = []
for f in ngons:
loc = Vector((0.0, 0.0, 0.0))
for vert_idx in f:
loc = loc + Vector(verts[vert_idx])
loc = loc / len(f)
vert_idx_new = len(verts)
verts.append(loc)
face_star = createFaces([vert_idx_new], f, closed=True)
faces.extend(face_star)
return verts, faces
# v1 ... First vertex point (Vector)
# v2 ... Second vertex point (Vector)
# edgelength_middle .. Length of the middle section (va->vb)
# (v1)----(va)---------------(vb)----(v2)
def subdivide_edge_2_cuts(v1, v2, edgelength_middle):
length = (v2 - v1).length
vn = (v2 - v1).normalize()
edgelength_1a_b2 = (length - edgelength_middle) / 2.0
va = v1 + vn * edgelength_1a_b2
vb = v1 + vn * (edgelength_1a_b2 + edgelength_middle)
return (va, vb)
# Invert the normal of a face.
# Inverts the order of the vertices to change the normal direction of a face.
def invert_face_normal(face):
return [face[0]] + list(reversed(face[1:]))
########################
# http://en.wikipedia.org/wiki/Truncated_tetrahedron
def add_truncated_tetrahedron(hexagon_side=2.0 * sqrt(2.0) / 3.0,
star_ngons=False):
or hexagon_side > size * sqrt(2.0)):
verts = []
faces = []
# Vertices of a simple Tetrahedron
verts_tet = [
Vector((1.0, 1.0, -1.0)), # tip 0
Vector((-1.0, 1.0, 1.0)), # tip 1
Vector((1.0, -1.0, 1.0)), # tip 2
Vector((-1.0, -1.0, -1.0))] # tip 3
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Calculate truncated vertices
tri0 = []
tri1 = []
tri2 = []
tri3 = []
va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[1], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri0.append(va_idx)
tri1.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[2], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri0.append(va_idx)
tri2.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[3], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri0.append(va_idx)
tri3.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_tet[1], verts_tet[2], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri1.append(va_idx)
tri2.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_tet[1], verts_tet[3], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri1.append(va_idx)
tri3.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_tet[2], verts_tet[3], hexagon_side)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri2.append(va_idx)
tri3.append(vb_idx)
# Hexagon polygons (n-gons)
ngon012 = [tri0[1], tri0[0], tri1[0], tri1[1], tri2[1], tri2[0]]
ngon031 = [tri0[0], tri0[2], tri3[0], tri3[1], tri1[2], tri1[0]]
ngon023 = [tri0[2], tri0[1], tri2[0], tri2[2], tri3[2], tri3[0]]
ngon132 = [tri1[1], tri1[2], tri3[1], tri3[2], tri2[2], tri2[1]]
if star_ngons:
# Create stars from hexagons
verts, faces_star = get_polygon_center(verts,
[ngon012, ngon031, ngon023, ngon132])
faces.extend(faces_star)
else:
# Create quads from hexagons
Martin Buerbaum
committed
hex_quads = ngon_fill(ngon012)
faces.extend(hex_quads)
hex_quads = ngon_fill(ngon031)
faces.extend(hex_quads)
hex_quads = ngon_fill(ngon023)
faces.extend(hex_quads)
hex_quads = ngon_fill(ngon132)
faces.extend(hex_quads)
# Invert face normals
tri1 = [tri1[0]] + list(reversed(tri1[1:]))
tri3 = [tri3[0]] + list(reversed(tri3[1:]))
# Tri faces
faces.extend([tri0, tri1, tri2, tri3])
return verts, faces
# http://en.wikipedia.org/wiki/Truncated_cube
# http://en.wikipedia.org/wiki/Cuboctahedron
def add_cuboctahedron(octagon_side=0.0, star_ngons=False):
size = 2.0
if (octagon_side > size or octagon_side < 0.0):
s = octagon_side
verts = []
faces = []
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
name = "Cuboctahedron"
if s == 0.0:
# Upper quad face
dist = z = size / 2.0
face_top = [len(verts), len(verts) + 1, len(verts) + 2, len(verts) + 3]
verts.append(Vector((dist, 0.0, z)))
verts.append(Vector((0.0, dist, z)))
verts.append(Vector((-dist, 0.0, z)))
verts.append(Vector((0.0, -dist, z)))
faces.append(face_top)
# 4 vertices on the z=0.0 plane
z = 0.0
v_xp_yp = len(verts)
verts.append(Vector((dist, dist, z)))
v_xp_yn = len(verts)
verts.append(Vector((dist, -dist, z)))
v_xn_yn = len(verts)
verts.append(Vector((-dist, -dist, z)))
v_xn_yp = len(verts)
verts.append(Vector((-dist, dist, z)))
# Lower quad face
z = -size / 2.0
face_bot = [len(verts), len(verts) + 1, len(verts) + 2, len(verts) + 3]
verts.append((dist, 0.0, z))
verts.append((0.0, -dist, z))
verts.append((-dist, 0.0, z))
verts.append((0.0, dist, z))
faces.append(face_bot)
# Last 4 faces
face_yp = [v_xp_yp, face_bot[3], v_xn_yp, face_top[1]]
face_yn = [v_xn_yn, face_bot[1], v_xp_yn, face_top[3]]
face_xp = [v_xp_yn, face_bot[0], v_xp_yp, face_top[0]]
face_xn = [v_xn_yp, face_bot[2], v_xn_yn, face_top[2]]
faces.extend([face_yp, face_yn, face_xp, face_xn])
# Tris top
tri_xp_yp_zp = [v_xp_yp, face_top[1], face_top[0]]
tri_xp_yn_zp = [v_xp_yn, face_top[0], face_top[3]]
tri_xn_yp_zp = [v_xn_yp, face_top[2], face_top[1]]
tri_xn_yn_zp = [v_xn_yn, face_top[3], face_top[2]]
faces.extend([tri_xp_yp_zp, tri_xp_yn_zp, tri_xn_yp_zp, tri_xn_yn_zp])
# Tris bottom
tri_xp_yp_zn = [v_xp_yn, face_bot[1], face_bot[0]]
tri_xp_yn_zn = [v_xp_yp, face_bot[0], face_bot[3]]
tri_xn_yp_zn = [v_xn_yn, face_bot[2], face_bot[1]]
tri_xn_yn_zn = [v_xn_yp, face_bot[3], face_bot[2]]
faces.extend([tri_xp_yp_zn, tri_xp_yn_zn, tri_xn_yp_zn, tri_xn_yn_zn])
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
else:
name = "TruncatedCube"
# Vertices of a simple Cube
verts_cube = [
Vector((1.0, 1.0, 1.0)), # tip 0
Vector((1.0, -1.0, 1.0)), # tip 1
Vector((-1.0, -1.0, 1.0)), # tip 2
Vector((-1.0, 1.0, 1.0)), # tip 3
Vector((1.0, 1.0, -1.0)), # tip 4
Vector((1.0, -1.0, -1.0)), # tip 5
Vector((-1.0, -1.0, -1.0)), # tip 6
Vector((-1.0, 1.0, -1.0))] # tip 7
tri_xp_yp_zp = []
tri_xp_yn_zp = []
tri_xn_yp_zp = []
tri_xn_yn_zp = []
tri_xp_yp_zn = []
tri_xp_yn_zn = []
tri_xn_yp_zn = []
tri_xn_yn_zn = []
# Prepare top & bottom octagons.
ngon_top = []
ngon_bot = []
# Top edges
va, vb = subdivide_edge_2_cuts(verts_cube[0], verts_cube[1], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xp_yp_zp.append(va_idx)
tri_xp_yn_zp.append(vb_idx)
ngon_top.extend([va_idx, vb_idx])
va, vb = subdivide_edge_2_cuts(verts_cube[1], verts_cube[2], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xp_yn_zp.append(va_idx)
tri_xn_yn_zp.append(vb_idx)
ngon_top.extend([va_idx, vb_idx])
va, vb = subdivide_edge_2_cuts(verts_cube[2], verts_cube[3], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xn_yn_zp.append(va_idx)
tri_xn_yp_zp.append(vb_idx)
ngon_top.extend([va_idx, vb_idx])
va, vb = subdivide_edge_2_cuts(verts_cube[3], verts_cube[0], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xn_yp_zp.append(va_idx)
tri_xp_yp_zp.append(vb_idx)
ngon_top.extend([va_idx, vb_idx])
# Top-down edges
va, vb = subdivide_edge_2_cuts(verts_cube[0], verts_cube[4], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xp_yp_zp.append(va_idx)
tri_xp_yp_zn.append(vb_idx)
top_down_0 = [va_idx, vb_idx]
va, vb = subdivide_edge_2_cuts(verts_cube[1], verts_cube[5], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xp_yn_zp.append(va_idx)
tri_xp_yn_zn.append(vb_idx)
top_down_1 = [va_idx, vb_idx]
va, vb = subdivide_edge_2_cuts(verts_cube[2], verts_cube[6], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xn_yn_zp.append(va_idx)
tri_xn_yn_zn.append(vb_idx)
top_down_2 = [va_idx, vb_idx]
va, vb = subdivide_edge_2_cuts(verts_cube[3], verts_cube[7], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xn_yp_zp.append(va_idx)
tri_xn_yp_zn.append(vb_idx)
top_down_3 = [va_idx, vb_idx]
# Bottom edges
va, vb = subdivide_edge_2_cuts(verts_cube[4], verts_cube[5], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xp_yp_zn.append(va_idx)
tri_xp_yn_zn.append(vb_idx)
ngon_bot.extend([va_idx, vb_idx])
va, vb = subdivide_edge_2_cuts(verts_cube[5], verts_cube[6], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xp_yn_zn.append(va_idx)
tri_xn_yn_zn.append(vb_idx)
ngon_bot.extend([va_idx, vb_idx])
va, vb = subdivide_edge_2_cuts(verts_cube[6], verts_cube[7], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xn_yn_zn.append(va_idx)
tri_xn_yp_zn.append(vb_idx)
ngon_bot.extend([va_idx, vb_idx])
va, vb = subdivide_edge_2_cuts(verts_cube[7], verts_cube[4], s)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tri_xn_yp_zn.append(va_idx)
tri_xp_yp_zn.append(vb_idx)
ngon_bot.extend([va_idx, vb_idx])
# Octagon polygons (n-gons)
ngon_0 = [
top_down_0[1], top_down_0[0], ngon_top[0], ngon_top[1],
top_down_1[0], top_down_1[1], ngon_bot[1], ngon_bot[0]]
ngon_1 = [
top_down_1[1], top_down_1[0], ngon_top[2], ngon_top[3],
top_down_2[0], top_down_2[1], ngon_bot[3], ngon_bot[2]]
ngon_2 = [
top_down_2[1], top_down_2[0], ngon_top[4], ngon_top[5],
top_down_3[0], top_down_3[1], ngon_bot[5], ngon_bot[4]]
ngon_3 = [
top_down_3[1], top_down_3[0], ngon_top[6], ngon_top[7],
top_down_0[0], top_down_0[1], ngon_bot[7], ngon_bot[6]]
# Invert face normals where needed.
ngon_top = invert_face_normal(ngon_top)
tri_xp_yp_zp = invert_face_normal(tri_xp_yp_zp)
tri_xp_yn_zn = invert_face_normal(tri_xp_yn_zn)
tri_xn_yp_zn = invert_face_normal(tri_xn_yp_zn)
tri_xn_yn_zn = invert_face_normal(tri_xn_yn_zn)
# Tris
faces.extend([tri_xp_yp_zp, tri_xp_yn_zp, tri_xn_yp_zp, tri_xn_yn_zp])
faces.extend([tri_xp_yp_zn, tri_xp_yn_zn, tri_xn_yp_zn, tri_xn_yn_zn])
if star_ngons:
Martin Buerbaum
committed
ngons = [ngon_top, ngon_bot, ngon_0, ngon_1, ngon_2, ngon_3]
# Create stars from octagons.
verts, faces_star = get_polygon_center(verts, ngons)
faces.extend(faces_star)
else:
# Create quads from octagons.
# The top octagon is the only polygon we don't need to offset.
Martin Buerbaum
committed
oct_quads = ngon_fill(ngon_top)
faces.extend(oct_quads)
ngons = [ngon_bot, ngon_0, ngon_1, ngon_2, ngon_3]
# offset=1 Offset vertices so QUADS are created with
# orthagonal edges. Superficial change - Could be omitted.
Martin Buerbaum
committed
oct_quads = ngon_fill(ngon, offset=1)
faces.extend(oct_quads)
# http://en.wikipedia.org/wiki/Rhombicuboctahedron
# Note: quad_size=0 would result in a Cuboctahedron
def add_rhombicuboctahedron(quad_size=sqrt(2.0) / (1.0 + sqrt(2) / 2.0)):
size = 2.0
if (quad_size > size or quad_size < 0.0):
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
return None, None
faces = []
verts = []
# Top & bottom faces (quads)
face_top = []
face_bot = []
for z, up in [(size / 2.0, True), (-size / 2.0, False)]:
face = []
face.append(len(verts))
verts.append(Vector((quad_size / 2.0, quad_size / 2.0, z)))
face.append(len(verts))
verts.append(Vector((quad_size / 2.0, -quad_size / 2.0, z)))
face.append(len(verts))
verts.append(Vector((-quad_size / 2.0, -quad_size / 2.0, z)))
face.append(len(verts))
verts.append(Vector((-quad_size / 2.0, quad_size / 2.0, z)))
if up:
# Top face (quad)
face_top = face
else:
# Bottom face (quad)
face_bot = face
edgeloop_up = []
edgeloop_low = []
for z, up in [(quad_size / 2.0, True), (-quad_size / 2.0, False)]:
edgeloop = []
edgeloop.append(len(verts))
verts.append(Vector((size / 2.0, quad_size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((size / 2.0, -quad_size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((quad_size / 2.0, -size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((-quad_size / 2.0, -size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((-size / 2.0, -quad_size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((-size / 2.0, quad_size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((-quad_size / 2.0, size / 2.0, z)))
edgeloop.append(len(verts))
verts.append(Vector((quad_size / 2.0, size / 2.0, z)))
if up:
# Upper 8-sider
edgeloop_up = edgeloop
else:
# Lower 8-sider
edgeloop_low = edgeloop
face_top_idx = len(faces)
faces.append(face_top)
faces.append(face_bot)
faces_middle = createFaces(edgeloop_low, edgeloop_up, closed=True)
faces.extend(faces_middle)
# Upper Quads
faces.append([edgeloop_up[0], face_top[0], face_top[1], edgeloop_up[1]])
faces.append([edgeloop_up[2], face_top[1], face_top[2], edgeloop_up[3]])
faces.append([edgeloop_up[4], face_top[2], face_top[3], edgeloop_up[5]])
faces.append([edgeloop_up[6], face_top[3], face_top[0], edgeloop_up[7]])
# Upper Tris
faces.append([face_top[0], edgeloop_up[0], edgeloop_up[7]])
faces.append([face_top[1], edgeloop_up[2], edgeloop_up[1]])
faces.append([face_top[2], edgeloop_up[4], edgeloop_up[3]])
faces.append([face_top[3], edgeloop_up[6], edgeloop_up[5]])
# Lower Quads
faces.append([edgeloop_low[0], edgeloop_low[1], face_bot[1], face_bot[0]])
faces.append([edgeloop_low[2], edgeloop_low[3], face_bot[2], face_bot[1]])
faces.append([edgeloop_low[4], edgeloop_low[5], face_bot[3], face_bot[2]])
faces.append([edgeloop_low[6], edgeloop_low[7], face_bot[0], face_bot[3]])
# Lower Tris
faces.append([face_bot[0], edgeloop_low[7], edgeloop_low[0]])
faces.append([face_bot[1], edgeloop_low[1], edgeloop_low[2]])
faces.append([face_bot[2], edgeloop_low[3], edgeloop_low[4]])
faces.append([face_bot[3], edgeloop_low[5], edgeloop_low[6]])
# Invert face normal
f = faces[face_top_idx]
faces[face_top_idx] = invert_face_normal(faces[face_top_idx])
return verts, faces
# http://en.wikipedia.org/wiki/Truncated_octahedron
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
def add_truncated_octahedron(hexagon_side=sqrt(2) / 3.0, star_ngons=False):
if (hexagon_side < 0.0
or hexagon_side > sqrt(2)):
return None, None
hs = hexagon_side
verts = []
faces = []
# Vertices of a simple Octahedron
verts_oct = [
Vector((0.0, 0.0, 1.0)), # tip 0 - Top
Vector((1.0, 0.0, 0.0)), # tip 1 - xp y0
Vector((0.0, -1.0, 0.0)), # tip 2 - x0 yn
Vector((-1.0, 0.0, 0.0)), # tip 3 - xn y0
Vector((0.0, 1.0, 0.0)), # tip 4 - x0 yp
Vector((0.0, 0.0, -1.0))] # tip 5 - Bottom
tip_top = []
tip_1 = []
tip_2 = []
tip_3 = []
tip_4 = []
tip_bot = []
# Top edges
va, vb = subdivide_edge_2_cuts(verts_oct[0], verts_oct[1], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_top.append(va_idx)
tip_1.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_oct[0], verts_oct[2], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_top.append(va_idx)
tip_2.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_oct[0], verts_oct[3], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_top.append(va_idx)
tip_3.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_oct[0], verts_oct[4], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_top.append(va_idx)
tip_4.append(vb_idx)
# Circumference edges
va, vb = subdivide_edge_2_cuts(verts_oct[1], verts_oct[2], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_1.append(va_idx)
tip_2.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_oct[2], verts_oct[3], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_2.append(va_idx)
tip_3.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_oct[3], verts_oct[4], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_3.append(va_idx)
tip_4.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_oct[4], verts_oct[1], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_4.append(va_idx)
tip_1.append(vb_idx)
# Bottom edges
va, vb = subdivide_edge_2_cuts(verts_oct[5], verts_oct[1], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_bot.append(va_idx)
tip_1.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_oct[5], verts_oct[2], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_bot.append(va_idx)
tip_2.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_oct[5], verts_oct[3], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_bot.append(va_idx)
tip_3.append(vb_idx)
va, vb = subdivide_edge_2_cuts(verts_oct[5], verts_oct[4], hs)
va_idx, vb_idx = len(verts), len(verts) + 1
verts.extend([va, vb])
tip_bot.append(va_idx)
tip_4.append(vb_idx)
# Hexagons
ngon_12_zp = [tip_top[0], tip_top[1],
tip_2[0], tip_2[1],
tip_1[1], tip_1[0]]
ngon_23_zp = [tip_top[1], tip_top[2],
tip_3[0], tip_3[1],
tip_2[2], tip_2[0]]
ngon_34_zp = [tip_top[2], tip_top[3],
tip_4[0], tip_4[1],
tip_3[2], tip_3[0]]
ngon_41_zp = [tip_top[3], tip_top[0],
tip_1[0], tip_1[2],
tip_4[2], tip_4[0]]
ngon_12_zn = [tip_bot[0], tip_bot[1],
tip_2[3], tip_2[1],
tip_1[1], tip_1[3]]
ngon_23_zn = [tip_bot[1], tip_bot[2],
tip_3[3], tip_3[1],
tip_2[2], tip_2[3]]
ngon_34_zn = [tip_bot[2], tip_bot[3],
tip_4[3], tip_4[1],
tip_3[2], tip_3[3]]
ngon_41_zn = [tip_bot[3], tip_bot[0],
tip_1[3], tip_1[2],
tip_4[2], tip_4[3]]
# Fix vertex order (and fix normal at the same time)
tip_1 = tip_1[:2] + list(reversed(tip_1[2:]))
tip_2 = list(reversed(tip_2[:2])) + tip_2[2:]
tip_3 = list(reversed(tip_3[:2])) + tip_3[2:]
tip_4 = list(reversed(tip_4[:2])) + tip_4[2:]
# Invert face normals
tip_top = invert_face_normal(tip_top)
ngon_12_zn = invert_face_normal(ngon_12_zn)
ngon_23_zn = invert_face_normal(ngon_23_zn)
ngon_34_zn = invert_face_normal(ngon_34_zn)
ngon_41_zn = invert_face_normal(ngon_41_zn)
# Tip quads
faces.extend([tip_top, tip_bot])
faces.extend([tip_1, tip_2, tip_3, tip_4])
if star_ngons:
ngons = [ngon_12_zp, ngon_23_zp, ngon_34_zp, ngon_41_zp,
ngon_12_zn, ngon_23_zn, ngon_34_zn, ngon_41_zn]
# Create stars from octagons.
verts, faces_star = get_polygon_center(verts, ngons)
faces.extend(faces_star)
else:
# Create quads from hexagons.
ngons = [ngon_12_zp, ngon_23_zp, ngon_34_zp, ngon_41_zp]
for ngon in ngons:
# offset=2 Offset vertices so QUADS are created with
# orthagonal edges. Superficial change - Could be omitted.
hex_quads = ngon_fill(ngon, offset=2)
faces.extend(hex_quads)
ngons = [ngon_12_zn, ngon_23_zn, ngon_34_zn, ngon_41_zn]
for ngon in ngons:
# offset=1 Offset vertices so QUADS are created with
# orthagonal edges. Superficial change - Could be omitted.
hex_quads = ngon_fill(ngon, offset=1)
faces.extend(hex_quads)
return verts, faces
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# http://en.wikipedia.org/wiki/Truncated_cuboctahedron
def add_truncated_cuboctahedron(
octagon_size=2.0 - (2.0 / sqrt(2.0)) * (2.0 / (4.0 / sqrt(2.0) + 1.0)),
octagon_side=2.0 / (4.0 / sqrt(2.0) + 1.0),
star_ngons=False):
size = 2.0
if (octagon_side < 0.0
or octagon_size < 0.0
or octagon_size < octagon_side
or octagon_size > size
or octagon_side > size):
return None, None
verts = []
faces = []
oside = octagon_side
# Vertices of a simple Cube
verts_cube = [
Vector((1.0, 1.0, 1.0)), # tip 0
Vector((1.0, -1.0, 1.0)), # tip 1
Vector((-1.0, -1.0, 1.0)), # tip 2
Vector((-1.0, 1.0, 1.0)), # tip 3
Vector((1.0, 1.0, -1.0)), # tip 4
Vector((1.0, -1.0, -1.0)), # tip 5
Vector((-1.0, -1.0, -1.0)), # tip 6
Vector((-1.0, 1.0, -1.0))] # tip 7
tri_xp_yp_zp = []
tri_xp_yn_zp = []
tri_xn_yp_zp = []
tri_xn_yn_zp = []
tri_xp_yp_zn = []
tri_xp_yn_zn = []
tri_xn_yp_zn = []
tri_xn_yn_zn = []
# Prepare top & bottom octagons.
oct_top = []
oct_bot = []
hex_0_zp = []
hex_1_zp = []
hex_2_zp = []
hex_3_zp = []
hex_0_zn = []
hex_1_zn = []
hex_2_zn = []
hex_3_zn = []
bevel_size = (size - octagon_size) / 2.0
# Top edges ####
bevel_z = Vector((0.0, 0.0, -bevel_size))
va, vb = subdivide_edge_2_cuts(verts_cube[0], verts_cube[1], oside)
va1, vb1 = va + Vector((-bevel_size, 0, 0)), vb + Vector((-bevel_size, 0, 0))
va2, vb2 = va + bevel_z, vb + bevel_z
va1_idx, vb1_idx = len(verts), len(verts) + 1
va2_idx, vb2_idx = len(verts) + 2, len(verts) + 3
verts.extend([va1, vb1, va2, vb2])
#tri_xp_yp_zp.append(va_idx)
#tri_xp_yn_zp.append(vb_idx)
oct_top.extend([va1_idx, vb1_idx])
quad_01_zp = [va1_idx, vb1_idx, vb2_idx, va2_idx]
hex_0_zp.extend([va2_idx, va1_idx])
hex_1_zp.extend([vb2_idx, vb1_idx])
va, vb = subdivide_edge_2_cuts(verts_cube[1], verts_cube[2], oside)
va1, vb1 = va + Vector((0, bevel_size, 0)), vb + Vector((0, bevel_size, 0))
va2, vb2 = va + bevel_z, vb + bevel_z
va1_idx, vb1_idx = len(verts), len(verts) + 1
va2_idx, vb2_idx = len(verts) + 2, len(verts) + 3
verts.extend([va1, vb1, va2, vb2])
#tri_xp_yn_zp.append(va_idx)
#tri_xn_yn_zp.append(vb_idx)
oct_top.extend([va1_idx, vb1_idx])
quad_12_zp = [va1_idx, vb1_idx, vb2_idx, va2_idx]
hex_1_zp.extend([va1_idx, va2_idx])
hex_2_zp.extend([vb2_idx, vb1_idx])
va, vb = subdivide_edge_2_cuts(verts_cube[2], verts_cube[3], oside)
va1, vb1 = va + Vector((bevel_size, 0, 0)), vb + Vector((bevel_size, 0, 0))
va2, vb2 = va + bevel_z, vb + bevel_z
va1_idx, vb1_idx = len(verts), len(verts) + 1
va2_idx, vb2_idx = len(verts) + 2, len(verts) + 3
verts.extend([va1, vb1, va2, vb2])
oct_top.extend([va1_idx, vb1_idx])
quad_23_zp = [va1_idx, vb1_idx, vb2_idx, va2_idx]
hex_2_zp.extend([va1_idx, va2_idx])
hex_3_zp.extend([vb2_idx, vb1_idx])
va, vb = subdivide_edge_2_cuts(verts_cube[3], verts_cube[0], oside)
va1, vb1 = va + Vector((0, -bevel_size, 0)), vb + Vector((0, -bevel_size, 0))
va2, vb2 = va + bevel_z, vb + bevel_z
va1_idx, vb1_idx = len(verts), len(verts) + 1
va2_idx, vb2_idx = len(verts) + 2, len(verts) + 3
verts.extend([va1, vb1, va2, vb2])
#tri_xn_yp_zp.append(va_idx)
#tri_xp_yp_zp.append(vb_idx)
oct_top.extend([va1_idx, vb1_idx])
quad_30_zp = [va1_idx, vb1_idx, vb2_idx, va2_idx]
hex_3_zp.extend([va1_idx, va2_idx])
hex_0_zp.extend([vb1_idx, vb2_idx])
# Top-down edges ####
va, vb = subdivide_edge_2_cuts(verts_cube[0], verts_cube[4], oside)
va1, vb1 = va + Vector((-bevel_size, 0, 0)), vb + Vector((-bevel_size, 0, 0))
va2, vb2 = va + Vector((0, -bevel_size, 0)), vb + Vector((0, -bevel_size, 0))
va1_idx, vb1_idx = len(verts), len(verts) + 1
va2_idx, vb2_idx = len(verts) + 2, len(verts) + 3
verts.extend([va1, vb1, va2, vb2])
#tri_xp_yp_zp.append(va_idx)
#tri_xp_yp_zn.append(vb_idx)
top_down_0_1 = [va1_idx, vb1_idx]
top_down_0_2 = [va2_idx, vb2_idx]
quad_04 = [vb1_idx, va1_idx, va2_idx, vb2_idx]
hex_0_zp.extend([va1_idx, va2_idx])
hex_0_zn.extend([vb1_idx, vb2_idx])
va, vb = subdivide_edge_2_cuts(verts_cube[1], verts_cube[5], oside)
va1, vb1 = va + Vector((-bevel_size, 0, 0)), vb + Vector((-bevel_size, 0, 0))
va2, vb2 = va + Vector((0, bevel_size, 0)), vb + Vector((0, bevel_size, 0))
va1_idx, vb1_idx = len(verts), len(verts) + 1
va2_idx, vb2_idx = len(verts) + 2, len(verts) + 3
verts.extend([va1, vb1, va2, vb2])