Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
import bpy
from mathutils import (
Euler,
Matrix,
Vector,
)
from math import pi, sin, degrees, radians, atan2, copysign, cos, acos
from random import random, uniform, seed, choice, getstate, setstate, randint
from collections import deque, OrderedDict
tau = 2 * pi
# Initialise the split error and axis vectors
splitError = 0.0
zAxis = Vector((0, 0, 1))
yAxis = Vector((0, 1, 0))
xAxis = Vector((1, 0, 0))
# This class will contain a part of the tree which needs to be extended and the required tree parameters
class stemSpline:
def __init__(self, spline, curvature, curvatureV, attractUp, segments, maxSegs,
segLength, childStems, stemRadStart, stemRadEnd, splineNum, ofst, pquat):
self.spline = spline
self.p = spline.bezier_points[-1]
self.curv = curvature
self.curvV = curvatureV
self.seg = segments
self.segMax = maxSegs
self.segL = segLength
self.children = childStems
self.radS = stemRadStart
self.radE = stemRadEnd
self.splN = splineNum
self.offsetLen = ofst
self.patentQuat = pquat
self.curvSignx = 1
self.curvSigny = 1
# This method determines the quaternion of the end of the spline
def quat(self):
if len(self.spline.bezier_points) == 1:
return ((self.spline.bezier_points[-1].handle_right -
self.spline.bezier_points[-1].co).normalized()).to_track_quat('Z', 'Y')
return ((self.spline.bezier_points[-1].co -
self.spline.bezier_points[-2].co).normalized()).to_track_quat('Z', 'Y')
# Determine the declination
def dec(self):
tempVec = zAxis.copy()
tempVec.rotate(self.quat())
return zAxis.angle(tempVec)
# Update the end of the spline and increment the segment count
def updateEnd(self):
self.p = self.spline.bezier_points[-1]
self.seg += 1
# This class contains the data for a point where a new branch will sprout
class childPoint:
def __init__(self, coords, quat, radiusPar, offset, sOfst, lengthPar, parBone):
self.co = coords
self.quat = quat
self.radiusPar = radiusPar
self.offset = offset
self.lengthPar = lengthPar
self.parBone = parBone
# This function calculates the shape ratio as defined in the paper
def shapeRatio(shape, ratio, pruneWidthPeak=0.0, prunePowerHigh=0.0, prunePowerLow=0.0, custom=None):
return 0.05 + 0.95 * ratio # 0.2 + 0.8 * ratio
return 0.2 + 0.8 * sin(0.5 * pi * ratio)
elif shape == 3:
return 1.0
elif shape == 4:
return 0.05 + 0.95 * (1.0 - ratio) / 0.3
return 0.5 + 0.5 * (1.0 - ratio) / 0.3
r = 1 - ratio
if r == 1:
v = custom[3]
elif r >= custom[2]:
pos = (r - custom[2]) / (1 - custom[2])
# if (custom[0] >= custom[1] <= custom[3]) or (custom[0] <= custom[1] >= custom[3]):
pos = pos * pos
v = (pos * (custom[3] - custom[1])) + custom[1]
else:
pos = r / custom[2]
# if (custom[0] >= custom[1] <= custom[3]) or (custom[0] <= custom[1] >= custom[3]):
pos = 1 - (1 - pos) * (1 - pos)
v = (pos * (custom[1] - custom[0])) + custom[0]
return v
elif shape == 9:
if (ratio < (1 - pruneWidthPeak)) and (ratio > 0.0):
return ((ratio / (1 - pruneWidthPeak))**prunePowerHigh)
elif (ratio >= (1 - pruneWidthPeak)) and (ratio < 1.0):
return (((1 - ratio) / pruneWidthPeak)**prunePowerLow)
elif shape == 10:
return 0.5 + 0.5 * (1 - ratio)
# This function determines the actual number of splits at a given point using the global error
def splits(n):
global splitError
nEff = round(n + splitError, 0)
def splits2(n):
r = random()
if r < n:
return 1
else:
return 0
def splits3(n):
ni = int(n)
nf = n - int(n)
r = random()
if r < nf:
return ni + 1
else:
return ni + 0
# Determine the declination from a given quaternion
def declination(quat):
tempVec = zAxis.copy()
tempVec.rotate(quat)
tempVec.normalize()
return degrees(acos(tempVec.z))
# Determines the angle of upward rotation of a segment due to attractUp
def curveUp(attractUp, quat, curveRes):
tempVec = yAxis.copy()
tempVec.rotate(quat)
tempVec.normalize()
dec = radians(declination(quat))
curveUpAng = attractUp * dec * abs(tempVec.z) / curveRes
if (-dec + curveUpAng) < -pi:
curveUpAng = -pi + dec
if (dec - curveUpAng) < 0:
curveUpAng = dec
return curveUpAng
# Evaluate a bezier curve for the parameter 0<=t<=1 along its length
def evalBez(p1, h1, h2, p2, t):
return ((1 - t)**3) * p1 + (3 * t * (1 - t)**2) * h1 + (3 * (t**2) * (1 - t)) * h2 + (t**3) * p2
# Evaluate the unit tangent on a bezier curve for t
def evalBezTan(p1, h1, h2, p2, t):
return (
(-3 * (1 - t)**2) * p1 + (-6 * t * (1 - t) + 3 * (1 - t)**2) * h1 +
(-3 * (t**2) + 6 * t * (1 - t)) * h2 + (3 * t**2) * p2
).normalized()
# Determine the range of t values along a splines length where child stems are formed
def findChildPoints(stemList, numChild):
numPoints = sum([len(n.spline.bezier_points) for n in stemList])
numSplines = len(stemList)
numSegs = numPoints - numSplines
numPerSeg = numChild / numSegs
numMain = round(numPerSeg * stemList[0].segMax, 0)
return [(a + 1) / (numMain) for a in range(int(numMain))]
def findChildPoints2(stemList, numChild):
return [(a + 1) / (numChild) for a in range(int(numChild))]
# Find the coordinates, quaternion and radius for each t on the stem
def interpStem1(stem, tVals, lPar, parRad):
points = stem.spline.bezier_points
numPoints = len(points)
checkVal = (stem.segMax - (numPoints - 1)) / stem.segMax
# Loop through all the parametric values to be determined
for t in tVals:
if t == 1.0:
coord = points[-1].co
quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z', 'Y')
radius = points[-1].radius
tempList.append(
childPoint(coord, quat, (parRad, radius), t, lPar, 'bone' +
(str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0')))
)
elif (t >= checkVal) and (t < 1.0):
scaledT = (t - checkVal) / ((1 - checkVal) + .0001)
index = int(length)
tTemp = length - index
coord = evalBez(
points[index].co, points[index].handle_right,
points[index + 1].handle_left, points[index + 1].co, tTemp
)
quat = (
evalBezTan(
points[index].co, points[index].handle_right,
points[index + 1].handle_left, points[index + 1].co, tTemp)
).to_track_quat('Z', 'Y')
# Not sure if this is the parent radius at the child point or parent start radius
radius = (1 - tTemp) * points[index].radius + tTemp * points[index + 1].radius
tempList.append(
childPoint(
coord, quat, (parRad, radius), t, lPar, 'bone' +
(str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0')))
)
def interpStem(stem, tVals, lPar, parRad, maxOffset, baseSize):
numSegs = len(points) - 1
stemLen = stem.segL * numSegs
checkBottom = stem.offsetLen / maxOffset
checkTop = checkBottom + (stemLen / maxOffset)
# Loop through all the parametric values to be determined
if (t >= checkBottom) and (t <= checkTop) and (t < 1.0):
scaledT = (t - checkBottom) / (checkTop - checkBottom)
ofst = ((t - baseSize) / (checkTop - baseSize)) * (1 - baseSize) + baseSize
length = numSegs * scaledT
tTemp = length - index
coord = evalBez(
points[index].co, points[index].handle_right,
points[index + 1].handle_left, points[index + 1].co, tTemp
)
quat = (
evalBezTan(
points[index].co, points[index].handle_right,
points[index + 1].handle_left, points[index + 1].co, tTemp
)
).to_track_quat('Z', 'Y')
# Not sure if this is the parent radius at the child point or parent start radius
radius = (1 - tTemp) * points[index].radius + tTemp * points[index + 1].radius
tempList.append(
childPoint(
coord, quat, (parRad, radius), t, ofst, lPar,
'bone' + (str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0')))
)
# add stem at tip
index = numSegs - 1
coord = points[-1].co
quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z', 'Y')
radius = points[-1].radius
tempList.append(
childPoint(
coord, quat, (parRad, radius), 1, 1, lPar,
'bone' + (str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0'))
)
)
# round down bone number
def roundBone(bone, step):
bone_i = bone[:-3]
bone_n = int(bone[-3:])
bone_n = int(bone_n / step) * step
return bone_i + str(bone_n).rjust(3, '0')
# Convert a list of degrees to radians
def toRad(list):
return [radians(a) for a in list]
def anglemean(a1, a2, fac):
x1 = sin(a1)
y1 = cos(a1)
x2 = sin(a2)
y2 = cos(a2)
x = x1 + (x2 - x1) * fac
y = y1 + (y2 - y1) * fac
return atan2(x, y)
# This is the function which extends (or grows) a given stem.
def growSpline(n, stem, numSplit, splitAng, splitAngV, splineList,
hType, splineToBone, closeTip, kp, splitHeight, outAtt, stemsegL,
lenVar, taperCrown, boneStep, rotate, rotateV):
sCurv = stem.curv
if (n == 0) and (kp <= splitHeight):
sCurv = 0.0
# curveangle = sCurv + (uniform(-stem.curvV, stem.curvV) * kp)
# curveVar = uniform(-stem.curvV, stem.curvV) * kp
curveangle = sCurv + (uniform(0, stem.curvV) * kp * stem.curvSignx)
curveVar = uniform(0, stem.curvV) * kp * stem.curvSigny
stem.curvSignx *= -1
stem.curvSigny *= -1
curveVarMat = Matrix.Rotation(curveVar, 3, 'Y')
# First find the current direction of the stem
dir = stem.quat()
if n == 0:
adir = zAxis.copy()
adir.rotate(dir)
ry = atan2(adir[0], adir[2])
adir.rotate(Euler((0, -ry, 0)))
rx = atan2(adir[1], adir[2])
dir = Euler((-rx, ry, 0), 'XYZ')
if n == 0:
dec = declination(dir) / 180
dec = dec ** 2
tf = 1 - (dec * taperCrown * 30)
tf = max(.1, tf)
else:
tf = 1.0
if (n > 0) and (kp > 0) and (outAtt > 0):
p = stem.p.co.copy()
d = atan2(p[0], -p[1]) + tau
edir = dir.to_euler('XYZ', Euler((0, 0, d), 'XYZ'))
d = anglemean(edir[2], d, (kp * outAtt))
dirv = Euler((edir[0], edir[1], d), 'XYZ')
dir = dirv.to_quaternion()
"""
# parent weight
parWeight = kp * degrees(stem.curvV) * pi
parWeight = parWeight * kp
parWeight = kp
if (n > 1) and (parWeight != 0):
d1 = zAxis.copy()
d2 = zAxis.copy()
d1.rotate(dir)
d2.rotate(stem.patentQuat)
x = d1[0] + ((d2[0] - d1[0]) * parWeight)
y = d1[1] + ((d2[1] - d1[1]) * parWeight)
z = d1[2] + ((d2[2] - d1[2]) * parWeight)
d3 = Vector((x, y, z))
dir = d3.to_track_quat('Z', 'Y')
"""
# If the stem splits, we need to add new splines etc
if numSplit > 0:
# Get the curve data
cuData = stem.spline.id_data.name
cu = bpy.data.curves[cuData]
angle = choice([-1, 1]) * (splitAng + uniform(-splitAngV, splitAngV))
if n > 0:
angle *= max(1 - declination(dir) / 90, 0) * .67 + .33
spreadangle = choice([-1, 1]) * (splitAng + uniform(-splitAngV, splitAngV))
# branchRotMat = Matrix.Rotation(radians(uniform(0, 360)), 3, 'Z')
if not hasattr(stem, 'rLast'):
stem.rLast = radians(uniform(0, 360))
br = rotate[0] + uniform(-rotateV[0], rotateV[0])
branchRot = stem.rLast + br
branchRotMat = Matrix.Rotation(branchRot, 3, 'Z')
stem.rLast = branchRot
# Now for each split add the new spline and adjust the growth direction
for i in range(numSplit):
lenV = uniform(1 - lenVar, 1 + lenVar)
bScale = min(lenV * tf, 1)
newSpline = cu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (stem.p.co, 'VECTOR', 'VECTOR')
newPoint.radius = (
stem.radS * (1 - stem.seg / stem.segMax) + stem.radE * (stem.seg / stem.segMax)
) * bScale
# Here we make the new "sprouting" stems diverge from the current direction
divRotMat = Matrix.Rotation(angle + curveangle, 3, 'X')
dirVec.rotate(curveVarMat)
if n == 0: # Special case for trunk splits
dirVec.rotate(branchRotMat)
ang = pi - ((tau) / (numSplit + 1)) * (i + 1)
dirVec.rotate(Matrix.Rotation(ang, 3, 'Z'))
spreadMat = Matrix.Rotation(spreadangle, 3, 'Y')
if n != 0: # Special case for trunk splits
dirVec.rotate(spreadMat)
dirVec.rotate(dir)
# Introduce upward curvature
upRotAxis = xAxis.copy()
upRotAxis.rotate(dirVec.to_track_quat('Z', 'Y'))
curveUpAng = curveUp(stem.vertAtt, dirVec.to_track_quat('Z', 'Y'), stem.segMax)
upRotMat = Matrix.Rotation(-curveUpAng, 3, upRotAxis)
# Make the growth vec the length of a stem segment
dirVec.normalize()
stemL = stemsegL * lenV
dirVec *= stemL * tf
ofst = stem.offsetLen + (stem.segL * (len(stem.spline.bezier_points) - 1))
Andrew Hale
committed
# Get the end point position
end_co = stem.p.co.copy()
# Add the new point and adjust its coords, handles and radius
newSpline.bezier_points.add(1)
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (end_co + dirVec, hType, hType)
newPoint.radius = (
stem.radS * (1 - (stem.seg + 1) / stem.segMax) +
stem.radE * ((stem.seg + 1) / stem.segMax)
) * bScale
if (stem.seg == stem.segMax - 1) and closeTip:
# If this isn't the last point on a stem, then we need to add it
# to the list of stems to continue growing
# print(stem.seg != stem.segMax, stem.seg, stem.segMax)
# if stem.seg != stem.segMax: # if probs not necessary
nstem = stemSpline(
newSpline, stem.curv, stem.curvV, stem.vertAtt, stem.seg + 1,
stem.segMax, stemL, stem.children,
stem.radS * bScale, stem.radE * bScale, len(cu.splines) - 1, ofst, stem.quat()
)
nstem.splitlast = 1 # numSplit # keep track of numSplit for next stem
nstem.rLast = branchRot + pi
splineList.append(nstem)
bone = 'bone' + (str(stem.splN)).rjust(3, '0') + '.' + \
(str(len(stem.spline.bezier_points) - 2)).rjust(3, '0')
bone = roundBone(bone, boneStep[n])
splineToBone.append((bone, False, True, len(stem.spline.bezier_points) - 2))
# The original spline also needs to keep growing so adjust its direction too
divRotMat = Matrix.Rotation(-angle + curveangle, 3, 'X')
dirVec.rotate(curveVarMat)
if n == 0: # Special case for trunk splits
dirVec.rotate(branchRotMat)
spreadMat = Matrix.Rotation(-spreadangle, 3, 'Y')
if n != 0: # Special case for trunk splits
dirVec.rotate(spreadMat)
stem.splitlast = 1 # numSplit #keep track of numSplit for next stem
else:
# If there are no splits then generate the growth direction without accounting for spreading of stems
dirVec = zAxis.copy()
divRotMat = Matrix.Rotation(curveangle, 3, 'X')
dirVec.rotate(curveVarMat)
stem.splitlast = 0 # numSplit #keep track of numSplit for next stem
# Introduce upward curvature
upRotAxis.rotate(dirVec.to_track_quat('Z', 'Y'))
curveUpAng = curveUp(stem.vertAtt, dirVec.to_track_quat('Z', 'Y'), stem.segMax)
upRotMat = Matrix.Rotation(-curveUpAng, 3, upRotAxis)
Andrew Hale
committed
# Get the end point position
end_co = stem.p.co.copy()
stem.spline.bezier_points.add(1)
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (end_co + dirVec, hType, hType)
newPoint.radius = stem.radS * (1 - (stem.seg + 1) / stem.segMax) + \
stem.radE * ((stem.seg + 1) / stem.segMax)
if (stem.seg == stem.segMax - 1) and closeTip:
# There are some cases where a point cannot have handles as VECTOR straight away, set these now
if len(stem.spline.bezier_points) == 2:
tempPoint = stem.spline.bezier_points[0]
(tempPoint.handle_left_type, tempPoint.handle_right_type) = ('VECTOR', 'VECTOR')
# Update the last point in the spline to be the newly added one
stem.updateEnd()
def genLeafMesh(leafScale, leafScaleX, leafScaleT, leafScaleV, loc, quat,
offset, index, downAngle, downAngleV, rotate, rotateV, oldRot,
bend, leaves, leafShape, leafangle, horzLeaves):
if leafShape == 'hex':
verts = [
Vector((0, 0, 0)), Vector((0.5, 0, 1 / 3)), Vector((0.5, 0, 2 / 3)),
Vector((0, 0, 1)), Vector((-0.5, 0, 2 / 3)), Vector((-0.5, 0, 1 / 3))
]
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 0], [0, 3]]
faces = [[0, 1, 2, 3], [0, 3, 4, 5]]
elif leafShape == 'rect':
# verts = [Vector((1, 0, 0)), Vector((1, 0, 1)), Vector((-1, 0, 1)), Vector((-1, 0, 0))]
verts = [Vector((.5, 0, 0)), Vector((.5, 0, 1)), Vector((-.5, 0, 1)), Vector((-.5, 0, 0))]
edges = [[0, 1], [1, 2], [2, 3], [3, 0]]
faces = [[0, 1, 2, 3]]
elif leafShape == 'dFace':
verts = [Vector((.5, .5, 0)), Vector((.5, -.5, 0)), Vector((-.5, -.5, 0)), Vector((-.5, .5, 0))]
edges = [[0, 1], [1, 2], [2, 3], [3, 0]]
faces = [[0, 3, 2, 1]]
elif leafShape == 'dVert':
verts = [Vector((0, 0, 1))]
edges = []
faces = []
normal = Vector((0, 0, 1))
rotMat = Matrix.Rotation(oldRot, 3, 'Y')
rotMat = Matrix.Rotation(oldRot, 3, 'Z')
# If the -ve flag for rotate is used we need to find which side of the stem
# the last child point was and then grow in the opposite direction
if rotate < 0.0:
oldRot = -copysign(rotate + uniform(-rotateV, rotateV), oldRot)
else:
# If the special -ve flag for leaves is used we need a different rotation of the leaf geometry
if leaves == -1:
rotMat = Matrix.Rotation(0, 3, 'Y')
elif leaves < -1:
oldRot += rotate / (-leaves - 1)
else:
oldRot += rotate + uniform(-rotateV, rotateV)
"""
if leaves < 0:
rotMat = Matrix.Rotation(oldRot, 3, 'Y')
else:
rotMat = Matrix.Rotation(oldRot, 3, 'Z')
"""
# downRotMat = Matrix.Rotation(downAngle+uniform(-downAngleV, downAngleV), 3, 'X')
if downAngleV > 0.0:
downV = -downAngleV * offset
else:
downV = uniform(-downAngleV, downAngleV)
downRotMat = Matrix.Rotation(downAngle + downV, 3, 'X')
if (leaves < -1) and (rotate != 0):
f = 1 - abs((oldRot - (rotate / (-leaves - 1))) / (rotate / 2))
else:
f = offset
if leafScaleT < 0:
leafScale = leafScale * (1 - (1 - f) * -leafScaleT)
else:
leafScale = leafScale * (1 - f * leafScaleT)
leafScale = leafScale * uniform(1 - leafScaleV, 1 + leafScaleV)
if leafShape == 'dFace':
leafScale = leafScale * .1
# If the bending of the leaves is used we need to rotate them differently
normal = yAxis.copy()
orientationVec = zAxis.copy()
normal.rotate(quat)
orientationVec.rotate(quat)
thetaPos = atan2(loc.y, loc.x)
thetaBend = thetaPos - atan2(normal.y, normal.x)
rotateZ = Matrix.Rotation(bend * thetaBend, 3, 'Z')
normal.rotate(rotateZ)
orientationVec.rotate(rotateZ)
phiBend = atan2((normal.xy).length, normal.z)
orientation = atan2(orientationVec.y, orientationVec.x)
rotateZOrien = Matrix.Rotation(orientation, 3, 'X')
rotateX = Matrix.Rotation(bend * phiBend, 3, 'Z')
rotateZOrien2 = Matrix.Rotation(-orientation, 3, 'X')
# For each of the verts we now rotate and scale them, then append them to the list to be added to the mesh
for v in verts:
v.z *= leafScale
v.rotate(Euler((0, 0, radians(180))))
v.rotate(Matrix.Rotation(radians(-leafangle), 3, 'X'))
if rotate < 0:
v.rotate(Euler((0, 0, radians(90))))
if oldRot < 0:
v.rotate(Euler((0, 0, radians(180))))
if (leaves > 0) and (rotate > 0) and horzLeaves:
nRotMat = Matrix.Rotation(-oldRot + rotate, 3, 'Z')
v.rotate(nRotMat)
if leaves > 0:
v.rotate(downRotMat)
v.rotate(rotMat)
v.rotate(quat)
if (bend != 0.0) and (leaves > 0):
# Correct the rotation
v.rotate(rotateZ)
v.rotate(rotateZOrien)
v.rotate(rotateX)
v.rotate(rotateZOrien2)
if leafShape == 'dVert':
normal = verts[0]
normal.normalize()
v = loc
vertsList.append([v.x, v.y, v.z])
else:
for v in verts:
v += loc
vertsList.append([v.x, v.y, v.z])
for f in faces:
facesList.append([f[0] + index, f[1] + index, f[2] + index, f[3] + index])
return vertsList, facesList, normal, oldRot
Brendon Murphy
committed
def create_armature(armAnim, leafP, cu, frameRate, leafMesh, leafObj, leafVertSize, leaves,
levelCount, splineToBone, treeOb, wind, gust, gustF, af1, af2, af3,
leafAnim, loopFrames, previewArm, armLevels, makeMesh, boneStep):
Brendon Murphy
committed
arm = bpy.data.armatures.new('tree')
armOb = bpy.data.objects.new('treeArm', arm)
bpy.context.scene.collection.objects.link(armOb)
Brendon Murphy
committed
# Create a new action to store all animation
newAction = bpy.data.actions.new(name='windAction')
armOb.animation_data_create()
armOb.animation_data.action = newAction
arm.display_type = 'STICK'
Brendon Murphy
committed
# Add the armature modifier to the curve
armMod = treeOb.modifiers.new('windSway', 'ARMATURE')
if previewArm:
armMod.show_viewport = False
arm.display_type = 'WIRE'
armMod.use_apply_on_spline = True
Brendon Murphy
committed
armMod.object = armOb
armMod.use_bone_envelopes = True
armMod.use_vertex_groups = False # curves don't have vertex groups (yet)
Brendon Murphy
committed
# If there are leaves then they need a modifier
if leaves:
armMod = leafObj.modifiers.new('windSway', 'ARMATURE')
armMod.object = armOb
armMod.use_bone_envelopes = False
armMod.use_vertex_groups = True
Brendon Murphy
committed
# Make sure all objects are deselected (may not be required?)
for ob in bpy.context.view_layer.objects:
Brendon Murphy
committed
fps = bpy.context.scene.render.fps
animSpeed = (24 / fps) * frameRate
Brendon Murphy
committed
# Set the armature as active and go to edit mode to add bones
bpy.context.view_layer.objects.active = armOb
Brendon Murphy
committed
bpy.ops.object.mode_set(mode='EDIT')
# For all the splines in the curve we need to add bones at each bezier point
for i, parBone in enumerate(splineToBone):
if (i < levelCount[armLevels]) or (armLevels == -1) or (not makeMesh):
s = cu.splines[i]
b = None
# Get some data about the spline like length and number of points
numPoints = len(s.bezier_points) - 1
level = 0
for l, c in enumerate(levelCount):
if i < c:
level = l
break
level = min(level, 3)
step = boneStep[level]
# Calculate things for animation
Brendon Murphy
committed
if armAnim:
splineL = numPoints * ((s.bezier_points[0].co - s.bezier_points[1].co).length)
# Set the random phase difference of the animation
bxOffset = uniform(0, tau)
byOffset = uniform(0, tau)
# Set the phase multiplier for the spline
# bMult_r = (s.bezier_points[0].radius / max(splineL, 1e-6)) * (1 / 15) * (1 / frameRate)
# This shouldn't have to be in degrees but it looks much better in animation
# bMult = degrees(bMult_r)
bMult = (1 / max(splineL ** .5, 1e-6)) * (1 / 4)
# print((1 / bMult) * tau) #print wavelength in frames
windFreq1 = bMult * animSpeed
windFreq2 = 0.7 * bMult * animSpeed
if loopFrames != 0:
bMult_l = 1 / (loopFrames / tau)
fRatio = max(1, round(windFreq1 / bMult_l))
fgRatio = max(1, round(windFreq2 / bMult_l))
windFreq1 = fRatio * bMult_l
windFreq2 = fgRatio * bMult_l
# For all the points in the curve (less the last) add a bone and name it by the spline it will affect
nx = 0
for n in range(0, numPoints, step):
oldBone = b
boneName = 'bone' + (str(i)).rjust(3, '0') + '.' + (str(n)).rjust(3, '0')
b = arm.edit_bones.new(boneName)
b.head = s.bezier_points[n].co
nx += step
nx = min(nx, numPoints)
b.tail = s.bezier_points[nx].co
b.head_radius = s.bezier_points[n].radius
b.tail_radius = s.bezier_points[n + 1].radius
b.envelope_distance = 0.001
"""
# If there are leaves then we need a new vertex group so they will attach to the bone
if not leafAnim:
if (len(levelCount) > 1) and (i >= levelCount[-2]) and leafObj:
leafObj.vertex_groups.new(name=boneName)
elif (len(levelCount) == 1) and leafObj:
leafObj.vertex_groups.new(name=boneName)
# If this is first point of the spline then it must be parented to the level above it
if n == 0:
if parBone:
b.parent = arm.edit_bones[parBone]
# Otherwise, we need to attach it to the previous bone in the spline
else:
b.parent = oldBone
b.use_connect = True
# If there isn't a previous bone then it shouldn't be attached
if not oldBone:
b.use_connect = False
# Add the animation to the armature if required
if armAnim:
# Define all the required parameters of the wind sway by the dimension of the spline
# a0 = 4 * splineL * (1 - n / (numPoints + 1)) / max(s.bezier_points[n].radius, 1e-6)
a0 = 2 * (splineL / numPoints) * (1 - n / (numPoints + 1)) / max(s.bezier_points[n].radius, 1e-6)
a0 = a0 * min(step, numPoints)
# a0 = (splineL / numPoints) / max(s.bezier_points[n].radius, 1e-6)
a2 = a1 * .65 # (windGust / 50) * a0 + a1 / 2
p = s.bezier_points[nx].co - s.bezier_points[n].co
p.normalize()
ag = (wind * gust / 50) * a0
a3 = -p[0] * ag
a4 = p[2] * ag
a1 = radians(a1)
a2 = radians(a2)
a3 = radians(a3)
a4 = radians(a4)
swayFreq = gustF * (tau / fps) * frameRate # animSpeed # .075 # 0.02
else:
swayFreq = 1 / (loopFrames / tau)
# Prevent tree base from rotating
if (boneName == "bone000.000") or (boneName == "bone000.001"):
a1 = 0
a2 = 0
a3 = 0
a4 = 0
# Add new fcurves for each sway as well as the modifiers
swayX = armOb.animation_data.action.fcurves.new(
'pose.bones["' + boneName + '"].rotation_euler', index=0
)
swayY = armOb.animation_data.action.fcurves.new(
'pose.bones["' + boneName + '"].rotation_euler', index=2
swayXMod1 = swayX.modifiers.new(type='FNGENERATOR')
swayXMod2 = swayX.modifiers.new(type='FNGENERATOR')
swayYMod1 = swayY.modifiers.new(type='FNGENERATOR')
swayYMod2 = swayY.modifiers.new(type='FNGENERATOR')
# Set the parameters for each modifier
swayXMod1.amplitude = a1
swayXMod1.phase_offset = bxOffset
swayXMod1.phase_multiplier = windFreq1
swayXMod2.amplitude = a2
swayXMod2.phase_offset = 0.7 * bxOffset
swayXMod2.phase_multiplier = windFreq2
swayXMod2.use_additive = True
swayYMod1.amplitude = a1
swayYMod1.phase_offset = byOffset
swayYMod1.phase_multiplier = windFreq1
swayYMod2.amplitude = a2
swayYMod2.phase_offset = 0.7 * byOffset
swayYMod2.phase_multiplier = windFreq2
swayYMod2.use_additive = True
swayYMod3 = swayY.modifiers.new(type='FNGENERATOR')
swayYMod3.amplitude = a3
swayYMod3.phase_multiplier = swayFreq
swayYMod3.value_offset = .6 * a3
swayYMod3.use_additive = True
swayXMod3 = swayX.modifiers.new(type='FNGENERATOR')
swayXMod3.amplitude = a4
swayXMod3.phase_multiplier = swayFreq
swayXMod3.value_offset = .6 * a4
swayXMod3.use_additive = True
Brendon Murphy
committed
if leaves:
bonelist = [b.name for b in arm.edit_bones]
vertexGroups = OrderedDict()
for i, cp in enumerate(leafP):
# find leafs parent bone
leafParent = roundBone(cp.parBone, boneStep[armLevels])
idx = int(leafParent[4:-4])
while leafParent not in bonelist:
leafParent = splineToBone[idx]
idx = int(leafParent[4:-4])
if leafAnim:
bname = "leaf" + str(i)
b = arm.edit_bones.new(bname)
b.head = cp.co
b.tail = cp.co + Vector((0, 0, .02))
b.envelope_distance = 0.0
b.parent = arm.edit_bones[leafParent]
vertexGroups[bname] = [
v.index for v in
leafMesh.vertices[leafVertSize * i:(leafVertSize * i + leafVertSize)]
]
if armAnim:
# Define all the required parameters of the wind sway by the dimension of the spline
a1 = wind * .25
a1 *= af1
bMult = (1 / animSpeed) * 6
bMult *= 1 / max(af2, .001)
ofstRand = af3
bxOffset = uniform(-ofstRand, ofstRand)
byOffset = uniform(-ofstRand, ofstRand)
# Add new fcurves for each sway as well as the modifiers
swayX = armOb.animation_data.action.fcurves.new(
'pose.bones["' + bname + '"].rotation_euler', index=0
)
swayY = armOb.animation_data.action.fcurves.new(
'pose.bones["' + bname + '"].rotation_euler', index=2
# Add keyframe so noise works
swayX.keyframe_points.add(1)
swayY.keyframe_points.add(1)
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
swayX.keyframe_points[0].co = (0, 0)
swayY.keyframe_points[0].co = (0, 0)
# Add noise modifiers
swayXMod = swayX.modifiers.new(type='NOISE')
swayYMod = swayY.modifiers.new(type='NOISE')
if loopFrames != 0:
swayXMod.use_restricted_range = True
swayXMod.frame_end = loopFrames
swayXMod.blend_in = 4
swayXMod.blend_out = 4
swayYMod.use_restricted_range = True
swayYMod.frame_end = loopFrames
swayYMod.blend_in = 4
swayYMod.blend_out = 4
swayXMod.scale = bMult
swayXMod.strength = a1
swayXMod.offset = bxOffset
swayYMod.scale = bMult
swayYMod.strength = a1
swayYMod.offset = byOffset
else:
if leafParent not in vertexGroups:
vertexGroups[leafParent] = []
vertexGroups[leafParent].extend(
[v.index for v in
leafMesh.vertices[leafVertSize * i:(leafVertSize * i + leafVertSize)]]
)
for group in vertexGroups:
leafObj.vertex_groups.new(name=group)
leafObj.vertex_groups[group].add(vertexGroups[group], 1.0, 'ADD')
Brendon Murphy
committed
# Now we need the rotation mode to be 'XYZ' to ensure correct rotation
bpy.ops.object.mode_set(mode='OBJECT')
for p in armOb.pose.bones:
p.rotation_mode = 'XYZ'
treeOb.parent = armOb
def kickstart_trunk(addstem, levels, leaves, branches, cu, curve, curveRes,
curveV, attractUp, length, lengthV, ratio, ratioPower,
resU, scale0, scaleV0, scaleVal, taper, minRadius, rootFlare):
Brendon Murphy
committed
newSpline = cu.splines.new('BEZIER')
cu.resolution_u = resU
newPoint = newSpline.bezier_points[-1]
newPoint.co = Vector((0, 0, 0))
newPoint.handle_right = Vector((0, 0, 1))
newPoint.handle_left = Vector((0, 0, -1))
# (newPoint.handle_right_type, newPoint.handle_left_type) = ('VECTOR', 'VECTOR')
branchL = scaleVal * length[0]
curveVal = curve[0] / curveRes[0]
# curveVal = curveVal * (branchL / scaleVal)
if levels == 1:
childStems = leaves
else:
childStems = branches[1]
startRad = scaleVal * ratio * scale0 * uniform(1 - scaleV0, 1 + scaleV0) # * (scale0 + uniform(-scaleV0, scaleV0))
endRad = (startRad * (1 - taper[0])) ** ratioPower
startRad = max(startRad, minRadius)
endRad = max(endRad, minRadius)
newPoint.radius = startRad * rootFlare
Brendon Murphy
committed
addstem(
stemSpline(
newSpline, curveVal, curveV[0] / curveRes[0], attractUp[0],
0, curveRes[0], branchL / curveRes[0],
childStems, startRad, endRad, 0, 0, None
)
)
def fabricate_stems(addsplinetobone, addstem, baseSize, branches, childP, cu, curve, curveBack,
curveRes, curveV, attractUp, downAngle, downAngleV, leafDist, leaves, length,
lengthV, levels, n, ratioPower, resU, rotate, rotateV, scaleVal, shape, storeN,
taper, shapeS, minRadius, radiusTweak, customShape, rMode, segSplits,
useOldDownAngle, useParentAngle, boneStep):
# prevent baseSize from going to 1.0
baseSize = min(0.999, baseSize)
Brendon Murphy
committed
# Store the old rotation to allow new stems to be rotated away from the previous one.
oldRotate = 0
Brendon Murphy
committed
# use fancy child point selection / rotation
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
if (n == 1) and (rMode != "original"):
childP_T = OrderedDict()
childP_L = []
for p in childP:
if p.offset == 1:
childP_L.append(p)
else:
if p.offset not in childP_T:
childP_T[p.offset] = [p]
else:
childP_T[p.offset].append(p)
childP_T = [childP_T[k] for k in sorted(childP_T.keys())]
childP = []
rot_a = []
for p in childP_T:
if rMode == "rotate":
if rotate[n] < 0.0:
oldRotate = -copysign(rotate[n], oldRotate)
else:
oldRotate += rotate[n]
bRotate = oldRotate + uniform(-rotateV[n], rotateV[n])
# choose start point whose angle is closest to the rotate angle
a1 = bRotate % tau
a_diff = []
for a in p:
a2 = atan2(a.co[0], -a.co[1])
d = min((a1 - a2 + tau) % tau, (a2 - a1 + tau) % tau)
a_diff.append(d)
idx = a_diff.index(min(a_diff))
# find actual rotate angle from branch location
br = p[idx]
b = br.co
vx = sin(bRotate)
vy = cos(bRotate)
v = Vector((vx, vy))
bD = ((b[0] * b[0] + b[1] * b[1]) ** .5)
bL = br.lengthPar * length[1] * shapeRatio(shape, (1 - br.offset) / (1 - baseSize), custom=customShape)
if downAngleV[1] > 0:
downA = downAngle[n] + (-downAngleV[n] * (1 - (1 - br.offset) / (1 - baseSize)) ** 2)
else:
downA = downAngle[n]
if downA < (.5 * pi):
downA = sin(downA) ** 2
bL *= downA
bL *= 0.33
v *= (bD + bL)
bv = Vector((b[0], -b[1]))
cv = v - bv
a = atan2(cv[0], cv[1])
# rot_a.append(a)
"""
# add fill points at top #experimental
fillHeight = 1 - degrees(rotateV[3]) # 0.8
if fillHeight < 1:
w = (p[0].offset - fillHeight) / (1- fillHeight)
prob_b = random() < w
else:
prob_b = False
if (p[0].offset > fillHeight): # prob_b and (len(p) > 1): ##(p[0].offset > fillHeight) and
childP.append(p[randint(0, len(p)-1)])
rot_a.append(bRotate)# + pi)
"""
childP.append(p[idx])
rot_a.append(a)
else:
childP.extend(childP_L)
rot_a.extend([0] * len(childP_L))
oldRotate = 0
for i, p in enumerate(childP):
Brendon Murphy
committed
# Add a spline and set the coordinate of the first point.
newSpline = cu.splines.new('BEZIER')
cu.resolution_u = resU
newPoint = newSpline.bezier_points[-1]
newPoint.co = p.co
tempPos = zAxis.copy()
# If the -ve flag for downAngle is used we need a special formula to find it
if useOldDownAngle:
if downAngleV[n] < 0.0:
downV = downAngleV[n] * (1 - 2 * (.2 + .8 * ((1 - p.offset) / (1 - baseSize))))
# Otherwise just find a random value
else:
downV = uniform(-downAngleV[n], downAngleV[n])
Brendon Murphy
committed
else:
if downAngleV[n] < 0.0:
downV = uniform(-downAngleV[n], downAngleV[n])
else:
downV = -downAngleV[n] * (1 - (1 - p.offset) / (1 - baseSize)) ** 2 # (110, 80) = (60, -50)
if p.offset == 1:
downRotMat = Matrix.Rotation(0, 3, 'X')
else:
downRotMat = Matrix.Rotation(downAngle[n] + downV, 3, 'X')
# If the -ve flag for rotate is used we need to find which side of the stem
# the last child point was and then grow in the opposite direction
Brendon Murphy
committed
if rotate[n] < 0.0:
oldRotate = -copysign(rotate[n], oldRotate)
Brendon Murphy
committed
# Otherwise just generate a random number in the specified range
else:
oldRotate += rotate[n]
bRotate = oldRotate + uniform(-rotateV[n], rotateV[n])
if (n == 1) and (rMode == "rotate"):
bRotate = rot_a[i]
rotMat = Matrix.Rotation(bRotate, 3, 'Z')
Brendon Murphy
committed
# Rotate the direction of growth and set the new point coordinates
tempPos.rotate(downRotMat)
Brendon Murphy
committed
tempPos.rotate(rotMat)
if (rMode == "rotate") and (n == 1) and (p.offset != 1):
if useParentAngle:
edir = p.quat.to_euler('XYZ', Euler((0, 0, bRotate), 'XYZ'))
edir[0] = 0
edir[1] = 0
edir[2] = -edir[2]
tempPos.rotate(edir)
dec = declination(p.quat)
tempPos.rotate(Matrix.Rotation(radians(dec), 3, 'X'))
edir[2] = -edir[2]
tempPos.rotate(edir)
else:
tempPos.rotate(p.quat)
Brendon Murphy
committed
newPoint.handle_right = p.co + tempPos
# Make length variation inversely proportional to segSplits
# lenV = (1 - min(segSplits[n], 1)) * lengthV[n]
# Find branch length and the number of child stems.
maxbL = scaleVal
lMax = length[n] # * uniform(1 - lenV, 1 + lenV)
if n == 1:
lShape = shapeRatio(shape, (1 - p.stemOffset) / (1 - baseSize), custom=customShape)
else:
lShape = shapeRatio(shapeS, (1 - p.stemOffset) / (1 - baseSize))
branchL = p.lengthPar * lMax * lShape
childStems = branches[min(3, n + 1)] * (0.1 + 0.9 * (branchL / maxbL))
# If this is the last level before leaves then we need to generate the child points differently
if (storeN == levels - 1):
Brendon Murphy
committed
if leaves < 0:
childStems = False
else:
childStems = leaves * (0.1 + 0.9 * (branchL / maxbL)) * shapeRatio(leafDist, (1 - p.offset))
Brendon Murphy
committed
# print("n=%d, levels=%d, n'=%d, childStems=%s"%(n, levels, storeN, childStems))
Brendon Murphy
committed
# Determine the starting and ending radii of the stem using the tapering of the stem
startRad = min((p.radiusPar[0] * ((branchL / p.lengthPar) ** ratioPower)) * radiusTweak[n], p.radiusPar[1])
if p.offset == 1:
startRad = p.radiusPar[1]
endRad = (startRad * (1 - taper[n])) ** ratioPower
startRad = max(startRad, minRadius)
endRad = max(endRad, minRadius)
Brendon Murphy
committed
newPoint.radius = startRad
# stem curvature
curveVal = curve[n] / curveRes[n]
curveVar = curveV[n] / curveRes[n]
# curveVal = curveVal * (branchL / scaleVal)
Brendon Murphy
committed
# Add the new stem to list of stems to grow and define which bone it will be parented to
addstem(
stemSpline(
newSpline, curveVal, curveVar, attractUp[n],
0, curveRes[n], branchL / curveRes[n], childStems,
startRad, endRad, len(cu.splines) - 1, 0, p.quat
)
)
bone = roundBone(p.parBone, boneStep[n - 1])
if p.offset == 1:
isend = True
else:
isend = False
addsplinetobone((bone, isend))
Brendon Murphy
committed
def perform_pruning(baseSize, baseSplits, childP, cu, currentMax, currentMin, currentScale, curve,
curveBack, curveRes, deleteSpline, forceSprout, handles, n, oldMax, originalSplineToBone,
originalCo, originalCurv, originalCurvV, originalHandleL, originalHandleR, originalLength,
originalSeg, prune, prunePowerHigh, prunePowerLow, pruneRatio, pruneWidth, pruneBase,
pruneWidthPeak, randState, ratio, scaleVal, segSplits, splineToBone, splitAngle, splitAngleV,
st, startPrune, branchDist, length, splitByLen, closeTip, nrings, splitBias, splitHeight,
attractOut, rMode, lengthV, taperCrown, boneStep, rotate, rotateV):
Brendon Murphy
committed
while startPrune and ((currentMax - currentMin) > 0.005):
setstate(randState)
# If the search will halt after this iteration, then set the adjustment of stem
# length to take into account the pruning ratio
Brendon Murphy
committed
if (currentMax - currentMin) < 0.01:
currentScale = (currentScale - 1) * pruneRatio + 1
startPrune = False
forceSprout = True
# Change the segment length of the stem by applying some scaling
st.segL = originalLength * currentScale
# To prevent millions of splines being created we delete any old ones and
# replace them with only their first points to begin the spline again
Brendon Murphy
committed
if deleteSpline:
for x in splineList:
cu.splines.remove(x.spline)
newSpline = cu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
newPoint.co = originalCo
newPoint.handle_right = originalHandleR
newPoint.handle_left = originalHandleL
(newPoint.handle_left_type, newPoint.handle_right_type) = ('VECTOR', 'VECTOR')
st.spline = newSpline
st.curv = originalCurv
st.curvV = originalCurvV
st.seg = originalSeg
st.p = newPoint
newPoint.radius = st.radS
splineToBone = originalSplineToBone
Brendon Murphy
committed
# Initialise the spline list for those contained in the current level of branching
splineList = [st]
# split length variation
stemsegL = splineList[0].segL # initial segment length used for variation
splineList[0].segL = stemsegL * uniform(1 - lengthV[n], 1 + lengthV[n]) # variation for first stem
Brendon Murphy
committed
# For each of the segments of the stem which must be grown we have to add to each spline in splineList
for k in range(curveRes[n]):
# Make a copy of the current list to avoid continually adding to the list we're iterating over
tempList = splineList[:]
# print('Leng: ', len(tempList))
splitValue = segSplits[n]
if n == 0:
splitValue = ((2 * splitBias) * (kp - .5) + 1) * splitValue
splitValue = max(splitValue, 0.0)
Brendon Murphy
committed
# For each of the splines in this list set the number of splits and then grow it
for spl in tempList:
lastsplit = getattr(spl, 'splitlast', 0)
splitVal = splitValue
if lastsplit == 0:
splitVal = splitValue * 1.33
elif lastsplit == 1:
splitVal = splitValue * splitValue
Brendon Murphy
committed
if k == 0:
numSplit = 0
elif (n == 0) and (k < ((curveRes[n] - 1) * splitHeight)) and (k != 1):
Brendon Murphy
committed
elif (k == 1) and (n == 0):
numSplit = baseSplits
# always split at splitHeight
elif (n == 0) and (k == int((curveRes[n] - 1) * splitHeight) + 1) and (splitVal > 0):
Brendon Murphy
committed
else:
if (n >= 1) and splitByLen:
L = ((spl.segL * curveRes[n]) / scaleVal)
lf = 1
lf *= l
L = L / lf
numSplit = splits2(splitVal * L)
else:
numSplit = splits2(splitVal)
if (k == int(curveRes[n] / 2 + 0.5)) and (curveBack[n] != 0):
spl.curv += 2 * (curveBack[n] / curveRes[n]) # was -4 *
growSpline(
n, spl, numSplit, splitAngle[n], splitAngleV[n], splineList,
handles, splineToBone, closeTip, kp, splitHeight, attractOut[n],
stemsegL, lengthV[n], taperCrown, boneStep, rotate, rotateV
)
Brendon Murphy
committed
# If pruning is enabled then we must check to see if the end of the spline is within the envelope
Brendon Murphy
committed
if prune:
# Check each endpoint to see if it is inside
for s in splineList:
coordMag = (s.spline.bezier_points[-1].co.xy).length
ratio = (scaleVal - s.spline.bezier_points[-1].co.z) / (scaleVal * max(1 - pruneBase, 1e-6))
Brendon Murphy
committed
# Don't think this if part is needed
if (n == 0) and (s.spline.bezier_points[-1].co.z < pruneBase * scaleVal):
insideBool = True # Init to avoid UnboundLocalError later
Brendon Murphy
committed
else:
insideBool = (
(coordMag / scaleVal) < pruneWidth * shapeRatio(9, ratio, pruneWidthPeak, prunePowerHigh,
Brendon Murphy
committed
prunePowerLow))
# If the point is not inside then we adjust the scale and current search bounds
if not insideBool:
oldMax = currentMax
currentMax = currentScale
currentScale = 0.5 * (currentMax + currentMin)
break
# If the scale is the original size and the point is inside then
# we need to make sure it won't be pruned or extended to the edge of the envelope
Brendon Murphy
committed
if insideBool and (currentScale != 1):
currentMin = currentScale
currentMax = oldMax
currentScale = 0.5 * (currentMax + currentMin)
if insideBool and ((currentMax - currentMin) == 1):
currentMin = 1
# If the search will halt on the next iteration then we need
# to make sure we sprout child points to grow the next splines or leaves
Brendon Murphy
committed
if (((currentMax - currentMin) < 0.005) or not prune) or forceSprout:
if (n == 0) and (rMode != "original"):
tVals = findChildPoints2(splineList, st.children)
else:
tVals = findChildPoints(splineList, st.children)
# print("debug tvals[%d] , splineList[%d], %s" % ( len(tVals), len(splineList), st.children))
Brendon Murphy
committed
# If leaves is -ve then we need to make sure the only point which sprouts is the end of the spline
if not st.children:
tVals = [1.0]
# remove some of the points because of baseSize
trimNum = int(baseSize * (len(tVals) + 1))
tVals = tVals[trimNum:]
if (n == 0) and (nrings > 0):
# tVals = [(floor(t * nrings)) / nrings for t in tVals[:-1]]
tVals = [(floor(t * nrings) / nrings) * uniform(.995, 1.005) for t in tVals[:-1]]
tVals.append(1)
tVals = [t for t in tVals if t > baseSize]
Brendon Murphy
committed
if n == 0:
tVals = [((t - baseSize) / (1 - baseSize)) for t in tVals]
if branchDist < 1.0:
tVals = [t ** (1 / branchDist) for t in tVals]
else:
tVals = [1 - (1 - t) ** branchDist for t in tVals]
tVals = [t * (1 - baseSize) + baseSize for t in tVals]
Brendon Murphy
committed
# For all the splines, we interpolate them and add the new points to the list of child points
maxOffset = max([s.offsetLen + (len(s.spline.bezier_points) - 1) * s.segL for s in splineList])
Brendon Murphy
committed
for s in splineList:
# print(str(n)+'level: ', s.segMax*s.segL)
childP.extend(interpStem(s, tVals, s.segMax * s.segL, s.radS, maxOffset, baseSize))
Brendon Murphy
committed
# Force the splines to be deleted
deleteSpline = True
# If pruning isn't enabled then make sure it doesn't loop
if not prune:
startPrune = False
return ratio, splineToBone
# calculate taper automatically
def findtaper(length, taper, shape, shapeS, levels, customShape):
taperS = []
for i, t in enumerate(length):
if i == 0:
shp = 1.0
elif i == 1:
shp = shapeRatio(shape, 0, custom=customShape)
else:
shp = shapeRatio(shapeS, 0)
t = t * shp
taperS.append(t)
taperP = []
for i, t in enumerate(taperS):
pm = 1
pm *= taperS[x]
taperP.append(pm)
taperR = []
for i, t in enumerate(taperP):
t = sum(taperP[i:levels])
taperR.append(t)
taperT = []
for i, t in enumerate(taperR):
try:
t = taperP[i] / taperR[i]
except ZeroDivisionError:
t = 1.0
taperT.append(t)
taperT = [t * taper[i] for i, t in enumerate(taperT)]
return taperT
Brendon Murphy
committed
Campbell Barton
committed
global splitError
Campbell Barton
committed
# Set the seed for repeatable results
Campbell Barton
committed
# Set all other variables
levels = props.levels
length = props.length
lengthV = props.lengthV
taperCrown = props.taperCrown
branches = props.branches
curveRes = props.curveRes
curve = toRad(props.curve)
curveV = toRad(props.curveV)
curveBack = toRad(props.curveBack)
baseSplits = props.baseSplits
segSplits = props.segSplits
splitByLen = props.splitByLen
rMode = props.rMode
splitAngle = toRad(props.splitAngle)
splitAngleV = toRad(props.splitAngleV)
scale = props.scale
scaleV = props.scaleV
attractUp = props.attractUp
attractOut = props.attractOut
shape = int(props.shape)
shapeS = int(props.shapeS)
customShape = props.customShape
branchDist = props.branchDist
nrings = props.nrings
Campbell Barton
committed
baseSize = props.baseSize
baseSize_s = props.baseSize_s
splitHeight = props.splitHeight
splitBias = props.splitBias
Campbell Barton
committed
ratio = props.ratio
minRadius = props.minRadius
closeTip = props.closeTip
rootFlare = props.rootFlare
autoTaper = props.autoTaper
radiusTweak = props.radiusTweak
ratioPower = props.ratioPower
downAngle = toRad(props.downAngle)
downAngleV = toRad(props.downAngleV)
rotate = toRad(props.rotate)
rotateV = toRad(props.rotateV)
scale0 = props.scale0
scaleV0 = props.scaleV0
prune = props.prune
pruneWidth = props.pruneWidth
pruneBase = props.pruneBase
pruneWidthPeak = props.pruneWidthPeak
prunePowerLow = props.prunePowerLow
prunePowerHigh = props.prunePowerHigh
pruneRatio = props.pruneRatio
leafDownAngle = radians(props.leafDownAngle)
leafDownAngleV = radians(props.leafDownAngleV)
leafRotate = radians(props.leafRotate)
leafRotateV = radians(props.leafRotateV)
leafScale = props.leafScale
leafScaleX = props.leafScaleX
leafScaleT = props.leafScaleT
leafScaleV = props.leafScaleV
Campbell Barton
committed
leafShape = props.leafShape
leafDupliObj = props.leafDupliObj
leafangle = props.leafangle
horzLeaves = props.horzLeaves
leafDist = int(props.leafDist)
bevelRes = props.bevelRes
resU = props.resU
Campbell Barton
committed
useArm = props.useArm
previewArm = props.previewArm
Campbell Barton
committed
armAnim = props.armAnim
leafAnim = props.leafAnim
frameRate = props.frameRate
loopFrames = props.loopFrames
# windSpeed = props.windSpeed
# windGust = props.windGust
wind = props.wind
gust = props.gust
gustF = props.gustF
af1 = props.af1
af2 = props.af2
af3 = props.af3
makeMesh = props.makeMesh
armLevels = props.armLevels
boneStep = props.boneStep
useOldDownAngle = props.useOldDownAngle
useParentAngle = props.useParentAngle
if not makeMesh:
boneStep = [1, 1, 1, 1]
if autoTaper:
taper = findtaper(length, taper, shape, shapeS, levels, customShape)
# pLevels = branches[0]
# taper = findtaper(length, taper, shape, shapeS, pLevels, customShape)
Campbell Barton
committed
leafObj = None
Campbell Barton
committed
# Some effects can be turned ON and OFF, the necessary variables are changed here
if not props.bevel:
bevelDepth = 0.0
else:
bevelDepth = 1.0
Campbell Barton
committed
if not props.showLeaves:
leaves = 0
else:
leaves = props.leaves
Campbell Barton
committed
if props.handleType == '0':
handles = 'AUTO'
else:
handles = 'VECTOR'
for ob in bpy.context.view_layer.objects:
Campbell Barton
committed
# Initialise the tree object and curve and adjust the settings
cu = bpy.data.curves.new('tree', 'CURVE')
treeOb = bpy.data.objects.new('tree', cu)
bpy.context.scene.collection.objects.link(treeOb)
# treeOb.location=bpy.context.scene.cursor.location attractUp
Campbell Barton
committed
cu.dimensions = '3D'
cu.fill_mode = 'FULL'
cu.bevel_depth = bevelDepth
cu.bevel_resolution = bevelRes
# Fix the scale of the tree now
scaleVal = scale + uniform(-scaleV, scaleV)
scaleVal += copysign(1e-6, scaleVal) # Move away from zero to avoid div by zero
Campbell Barton
committed
pruneBase = min(pruneBase, baseSize)
Campbell Barton
committed
# If pruning is turned on we need to draw the pruning envelope
if prune:
enHandle = 'VECTOR'
enNum = 128
enCu = bpy.data.curves.new('envelope', 'CURVE')
enOb = bpy.data.objects.new('envelope', enCu)
Campbell Barton
committed
enOb.parent = treeOb
bpy.context.scene.collection.objects.link(enOb)
Campbell Barton
committed
newSpline = enCu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
newPoint.co = Vector((0, 0, scaleVal))
(newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle)
Campbell Barton
committed
# Set the coordinates by varying the z value, envelope will be aligned to the x-axis
for c in range(enNum):
newSpline.bezier_points.add(1)
ratioVal = (c + 1) / (enNum)
zVal = scaleVal - scaleVal * (1 - pruneBase) * ratioVal
newPoint.co = Vector(
(
scaleVal * pruneWidth *
shapeRatio(9, ratioVal, pruneWidthPeak, prunePowerHigh, prunePowerLow),
0, zVal
)
)
(newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle)
Campbell Barton
committed
newSpline = enCu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
newPoint.co = Vector((0, 0, scaleVal))
(newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle)
Campbell Barton
committed
# Create a second envelope but this time on the y-axis
for c in range(enNum):
newSpline.bezier_points.add(1)
ratioVal = (c + 1) / (enNum)
zVal = scaleVal - scaleVal * (1 - pruneBase) * ratioVal
newPoint.co = Vector(
(
0, scaleVal * pruneWidth *
shapeRatio(9, ratioVal, pruneWidthPeak, prunePowerHigh, prunePowerLow),
zVal
)
)
(newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle)
Campbell Barton
committed
childP = []
stemList = []
levelCount = []
Campbell Barton
committed
splineToBone = deque([''])
addsplinetobone = splineToBone.append
# Each of the levels needed by the user we grow all the splines
Campbell Barton
committed
for n in range(levels):
storeN = n
stemList = deque()
addstem = stemList.append
# If n is used as an index to access parameters for the tree
# it must be at most 3 or it will reference outside the array index
Campbell Barton
committed
splitError = 0.0
# closeTip only on last level
closeTipp = all([(n == levels - 1), closeTip])
Campbell Barton
committed
# If this is the first level of growth (the trunk) then we need some special work to begin the tree
if n == 0:
kickstart_trunk(addstem, levels, leaves, branches, cu, curve, curveRes,
curveV, attractUp, length, lengthV, ratio, ratioPower, resU,
scale0, scaleV0, scaleVal, taper, minRadius, rootFlare)
# If this isn't the trunk then we may have multiple stem to initialise
Campbell Barton
committed
else:
# For each of the points defined in the list of stem starting points we need to grow a stem.
fabricate_stems(addsplinetobone, addstem, baseSize, branches, childP, cu, curve, curveBack,
curveRes, curveV, attractUp, downAngle, downAngleV, leafDist, leaves, length, lengthV,
levels, n, ratioPower, resU, rotate, rotateV, scaleVal, shape, storeN,
taper, shapeS, minRadius, radiusTweak, customShape, rMode, segSplits,
useOldDownAngle, useParentAngle, boneStep)
baseSize *= baseSize_s # decrease at each level
if (n == levels - 1):
baseSize = 0
Campbell Barton
committed
childP = []
# Now grow each of the stems in the list of those to be extended
for st in stemList:
# When using pruning, we need to ensure that the random effects
# will be the same for each iteration to make sure the problem is linear
Campbell Barton
committed
randState = getstate()
startPrune = True
lengthTest = 0.0
# Store all the original values for the stem to make sure
# we have access after it has been modified by pruning
Campbell Barton
committed
originalLength = st.segL
originalCurv = st.curv
originalCurvV = st.curvV
originalSeg = st.seg
originalHandleR = st.p.handle_right.copy()
originalHandleL = st.p.handle_left.copy()
originalCo = st.p.co.copy()
currentMax = 1.0
currentMin = 0.0
currentScale = 1.0
oldMax = 1.0
deleteSpline = False
originalSplineToBone = copy.copy(splineToBone)
Campbell Barton
committed
forceSprout = False
# Now do the iterative pruning, this uses a binary search and halts once the difference
# between upper and lower bounds of the search are less than 0.005
ratio, splineToBone = perform_pruning(
baseSize, baseSplits, childP, cu, currentMax, currentMin,
currentScale, curve, curveBack, curveRes, deleteSpline, forceSprout,
handles, n, oldMax, originalSplineToBone, originalCo, originalCurv,
originalCurvV, originalHandleL, originalHandleR, originalLength,
originalSeg, prune, prunePowerHigh, prunePowerLow, pruneRatio,
pruneWidth, pruneBase, pruneWidthPeak, randState, ratio, scaleVal,
segSplits, splineToBone, splitAngle, splitAngleV, st, startPrune,
branchDist, length, splitByLen, closeTipp, nrings, splitBias,
splitHeight, attractOut, rMode, lengthV, taperCrown, boneStep,
rotate, rotateV
)
Campbell Barton
committed
levelCount.append(len(cu.splines))
# If we need to add leaves, we do it here
leafVerts = []
leafFaces = []
leafNormals = []
leafMesh = None # in case we aren't creating leaves, we'll still have the variable
leafP = []
if leaves:
oldRot = 0.0
# For each of the child points we add leaves
for cp in childP:
# If the special flag is set then we need to add several leaves at the same location
if leaves < 0:
oldRot = -leafRotate / 2
for g in range(abs(leaves)):
(vertTemp, faceTemp, normal, oldRot) = genLeafMesh(
leafScale, leafScaleX, leafScaleT,
leafScaleV, cp.co, cp.quat, cp.offset,
len(leafVerts), leafDownAngle, leafDownAngleV,
leafRotate, leafRotateV,
oldRot, bend, leaves, leafShape,
leafangle, horzLeaves
)
Campbell Barton
committed
leafVerts.extend(vertTemp)
leafFaces.extend(faceTemp)
leafNormals.extend(normal)
leafP.append(cp)
# Otherwise just add the leaves like splines
(vertTemp, faceTemp, normal, oldRot) = genLeafMesh(
leafScale, leafScaleX, leafScaleT, leafScaleV,
cp.co, cp.quat, cp.offset, len(leafVerts),
leafDownAngle, leafDownAngleV, leafRotate,
leafRotateV, oldRot, bend, leaves, leafShape,
leafangle, horzLeaves
)
leafVerts.extend(vertTemp)
leafFaces.extend(faceTemp)
leafNormals.extend(normal)
leafP.append(cp)
# Create the leaf mesh and object, add geometry using from_pydata,
# edges are currently added by validating the mesh which isn't great
leafMesh = bpy.data.meshes.new('leaves')
leafObj = bpy.data.objects.new('leaves', leafMesh)
bpy.context.scene.collection.objects.link(leafObj)
leafObj.parent = treeOb
leafMesh.from_pydata(leafVerts, (), leafFaces)
# set vertex normals for dupliVerts
if leafShape == 'dVert':
leafMesh.vertices.foreach_set('normal', leafNormals)
# enable duplication
if leafShape == 'dFace':
leafObj.instance_type = "FACES"
leafObj.use_instance_faces_scale = True
leafObj.instance_faces_scale = 10.0
if leafDupliObj not in "NONE":
bpy.data.objects[leafDupliObj].parent = leafObj
except KeyError:
pass
elif leafShape == 'dVert':
leafObj.instance_type = "VERTS"
leafObj.use_instance_vertices_rotation = True
if leafDupliObj not in "NONE":
bpy.data.objects[leafDupliObj].parent = leafObj
except KeyError:
pass
leafMesh.uv_layers.new(name='leafUV')
uvlayer = leafMesh.uv_layers.active.data
u1 = .5 * (1 - leafScaleX)
u2 = 1 - u1
for i in range(0, len(leafFaces)):
uvlayer[i * 4 + 0].uv = Vector((u2, 0))
uvlayer[i * 4 + 1].uv = Vector((u2, 1))
uvlayer[i * 4 + 2].uv = Vector((u1, 1))
uvlayer[i * 4 + 3].uv = Vector((u1, 0))
elif leafShape == 'hex':
leafMesh.uv_layers.new(name='leafUV')
uvlayer = leafMesh.uv_layers.active.data
u1 = .5 * (1 - leafScaleX)
u2 = 1 - u1
for i in range(0, int(len(leafFaces) / 2)):
uvlayer[i * 8 + 0].uv = Vector((.5, 0))
uvlayer[i * 8 + 1].uv = Vector((u1, 1 / 3))
uvlayer[i * 8 + 2].uv = Vector((u1, 2 / 3))
uvlayer[i * 8 + 3].uv = Vector((.5, 1))
uvlayer[i * 8 + 4].uv = Vector((.5, 0))
uvlayer[i * 8 + 5].uv = Vector((.5, 1))
uvlayer[i * 8 + 6].uv = Vector((u2, 2 / 3))
uvlayer[i * 8 + 7].uv = Vector((u2, 1 / 3))
leafMesh.validate()
leafVertSize = {'hex': 6, 'rect': 4, 'dFace': 4, 'dVert': 1}[leafShape]
armLevels = min(armLevels, levels)
armLevels -= 1
# unpack vars from splineToBone
splineToBone1 = splineToBone
splineToBone = [s[0] if len(s) > 1 else s for s in splineToBone1]
isend = [s[1] if len(s) > 1 else False for s in splineToBone1]
issplit = [s[2] if len(s) > 2 else False for s in splineToBone1]
splitPidx = [s[3] if len(s) > 2 else 0 for s in splineToBone1]
# If we need an armature we add it
Campbell Barton
committed
if useArm:
# Create the armature and objects
create_armature(
armAnim, leafP, cu, frameRate, leafMesh, leafObj, leafVertSize,
leaves, levelCount, splineToBone, treeOb, wind, gust, gustF, af1,
af2, af3, leafAnim, loopFrames, previewArm, armLevels, makeMesh, boneStep
)
if makeMesh:
t1 = time.time()
treeMesh = bpy.data.meshes.new('treemesh')
treeObj = bpy.data.objects.new('treemesh', treeMesh)
bpy.context.scene.collection.objects.link(treeObj)
treeVerts = []
treeEdges = []
root_vert = []
vert_radius = []
vertexGroups = OrderedDict()
lastVerts = []
for i, curve in enumerate(cu.splines):
points = curve.bezier_points
level = 0
for l, c in enumerate(levelCount):
if i < c:
level = l
break
level = min(level, 3)
step = boneStep[level]
vindex = len(treeVerts)
p1 = points[0]
if issplit[i]:
pb = int(splineToBone[i][4:-4])
pn = splitPidx[i] # int(splineToBone[i][-3:])
p_1 = cu.splines[pb].bezier_points[pn]
p_2 = cu.splines[pb].bezier_points[pn + 1]
p = evalBez(p_1.co, p_1.handle_right, p_2.handle_left, p_2.co, 1 - 1 / (resU + 1))
treeVerts.append(p)
root_vert.append(False)
vert_radius.append((p1.radius * .75, p1.radius * .75))
treeEdges.append([vindex, vindex + 1])
vindex += 1
if isend[i]:
parent = lastVerts[int(splineToBone[i][4:-4])]
vindex -= 1
else:
treeVerts.append(p1.co)
root_vert.append(True)
vert_radius.append((p1.radius, p1.radius))
"""
# add extra vertex for splits
if issplit[i]:
p2 = points[1]
p = evalBez(p1.co, p1.handle_right, p2.handle_left, p2.co, .001)
treeVerts.append(p)
root_vert.append(False)
vert_radius.append((p1.radius, p1.radius)) #(p1.radius * .95, p1.radius * .95)
treeEdges.append([vindex,vindex+1])
vindex += 1
"""
# dont make vertex group if above armLevels
if (i >= levelCount[armLevels]):
idx = i
groupName = splineToBone[idx]
g = True
while groupName not in vertexGroups:
b = splineToBone[idx]
idx = int(b[4:-4])
groupName = splineToBone[idx]
else:
g = False
for n, p2 in enumerate(points[1:]):
if not g:
groupName = 'bone' + (str(i)).rjust(3, '0') + '.' + (str(n)).rjust(3, '0')
groupName = roundBone(groupName, step)
if groupName not in vertexGroups:
vertexGroups[groupName] = []
# parent first vert in split to parent branch bone
if issplit[i] and n == 0:
if g:
vertexGroups[groupName].append(vindex - 1)
else:
vertexGroups[splineToBone[i]].append(vindex - 1)
pos = f / resU
p = evalBez(p1.co, p1.handle_right, p2.handle_left, p2.co, pos)
radius = p1.radius + (p2.radius - p1.radius) * pos
treeVerts.append(p)
root_vert.append(False)
vert_radius.append((radius, radius))
if (isend[i]) and (n == 0) and (f == 1):
edge = [parent, n * resU + f + vindex]
else:
edge = [n * resU + f + vindex - 1, n * resU + f + vindex]
vertexGroups[groupName].append(n * resU + f + vindex - 1)
treeEdges.append(edge)
vertexGroups[groupName].append(n * resU + resU + vindex)
p1 = p2
lastVerts.append(len(treeVerts) - 1)
treeMesh.from_pydata(treeVerts, treeEdges, ())
for group in vertexGroups:
treeObj.vertex_groups.new(name=group)
treeObj.vertex_groups[group].add(vertexGroups[group], 1.0, 'ADD')
if useArm:
armMod = treeObj.modifiers.new('windSway', 'ARMATURE')
if previewArm:
bpy.data.objects['treeArm'].hide_viewport = True
bpy.data.armatures['tree'].display_type = 'STICK'
armMod.object = bpy.data.objects['treeArm']
armMod.use_bone_envelopes = False
armMod.use_vertex_groups = True
treeObj.parent = bpy.data.objects['treeArm']
skinMod = treeObj.modifiers.new('Skin', 'SKIN')
skinMod.use_smooth_shade = True
if previewArm:
skinMod.show_viewport = False
skindata = treeObj.data.skin_vertices[0].data
for i, radius in enumerate(vert_radius):
skindata[i].radius = radius
skindata[i].use_root = root_vert[i]
print("mesh time", time.time() - t1)