Newer
Older
# SPDX-License-Identifier: GPL-2.0-or-later
# Copyright 2010-2021 Adam Dominec <adominec@gmail.com>
## Code structure
# This file consists of several components, in this order:
# * Unfolding and baking
# * Export (SVG or PDF)
# * User interface
# During the unfold process, the mesh is mirrored into a 2D structure: UVFace, UVEdge, UVVertex.
bl_info = {
"name": "Export Paper Model",
"author": "Addam Dominec",
"location": "File > Export > Paper Model",
"warning": "",
"description": "Export printable net of the active mesh",
"doc_url": "{BLENDER_MANUAL_URL}/addons/import_export/paper_model.html",
"category": "Import-Export",
}
# Task: split into four files (SVG and PDF separately)
# * does any portion of baking belong into the export module?
# * sketch out the code for GCODE and two-sided export
# QuickSweepline is very much broken -- it throws GeometryError for all nets > ~15 faces
# rotate islands to minimize area -- and change that only if necessary to fill the page size
# check conflicts in island naming and either:
# * append a number to the conflicting names or
# * enumerate faces uniquely within all islands of the same name (requires a check that both label and abbr. equals)
import bpy
import bl_operators
import mathutils as M
from re import compile as re_compile
from itertools import chain, repeat, product, combinations
from math import pi, ceil, asin, atan2
import os.path as os_path
default_priority_effect = {
'CONVEX': 0.5,
'CONCAVE': 1,
'LENGTH': -0.05
}
global_paper_sizes = [
('USER', "User defined", "User defined paper size"),
('A4', "A4", "International standard paper size"),
('A3', "A3", "International standard paper size"),
('US_LETTER', "Letter", "North American paper size"),
('US_LEGAL', "Legal", "North American paper size")
]
def first_letters(text):
"""Iterator over the first letter of each word"""
for match in first_letters.pattern.finditer(text):
yield text[match.start()]
first_letters.pattern = re_compile(r"((?<!\w)\w)|\d")
def is_upsidedown_wrong(name):
"""Tell if the string would get a different meaning if written upside down"""
chars = set(name)
mistakable = set("69NZMWpbqd")
rotatable = set("80oOxXIl").union(mistakable)
return chars.issubset(rotatable) and not chars.isdisjoint(mistakable)
def pairs(sequence):
"""Generate consecutive pairs throughout the given sequence; at last, it gives elements last, first."""
i = iter(sequence)
previous = first = next(i)
for this in i:
yield previous, this
previous = this
yield this, first
def fitting_matrix(v1, v2):
"""Get a matrix that rotates v1 to the same direction as v2"""
return (1 / v1.length_squared) * M.Matrix((
(v1.x*v2.x + v1.y*v2.y, v1.y*v2.x - v1.x*v2.y),
(v1.x*v2.y - v1.y*v2.x, v1.x*v2.x + v1.y*v2.y)))
def z_up_matrix(n):
"""Get a rotation matrix that aligns given vector upwards."""
b = n.xy.length
if b > 0:
return M.Matrix((
(n.x*n.z/(b*s), n.y*n.z/(b*s), -b/s),
(-n.y/b, n.x/b, 0),
(0, 0, 0)
))
else:
# no need for rotation
return M.Matrix((
(1, 0, 0),
(0, (-1 if n.z < 0 else 1), 0),
(0, 0, 0)
))
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def cage_fit(points, aspect):
"""Find rotation for a minimum bounding box with a given aspect ratio
returns a tuple: rotation angle, box height"""
def guesses(polygon):
"""Yield all tentative extrema of the bounding box height wrt. polygon rotation"""
for a, b in pairs(polygon):
if a == b:
continue
direction = (b - a).normalized()
sinx, cosx = -direction.y, direction.x
rot = M.Matrix(((cosx, -sinx), (sinx, cosx)))
rot_polygon = [rot @ p for p in polygon]
left, right = [fn(rot_polygon, key=lambda p: p.to_tuple()) for fn in (min, max)]
bottom, top = [fn(rot_polygon, key=lambda p: p.yx.to_tuple()) for fn in (min, max)]
horz, vert = right - left, top - bottom
# solve (rot * a).y == (rot * b).y
yield max(aspect * horz.x, vert.y), sinx, cosx
# solve (rot * a).x == (rot * b).x
yield max(horz.x, aspect * vert.y), -cosx, sinx
# solve aspect * (rot * (right - left)).x == (rot * (top - bottom)).y
# using substitution t = tan(rot / 2)
q = aspect * horz.x - vert.y
r = vert.x + aspect * horz.y
t = ((r**2 + q**2)**0.5 - r) / q if q != 0 else 0
t = -1 / t if abs(t) > 1 else t # pick the positive solution
siny, cosy = 2 * t / (1 + t**2), (1 - t**2) / (1 + t**2)
rot = M.Matrix(((cosy, -siny), (siny, cosy)))
for p in rot_polygon:
p[:] = rot @ p # note: this also modifies left, right, bottom, top
if left.x < right.x and bottom.y < top.y and all(left.x <= p.x <= right.x and bottom.y <= p.y <= top.y for p in rot_polygon):
yield max(aspect * (right - left).x, (top - bottom).y), sinx*cosy + cosx*siny, cosx*cosy - sinx*siny
polygon = [points[i] for i in M.geometry.convex_hull_2d(points)]
height, sinx, cosx = min(guesses(polygon))
return atan2(sinx, cosx), height
def create_blank_image(image_name, dimensions, alpha=1):
"""Create a new image and assign white color to all its pixels"""
image_name = image_name[:64]
width, height = int(dimensions.x), int(dimensions.y)
image = bpy.data.images.new(image_name, width, height, alpha=True)
if image.users > 0:
raise UnfoldError(
"There is something wrong with the material of the model. "
"Please report this on the BlenderArtists forum. Export failed.")
image.pixels = [1, 1, 1, alpha] * (width * height)
image.file_format = 'PNG'
return image
def store_rna_properties(*datablocks):
return [{prop.identifier: getattr(data, prop.identifier) for prop in data.rna_type.properties if not prop.is_readonly} for data in datablocks]
def apply_rna_properties(memory, *datablocks):
for recall, data in zip(memory, datablocks):
for key, value in recall.items():
setattr(data, key, value)
class UnfoldError(ValueError):
def mesh_select(self):
if len(self.args) > 1:
elems, bm = self.args[1:3]
bpy.context.tool_settings.mesh_select_mode = [bool(elems[key]) for key in ("verts", "edges", "faces")]
for elem in chain(bm.verts, bm.edges, bm.faces):
elem.select = False
for elem in chain(*elems.values()):
elem.select_set(True)
bmesh.update_edit_mesh(bpy.context.object.data, loop_triangles=False, destructive=False)
class Unfolder:
def __init__(self, ob):
self.do_create_uvmap = False
bm = bmesh.from_edit_mesh(ob.data)
self.mesh = Mesh(bm, ob.matrix_world)
self.mesh.check_correct()
def __del__(self):
if not self.do_create_uvmap:
self.mesh.delete_uvmap()
def prepare(self, cage_size=None, priority_effect=default_priority_effect, scale=1, limit_by_page=False):
"""Create the islands of the net"""
self.mesh.generate_cuts(cage_size / scale if limit_by_page and cage_size else None, priority_effect)
self.mesh.finalize_islands(cage_size or M.Vector((1, 1)))
self.mesh.enumerate_islands()
self.mesh.save_uv()
def copy_island_names(self, island_list):
"""Copy island label and abbreviation from the best matching island in the list"""
orig_islands = [{face.id for face in item.faces} for item in island_list]
matching = list()
for i, island in enumerate(self.mesh.islands):
islfaces = {face.index for face in island.faces}
matching.extend((len(islfaces.intersection(item)), i, j) for j, item in enumerate(orig_islands))
matching.sort(reverse=True)
available_new = [True for island in self.mesh.islands]
available_orig = [True for item in island_list]
for face_count, i, j in matching:
if available_new[i] and available_orig[j]:
available_new[i] = available_orig[j] = False
self.mesh.islands[i].label = island_list[j].label
self.mesh.islands[i].abbreviation = island_list[j].abbreviation
def save(self, properties):
"""Export the document"""
# Note about scale: input is directly in blender length
# Mesh.scale_islands multiplies everything by a user-defined ratio
# exporters (SVG or PDF) multiply everything by 1000 (output in millimeters)
Exporter = Svg if properties.file_format == 'SVG' else Pdf
filepath = properties.filepath
extension = properties.file_format.lower()
filepath = bpy.path.ensure_ext(filepath, "." + extension)
# page size in meters
page_size = M.Vector((properties.output_size_x, properties.output_size_y))
# printable area size in meters
printable_size = page_size - 2 * properties.output_margin * M.Vector((1, 1))
unit_scale = bpy.context.scene.unit_settings.scale_length
ppm = properties.output_dpi * 100 / 2.54 # pixels per meter
# after this call, all dimensions will be in meters
self.mesh.scale_islands(unit_scale/properties.scale)
if properties.do_create_stickers:
self.mesh.generate_stickers(properties.sticker_width, properties.do_create_numbers)
elif properties.do_create_numbers:
self.mesh.generate_numbers_alone(properties.sticker_width)
text_height = properties.sticker_width if (properties.do_create_numbers and len(self.mesh.islands) > 1) else 0
# title height must be somewhat larger that text size, glyphs go below the baseline
self.mesh.finalize_islands(printable_size, title_height=text_height * 1.2)
self.mesh.fit_islands(printable_size)
if properties.output_type != 'NONE':
# bake an image and save it as a PNG to disk or into memory
image_packing = properties.image_packing if properties.file_format == 'SVG' else 'ISLAND_EMBED'
use_separate_images = image_packing in ('ISLAND_LINK', 'ISLAND_EMBED')
self.mesh.save_uv(cage_size=printable_size, separate_image=use_separate_images)
sce = bpy.context.scene
rd = sce.render
bk = rd.bake
recall = store_rna_properties(rd, bk, sce.cycles)
rd.engine = 'CYCLES'
for p in ('color', 'diffuse', 'direct', 'emit', 'glossy', 'indirect', 'transmission'):
setattr(bk, f"use_pass_{p}", (properties.output_type != 'TEXTURE'))
lookup = {'TEXTURE': 'DIFFUSE', 'AMBIENT_OCCLUSION': 'AO', 'RENDER': 'COMBINED', 'SELECTED_TO_ACTIVE': 'COMBINED'}
sce.cycles.bake_type = lookup[properties.output_type]
bk.use_selected_to_active = (properties.output_type == 'SELECTED_TO_ACTIVE')
bk.margin, bk.cage_extrusion, bk.use_cage, bk.use_clear = 1, 10, False, False
if properties.output_type == 'TEXTURE':
bk.use_pass_direct, bk.use_pass_indirect, bk.use_pass_color = False, False, True
sce.cycles.samples = 1
if sce.cycles.bake_type == 'COMBINED':
bk.use_pass_direct, bk.use_pass_indirect = True, True
bk.use_pass_diffuse, bk.use_pass_glossy, bk.use_pass_transmission, bk.use_pass_emit = True, False, False, True
if image_packing == 'PAGE_LINK':
self.mesh.save_image(printable_size * ppm, filepath)
elif image_packing == 'ISLAND_LINK':
image_dir = filepath[:filepath.rfind(".")]
self.mesh.save_separate_images(ppm, image_dir)
elif image_packing == 'ISLAND_EMBED':
self.mesh.save_separate_images(ppm, filepath, embed=Exporter.encode_image)
apply_rna_properties(recall, rd, bk, sce.cycles)
exporter = Exporter(properties)
exporter.write(self.mesh, filepath)
class Mesh:
"""Wrapper for Bpy Mesh"""
def __init__(self, bmesh, matrix):
self.data = bmesh
self.matrix = matrix.to_3x3()
self.looptex = bmesh.loops.layers.uv.new("Unfolded")
self.edges = {bmedge: Edge(bmedge) for bmedge in bmesh.edges}
self.islands = list()
self.pages = list()
for edge in self.edges.values():
edge.choose_main_faces()
if edge.main_faces:
edge.calculate_angle()
self.copy_freestyle_marks()
def delete_uvmap(self):
self.data.loops.layers.uv.remove(self.looptex) if self.looptex else None
def copy_freestyle_marks(self):
# NOTE: this is a workaround for NotImplementedError on bmesh.edges.layers.freestyle
mesh = bpy.data.meshes.new("unfolder_temp")
self.data.to_mesh(mesh)
for bmedge, edge in self.edges.items():
edge.freestyle = mesh.edges[bmedge.index].use_freestyle_mark
bpy.data.meshes.remove(mesh)
def mark_cuts(self):
for bmedge, edge in self.edges.items():
if edge.is_main_cut and not bmedge.is_boundary:
bmedge.seam = True
def check_correct(self, epsilon=1e-6):
"""Check for invalid geometry"""
def is_twisted(face):
if len(face.verts) <= 3:
return False
center = face.calc_center_median()
plane_d = center.dot(face.normal)
diameter = max((center - vertex.co).length for vertex in face.verts)
threshold = 0.01 * diameter
return any(abs(v.co.dot(face.normal) - plane_d) > threshold for v in face.verts)
null_edges = {e for e in self.edges.keys() if e.calc_length() < epsilon and e.link_faces}
null_faces = {f for f in self.data.faces if f.calc_area() < epsilon}
twisted_faces = {f for f in self.data.faces if is_twisted(f)}
inverted_scale = self.matrix.determinant() <= 0
if not (null_edges or null_faces or twisted_faces or inverted_scale):
return True
if inverted_scale:
raise UnfoldError(
"The object is flipped inside-out.\n"
"You can use Object -> Apply -> Scale to fix it. Export failed.")
disease = [("Remove Doubles", null_edges or null_faces), ("Triangulate", twisted_faces)]
cure = " and ".join(s for s, k in disease if k)
raise UnfoldError(
"The model contains:\n" +
(" {} zero-length edge(s)\n".format(len(null_edges)) if null_edges else "") +
(" {} zero-area face(s)\n".format(len(null_faces)) if null_faces else "") +
(" {} twisted polygon(s)\n".format(len(twisted_faces)) if twisted_faces else "") +
"The offenders are selected and you can use {} to fix them. Export failed.".format(cure),
{"verts": set(), "edges": null_edges, "faces": null_faces | twisted_faces}, self.data)
def generate_cuts(self, page_size, priority_effect):
"""Cut the mesh so that it can be unfolded to a flat net."""
normal_matrix = self.matrix.inverted().transposed()
islands = {Island(self, face, self.matrix, normal_matrix) for face in self.data.faces}
uvfaces = {face: uvface for island in islands for face, uvface in island.faces.items()}
uvedges = {loop: uvedge for island in islands for loop, uvedge in island.edges.items()}
for loop, uvedge in uvedges.items():
self.edges[loop.edge].uvedges.append(uvedge)
# check for edges that are cut permanently
edges = [edge for edge in self.edges.values() if not edge.force_cut and edge.main_faces]
average_length = sum(edge.vector.length for edge in edges) / len(edges)
for edge in edges:
edge.generate_priority(priority_effect, average_length)
edges.sort(reverse=False, key=lambda edge: edge.priority)
for edge in edges:
if not edge.vector:
edge_a, edge_b = (uvedges[l] for l in edge.main_faces)
old_island = join(edge_a, edge_b, size_limit=page_size)
if old_island:
islands.remove(old_island)
self.islands = sorted(islands, reverse=True, key=lambda island: len(island.faces))
for edge in self.edges.values():
# some edges did not know until now whether their angle is convex or concave
if edge.main_faces and (uvfaces[edge.main_faces[0].face].flipped or uvfaces[edge.main_faces[1].face].flipped):
edge.calculate_angle()
# ensure that the order of faces corresponds to the order of uvedges
if edge.main_faces:
reordered = [None, None]
for uvedge in edge.uvedges:
try:
index = edge.main_faces.index(uvedge.loop)
reordered[index] = uvedge
except ValueError:
reordered.append(uvedge)
edge.uvedges = reordered
for island in self.islands:
# if the normals are ambiguous, flip them so that there are more convex edges than concave ones
if any(uvface.flipped for uvface in island.faces.values()):
island_edges = {self.edges[uvedge.edge] for uvedge in island.edges}
balance = sum((+1 if edge.angle > 0 else -1) for edge in island_edges if not edge.is_cut(uvedge.uvface.face))
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
if balance < 0:
island.is_inside_out = True
# construct a linked list from each island's boundary
# uvedge.neighbor_right is clockwise = forward = via uvedge.vb if not uvface.flipped
neighbor_lookup, conflicts = dict(), dict()
for uvedge in island.boundary:
uvvertex = uvedge.va if uvedge.uvface.flipped else uvedge.vb
if uvvertex not in neighbor_lookup:
neighbor_lookup[uvvertex] = uvedge
else:
if uvvertex not in conflicts:
conflicts[uvvertex] = [neighbor_lookup[uvvertex], uvedge]
else:
conflicts[uvvertex].append(uvedge)
for uvedge in island.boundary:
uvvertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
if uvvertex not in conflicts:
# using the 'get' method so as to handle single-connected vertices properly
uvedge.neighbor_right = neighbor_lookup.get(uvvertex, uvedge)
uvedge.neighbor_right.neighbor_left = uvedge
else:
conflicts[uvvertex].append(uvedge)
# resolve merged vertices with more boundaries crossing
def direction_to_float(vector):
return (1 - vector.x/vector.length) if vector.y > 0 else (vector.x/vector.length - 1)
for uvvertex, uvedges in conflicts.items():
def is_inwards(uvedge):
return uvedge.uvface.flipped == (uvedge.va is uvvertex)
def uvedge_sortkey(uvedge):
if is_inwards(uvedge):
return direction_to_float(uvedge.va.co - uvedge.vb.co)
else:
return direction_to_float(uvedge.vb.co - uvedge.va.co)
uvedges.sort(key=uvedge_sortkey)
for right, left in (
zip(uvedges[:-1:2], uvedges[1::2]) if is_inwards(uvedges[0])
else zip([uvedges[-1]] + uvedges[1::2], uvedges[:-1:2])):
left.neighbor_right = right
right.neighbor_left = left
return True
def generate_stickers(self, default_width, do_create_numbers=True):
"""Add sticker faces where they are needed."""
def uvedge_priority(uvedge):
"""Returns whether it is a good idea to stick something on this edge's face"""
# TODO: it should take into account overlaps with faces and with other stickers
face = uvedge.uvface.face
return face.calc_area() / face.calc_perimeter()
def add_sticker(uvedge, index, target_uvedge):
uvedge.sticker = Sticker(uvedge, default_width, index, target_uvedge)
uvedge.uvface.island.add_marker(uvedge.sticker)
def is_index_obvious(uvedge, target):
if uvedge in (target.neighbor_left, target.neighbor_right):
return True
if uvedge.neighbor_left.loop.edge is target.neighbor_right.loop.edge and uvedge.neighbor_right.loop.edge is target.neighbor_left.loop.edge:
return True
return False
for edge in self.edges.values():
if edge.is_main_cut and len(edge.uvedges) >= 2 and edge.vector.length_squared > 0:
target, source = edge.uvedges[:2]
if uvedge_priority(target) < uvedge_priority(source):
target, source = source, target
target_island = target.uvface.island
if do_create_numbers:
for uvedge in [source] + edge.uvedges[2:]:
if not is_index_obvious(uvedge, target):
# it will not be clear to see that these uvedges should be sticked together
# So, create an arrow and put the index on all stickers
target_island.sticker_numbering += 1
index = str(target_island.sticker_numbering)
if is_upsidedown_wrong(index):
index += "."
target_island.add_marker(Arrow(target, default_width, index))
add_sticker(source, index, target)
elif len(edge.uvedges) > 2:
target = edge.uvedges[0]
if len(edge.uvedges) > 2:
for source in edge.uvedges[2:]:
add_sticker(source, index, target)
def generate_numbers_alone(self, size):
global_numbering = 0
for edge in self.edges.values():
if edge.is_main_cut and len(edge.uvedges) >= 2:
global_numbering += 1
index = str(global_numbering)
if is_upsidedown_wrong(index):
index += "."
for uvedge in edge.uvedges:
uvedge.uvface.island.add_marker(NumberAlone(uvedge, index, size))
def enumerate_islands(self):
for num, island in enumerate(self.islands, 1):
island.number = num
island.generate_label()
def scale_islands(self, scale):
for island in self.islands:
vertices = set(island.vertices.values())
for point in chain((vertex.co for vertex in vertices), island.fake_vertices):
point *= scale
def finalize_islands(self, cage_size, title_height=0):
for island in self.islands:
if title_height:
island.title = "[{}] {}".format(island.abbreviation, island.label)
points = [vertex.co for vertex in set(island.vertices.values())] + island.fake_vertices
angle, _ = cage_fit(points, (cage_size.y - title_height) / cage_size.x)
rot = M.Matrix.Rotation(angle, 2)
for point in points:
for marker in island.markers:
marker.rot = rot @ marker.rot
bottom_left = M.Vector((min(v.x for v in points), min(v.y for v in points) - title_height))
# DEBUG
# top_right = M.Vector((max(v.x for v in points), max(v.y for v in points) - title_height))
# print(f"fitted aspect: {(top_right.y - bottom_left.y) / (top_right.x - bottom_left.x)}")
for point in points:
point -= bottom_left
island.bounding_box = M.Vector((max(v.x for v in points), max(v.y for v in points)))
def largest_island_ratio(self, cage_size):
return max(i / p for island in self.islands for (i, p) in zip(island.bounding_box, cage_size))
def fit_islands(self, cage_size):
"""Move islands so that they fit onto pages, based on their bounding boxes"""
def try_emplace(island, page_islands, stops_x, stops_y, occupied_cache):
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
"""Tries to put island to each pair from stops_x, stops_y
and checks if it overlaps with any islands present on the page.
Returns True and positions the given island on success."""
bbox_x, bbox_y = island.bounding_box.xy
for x in stops_x:
if x + bbox_x > cage_size.x:
continue
for y in stops_y:
if y + bbox_y > cage_size.y or (x, y) in occupied_cache:
continue
for i, obstacle in enumerate(page_islands):
# if this obstacle overlaps with the island, try another stop
if (x + bbox_x > obstacle.pos.x and
obstacle.pos.x + obstacle.bounding_box.x > x and
y + bbox_y > obstacle.pos.y and
obstacle.pos.y + obstacle.bounding_box.y > y):
if x >= obstacle.pos.x and y >= obstacle.pos.y:
occupied_cache.add((x, y))
# just a stupid heuristic to make subsequent searches faster
if i > 0:
page_islands[1:i+1] = page_islands[:i]
page_islands[0] = obstacle
break
else:
# if no obstacle called break, this position is okay
island.pos.xy = x, y
page_islands.append(island)
stops_x.append(x + bbox_x)
stops_y.append(y + bbox_y)
return True
return False
def drop_portion(stops, border, divisor):
stops.sort()
# distance from left neighbor to the right one, excluding the first stop
distances = [right - left for left, right in zip(stops, chain(stops[2:], [border]))]
quantile = sorted(distances)[len(distances) // divisor]
return [stop for stop, distance in zip(stops, chain([quantile], distances)) if distance >= quantile]
if any(island.bounding_box.x > cage_size.x or island.bounding_box.y > cage_size.y for island in self.islands):
raise UnfoldError(
"An island is too big to fit onto page of the given size. "
"Either downscale the model or find and split that island manually.\n"
"Export failed, sorry.")
# sort islands by their diagonal... just a guess
remaining_islands = sorted(self.islands, reverse=True, key=lambda island: island.bounding_box.length_squared)
page_num = 1 # TODO delete me
while remaining_islands:
# create a new page and try to fit as many islands onto it as possible
page = Page(page_num)
page_num += 1
occupied_cache = set()
stops_x, stops_y = [0], [0]
for island in remaining_islands:
try_emplace(island, page.islands, stops_x, stops_y, occupied_cache)
# if overwhelmed with stops, drop a quarter of them
if len(stops_x)**2 > 4 * len(self.islands) + 100:
stops_x = drop_portion(stops_x, cage_size.x, 4)
stops_y = drop_portion(stops_y, cage_size.y, 4)
remaining_islands = [island for island in remaining_islands if island not in page.islands]
self.pages.append(page)
def save_uv(self, cage_size=M.Vector((1, 1)), separate_image=False):
if separate_image:
for island in self.islands:
island.save_uv_separate(self.looptex)
else:
for island in self.islands:
island.save_uv(self.looptex, cage_size)
def save_image(self, page_size_pixels: M.Vector, filename):
for page in self.pages:
image = create_blank_image("Page {}".format(page.name), page_size_pixels, alpha=1)
image.filepath_raw = page.image_path = "{}_{}.png".format(filename, page.name)
faces = [face for island in page.islands for face in island.faces]
self.bake(faces, image)
image.save()
image.user_clear()
bpy.data.images.remove(image)
def save_separate_images(self, scale, filepath, embed=None):
for i, island in enumerate(self.islands):
image_name = "Island {}".format(i)
image = create_blank_image(image_name, island.bounding_box * scale, alpha=0)
self.bake(island.faces.keys(), image)
if embed:
island.embedded_image = embed(image)
else:
from os import makedirs
image_dir = filepath
makedirs(image_dir, exist_ok=True)
image_path = os_path.join(image_dir, "island{}.png".format(i))
image.filepath_raw = image_path
image.save()
island.image_path = image_path
image.user_clear()
bpy.data.images.remove(image)
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
def bake(self, faces, image):
if not self.looptex:
raise UnfoldError("The mesh has no UV Map slots left. Either delete a UV Map or export the net without textures.")
ob = bpy.context.active_object
me = ob.data
# in Cycles, the image for baking is defined by the active Image Node
temp_nodes = dict()
for mat in me.materials:
mat.use_nodes = True
img = mat.node_tree.nodes.new('ShaderNodeTexImage')
img.image = image
temp_nodes[mat] = img
mat.node_tree.nodes.active = img
# move all excess faces to negative numbers (that is the only way to disable them)
ignored_uvs = [loop[self.looptex].uv for f in self.data.faces if f not in faces for loop in f.loops]
for uv in ignored_uvs:
uv *= -1
bake_type = bpy.context.scene.cycles.bake_type
sta = bpy.context.scene.render.bake.use_selected_to_active
try:
ob.update_from_editmode()
me.uv_layers.active = me.uv_layers[self.looptex.name]
bpy.ops.object.bake(type=bake_type, margin=1, use_selected_to_active=sta, cage_extrusion=100, use_clear=False)
except RuntimeError as e:
raise UnfoldError(*e.args)
finally:
for mat, node in temp_nodes.items():
mat.node_tree.nodes.remove(node)
for uv in ignored_uvs:
uv *= -1
class Edge:
"""Wrapper for BPy Edge"""
__slots__ = (
'data', 'va', 'vb', 'main_faces', 'uvedges',
'is_main_cut', 'force_cut', 'priority', 'freestyle')
def __init__(self, edge):
self.data = edge
self.va, self.vb = edge.verts
self.vector = self.vb.co - self.va.co
# if self.main_faces is set, then self.uvedges[:2] must correspond to self.main_faces, in their order
# this constraint is assured at the time of finishing mesh.generate_cuts
self.uvedges = list()
self.force_cut = edge.seam # such edges will always be cut
self.main_faces = None # two faces that may be connected in the island
# is_main_cut defines whether the two main faces are connected
# all the others will be assumed to be cut
self.is_main_cut = True
self.priority = None
self.angle = None
self.freestyle = False
def choose_main_faces(self):
"""Choose two main faces that might get connected in an island"""
def score(pair):
return abs(pair[0].face.normal.dot(pair[1].face.normal))
loops = self.data.link_loops
if len(loops) == 2:
self.main_faces = list(loops)
elif len(loops) > 2:
# find (with brute force) the pair of indices whose loops have the most similar normals
self.main_faces = max(combinations(loops, 2), key=score)
if self.main_faces and self.main_faces[1].vert == self.va:
self.main_faces = self.main_faces[::-1]
def calculate_angle(self):
"""Calculate the angle between the main faces"""
loop_a, loop_b = self.main_faces
normal_a, normal_b = (l.face.normal for l in self.main_faces)
if not normal_a or not normal_b:
self.angle = -3 # just a very sharp angle
s = normal_a.cross(normal_b).dot(self.vector.normalized())
s = max(min(s, 1.0), -1.0) # deal with rounding errors
if loop_a.link_loop_next.vert != loop_b.vert or loop_b.link_loop_next.vert != loop_a.vert:
self.angle = abs(self.angle)
def generate_priority(self, priority_effect, average_length):
"""Calculate the priority value for cutting"""
angle = self.angle
if angle > 0:
self.priority = priority_effect['CONVEX'] * angle / pi
else:
self.priority = priority_effect['CONCAVE'] * (-angle) / pi
self.priority += (self.vector.length / average_length) * priority_effect['LENGTH']
def is_cut(self, face):
"""Return False if this edge will the given face to another one in the resulting net
(useful for edges with more than two faces connected)"""
# Return whether there is a cut between the two main faces
if self.main_faces and face in {loop.face for loop in self.main_faces}:
return self.is_main_cut
# All other faces (third and more) are automatically treated as cut
else:
return True
def other_uvedge(self, this):
"""Get an uvedge of this edge that is not the given one
causes an IndexError if case of less than two adjacent edges"""
return self.uvedges[1] if this is self.uvedges[0] else self.uvedges[0]
class Island:
"""Part of the net to be exported"""
__slots__ = (
'mesh', 'faces', 'edges', 'vertices', 'fake_vertices', 'boundary', 'markers',
'pos', 'bounding_box',
'image_path', 'embedded_image',
'number', 'label', 'abbreviation', 'title',
'has_safe_geometry', 'is_inside_out',
'sticker_numbering')
def __init__(self, mesh, face, matrix, normal_matrix):
"""Create an Island from a single Face"""
self.mesh = mesh
self.faces = dict() # face -> uvface
self.edges = dict() # loop -> uvedge
self.vertices = dict() # loop -> uvvertex
self.fake_vertices = list()
self.markers = list()
self.label = None
self.abbreviation = None
self.title = None
self.pos = M.Vector((0, 0))
self.image_path = None
self.embedded_image = None
self.is_inside_out = False # swaps concave <-> convex edges
self.has_safe_geometry = True
self.sticker_numbering = 0
uvface = UVFace(face, self, matrix, normal_matrix)
self.vertices.update(uvface.vertices)
self.edges.update(uvface.edges)
self.faces[face] = uvface
# UVEdges on the boundary
self.boundary = list(self.edges.values())
def add_marker(self, marker):
self.fake_vertices.extend(marker.bounds)
self.markers.append(marker)
def generate_label(self, label=None, abbreviation=None):
"""Assign a name to this island automatically"""
abbr = abbreviation or self.abbreviation or str(self.number)
# TODO: dots should be added in the last instant when outputting any text
if is_upsidedown_wrong(abbr):
abbr += "."
self.label = label or self.label or "Island {}".format(self.number)
self.abbreviation = abbr
def save_uv(self, tex, cage_size):
"""Save UV Coordinates of all UVFaces to a given UV texture
tex: UV Texture layer to use (BMLayerItem)
page_size: size of the page in pixels (vector)"""
scale_x, scale_y = 1 / cage_size.x, 1 / cage_size.y
for loop, uvvertex in self.vertices.items():
uv = uvvertex.co + self.pos
loop[tex].uv = uv.x * scale_x, uv.y * scale_y
def save_uv_separate(self, tex):
"""Save UV Coordinates of all UVFaces to a given UV texture, spanning from 0 to 1
tex: UV Texture layer to use (BMLayerItem)
page_size: size of the page in pixels (vector)"""
scale_x, scale_y = 1 / self.bounding_box.x, 1 / self.bounding_box.y
for loop, uvvertex in self.vertices.items():
loop[tex].uv = uvvertex.co.x * scale_x, uvvertex.co.y * scale_y
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
def join(uvedge_a, uvedge_b, size_limit=None, epsilon=1e-6):
"""
Try to join other island on given edge
Returns False if they would overlap
"""
class Intersection(Exception):
pass
class GeometryError(Exception):
pass
def is_below(self, other, correct_geometry=True):
if self is other:
return False
if self.top < other.bottom:
return True
if other.top < self.bottom:
return False
if self.max.tup <= other.min.tup:
return True
if other.max.tup <= self.min.tup:
return False
self_vector = self.max.co - self.min.co
min_to_min = other.min.co - self.min.co
cross_b1 = self_vector.cross(min_to_min)
cross_b2 = self_vector.cross(other.max.co - self.min.co)
if cross_b2 < cross_b1:
cross_b1, cross_b2 = cross_b2, cross_b1
if cross_b2 > 0 and (cross_b1 > 0 or (cross_b1 == 0 and not self.is_uvface_upwards())):
return True
if cross_b1 < 0 and (cross_b2 < 0 or (cross_b2 == 0 and self.is_uvface_upwards())):
return False
other_vector = other.max.co - other.min.co
cross_a1 = other_vector.cross(-min_to_min)
cross_a2 = other_vector.cross(self.max.co - other.min.co)
if cross_a2 < cross_a1:
cross_a1, cross_a2 = cross_a2, cross_a1
if cross_a2 > 0 and (cross_a1 > 0 or (cross_a1 == 0 and not other.is_uvface_upwards())):
return False
if cross_a1 < 0 and (cross_a2 < 0 or (cross_a2 == 0 and other.is_uvface_upwards())):
return True
if cross_a1 == cross_b1 == cross_a2 == cross_b2 == 0:
if correct_geometry:
raise GeometryError
elif self.is_uvface_upwards() == other.is_uvface_upwards():
raise Intersection
return False
if self.min.tup == other.min.tup or self.max.tup == other.max.tup:
return cross_a2 > cross_b2
raise Intersection
class QuickSweepline:
"""Efficient sweepline based on binary search, checking neighbors only"""
def __init__(self):
self.children = list()
def add(self, item, cmp=is_below):
low, high = 0, len(self.children)
while low < high:
mid = (low + high) // 2
if cmp(self.children[mid], item):
low = mid + 1
else:
high = mid
self.children.insert(low, item)
def remove(self, item, cmp=is_below):
index = self.children.index(item)
self.children.pop(index)
if index > 0 and index < len(self.children):
# check for intersection
if cmp(self.children[index], self.children[index-1]):
raise GeometryError
class BruteSweepline:
"""Safe sweepline which checks all its members pairwise"""
def __init__(self):
self.children = set()
def add(self, item, cmp=is_below):
for child in self.children:
if child.min is not item.min and child.max is not item.max:
cmp(item, child, False)
self.children.add(item)
def remove(self, item):
self.children.remove(item)
def sweep(sweepline, segments):
"""Sweep across the segments and raise an exception if necessary"""
# careful, 'segments' may be a use-once iterator
events_add = sorted(segments, reverse=True, key=lambda uvedge: uvedge.min.tup)
events_remove = sorted(events_add, reverse=True, key=lambda uvedge: uvedge.max.tup)
while events_remove:
while events_add and events_add[-1].min.tup <= events_remove[-1].max.tup:
sweepline.add(events_add.pop())
sweepline.remove(events_remove.pop())
def root_find(value, tree):
"""Find the root of a given value in a forest-like dictionary
also updates the dictionary using path compression"""
parent, relink = tree.get(value), list()
while parent is not None:
relink.append(value)
value, parent = parent, tree.get(parent)
tree.update(dict.fromkeys(relink, value))
return value
def slope_from(position):
def slope(uvedge):
vec = (uvedge.vb.co - uvedge.va.co) if uvedge.va.tup == position else (uvedge.va.co - uvedge.vb.co)
return (vec.y / vec.length + 1) if ((vec.x, vec.y) > (0, 0)) else (-1 - vec.y / vec.length)
return slope
island_a, island_b = (e.uvface.island for e in (uvedge_a, uvedge_b))
if island_a is island_b:
return False
elif len(island_b.faces) > len(island_a.faces):
uvedge_a, uvedge_b = uvedge_b, uvedge_a
island_a, island_b = island_b, island_a
# check if vertices and normals are aligned correctly
verts_flipped = uvedge_b.loop.vert is uvedge_a.loop.vert
flipped = verts_flipped ^ uvedge_a.uvface.flipped ^ uvedge_b.uvface.flipped
# determine rotation
# NOTE: if the edges differ in length, the matrix will involve uniform scaling.
# Such situation may occur in the case of twisted n-gons
first_b, second_b = (uvedge_b.va, uvedge_b.vb) if not verts_flipped else (uvedge_b.vb, uvedge_b.va)
if not flipped:
rot = fitting_matrix(first_b.co - second_b.co, uvedge_a.vb.co - uvedge_a.va.co)
else:
flip = M.Matrix(((-1, 0), (0, 1)))
rot = fitting_matrix(flip @ (first_b.co - second_b.co), uvedge_a.vb.co - uvedge_a.va.co) @ flip
trans = uvedge_a.vb.co - rot @ first_b.co
# preview of island_b's vertices after the join operation
phantoms = {uvvertex: UVVertex(rot @ uvvertex.co + trans) for uvvertex in island_b.vertices.values()}
# check the size of the resulting island
if size_limit:
points = [vert.co for vert in chain(island_a.vertices.values(), phantoms.values())]
left, right, bottom, top = (fn(co[i] for co in points) for i in (0, 1) for fn in (min, max))
bbox_width = right - left
bbox_height = top - bottom
if min(bbox_width, bbox_height)**2 > size_limit.x**2 + size_limit.y**2:
return False
if (bbox_width > size_limit.x or bbox_height > size_limit.y) and (bbox_height > size_limit.x or bbox_width > size_limit.y):
_, height = cage_fit(points, size_limit.y / size_limit.x)
if height > size_limit.y:
return False
distance_limit = uvedge_a.loop.edge.calc_length() * epsilon
# try and merge UVVertices closer than sqrt(distance_limit)
merged_uvedges = set()
merged_uvedge_pairs = list()
# merge all uvvertices that are close enough using a union-find structure
# uvvertices will be merged only in cases island_b->island_a and island_a->island_a
# all resulting groups are merged together to a uvvertex of island_a
is_merged_mine = False
shared_vertices = {loop.vert for loop in chain(island_a.vertices, island_b.vertices)}
for vertex in shared_vertices:
uvs_a = {island_a.vertices.get(loop) for loop in vertex.link_loops} - {None}
uvs_b = {island_b.vertices.get(loop) for loop in vertex.link_loops} - {None}
for a, b in product(uvs_a, uvs_b):
if (a.co - phantoms[b].co).length_squared < distance_limit:
phantoms[b] = root_find(a, phantoms)
for a1, a2 in combinations(uvs_a, 2):
if (a1.co - a2.co).length_squared < distance_limit:
a1, a2 = (root_find(a, phantoms) for a in (a1, a2))
if a1 is not a2:
phantoms[a2] = a1
is_merged_mine = True
for source, target in phantoms.items():
target = root_find(target, phantoms)
phantoms[source] = target
for uvedge in (chain(island_a.boundary, island_b.boundary) if is_merged_mine else island_b.boundary):
for loop in uvedge.loop.link_loops:
partner = island_b.edges.get(loop) or island_a.edges.get(loop)
if partner is not None and partner is not uvedge:
paired_a, paired_b = phantoms.get(partner.vb, partner.vb), phantoms.get(partner.va, partner.va)
if (partner.uvface.flipped ^ flipped) != uvedge.uvface.flipped:
paired_a, paired_b = paired_b, paired_a
if phantoms.get(uvedge.va, uvedge.va) is paired_a and phantoms.get(uvedge.vb, uvedge.vb) is paired_b:
# if these two edges will get merged, add them both to the set
merged_uvedges.update((uvedge, partner))
merged_uvedge_pairs.append((uvedge, partner))
break
if uvedge_b not in merged_uvedges:
raise UnfoldError("Export failed. Please report this error, including the model if you can.")
boundary_other = [
PhantomUVEdge(phantoms[uvedge.va], phantoms[uvedge.vb], flipped ^ uvedge.uvface.flipped)
for uvedge in island_b.boundary if uvedge not in merged_uvedges]
# TODO: if is_merged_mine, it might make sense to create a similar list from island_a.boundary as well
incidence = {vertex.tup for vertex in phantoms.values()}.intersection(vertex.tup for vertex in island_a.vertices.values())
incidence = {position: list() for position in incidence} # from now on, 'incidence' is a dict
for uvedge in chain(boundary_other, island_a.boundary):
if uvedge.va.co == uvedge.vb.co:
continue
for vertex in (uvedge.va, uvedge.vb):
site = incidence.get(vertex.tup)
if site is not None:
site.append(uvedge)
for position, segments in incidence.items():
if len(segments) <= 2:
continue
segments.sort(key=slope_from(position))
for right, left in pairs(segments):
is_left_ccw = left.is_uvface_upwards() ^ (left.max.tup == position)
is_right_ccw = right.is_uvface_upwards() ^ (right.max.tup == position)
if is_right_ccw and not is_left_ccw and type(right) is not type(left) and right not in merged_uvedges and left not in merged_uvedges:
return False
if (not is_right_ccw and right not in merged_uvedges) ^ (is_left_ccw and left not in merged_uvedges):
return False
# check for self-intersections
try:
try:
sweepline = QuickSweepline() if island_a.has_safe_geometry and island_b.has_safe_geometry else BruteSweepline()
sweep(sweepline, (uvedge for uvedge in chain(boundary_other, island_a.boundary)))
island_a.has_safe_geometry &= island_b.has_safe_geometry
except GeometryError:
sweep(BruteSweepline(), (uvedge for uvedge in chain(boundary_other, island_a.boundary)))
island_a.has_safe_geometry = False
except Intersection:
return False
# mark all edges that connect the islands as not cut
for uvedge in merged_uvedges:
island_a.mesh.edges[uvedge.loop.edge].is_main_cut = False
# include all transformed vertices as mine
island_a.vertices.update({loop: phantoms[uvvertex] for loop, uvvertex in island_b.vertices.items()})
# re-link uvedges and uvfaces to their transformed locations
for uvedge in island_b.edges.values():
uvedge.va = phantoms[uvedge.va]
uvedge.vb = phantoms[uvedge.vb]
uvedge.update()
if is_merged_mine:
for uvedge in island_a.edges.values():
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
uvedge.va = phantoms.get(uvedge.va, uvedge.va)
uvedge.vb = phantoms.get(uvedge.vb, uvedge.vb)
island_a.edges.update(island_b.edges)
for uvface in island_b.faces.values():
uvface.island = island_a
uvface.vertices = {loop: phantoms[uvvertex] for loop, uvvertex in uvface.vertices.items()}
uvface.flipped ^= flipped
if is_merged_mine:
# there may be own uvvertices that need to be replaced by phantoms
for uvface in island_a.faces.values():
if any(uvvertex in phantoms for uvvertex in uvface.vertices):
uvface.vertices = {loop: phantoms.get(uvvertex, uvvertex) for loop, uvvertex in uvface.vertices.items()}
island_a.faces.update(island_b.faces)
island_a.boundary = [
uvedge for uvedge in chain(island_a.boundary, island_b.boundary)
if uvedge not in merged_uvedges]
for uvedge, partner in merged_uvedge_pairs:
# make sure that main faces are the ones actually merged (this changes nothing in most cases)
edge = island_a.mesh.edges[uvedge.loop.edge]
edge.main_faces = uvedge.loop, partner.loop
# everything seems to be OK
return island_b
class Page:
"""Container for several Islands"""
__slots__ = ('islands', 'name', 'image_path')
def __init__(self, num=1):
self.islands = list()
self.name = "page{}".format(num) # note: this is only used in svg files naming
self.image_path = None
class UVVertex:
"""Vertex in 2D"""
__slots__ = ('co', 'tup')
def __init__(self, vector):
self.co = vector.xy
self.tup = tuple(self.co)
class UVEdge:
"""Edge in 2D"""
# Every UVEdge is attached to only one UVFace
# UVEdges are doubled as needed because they both have to point clockwise around their faces
__slots__ = (
'va', 'vb', 'uvface', 'loop',
'min', 'max', 'bottom', 'top',
'neighbor_left', 'neighbor_right', 'sticker')
def __init__(self, vertex1: UVVertex, vertex2: UVVertex, uvface, loop):
self.va = vertex1
self.vb = vertex2
self.update()
self.uvface = uvface
self.sticker = None
self.loop = loop
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
def update(self):
"""Update data if UVVertices have moved"""
self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va)
y1, y2 = self.va.co.y, self.vb.co.y
self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1)
def is_uvface_upwards(self):
return (self.va.tup < self.vb.tup) ^ self.uvface.flipped
def __repr__(self):
return "({0.va} - {0.vb})".format(self)
class PhantomUVEdge:
"""Temporary 2D Segment for calculations"""
__slots__ = ('va', 'vb', 'min', 'max', 'bottom', 'top')
def __init__(self, vertex1: UVVertex, vertex2: UVVertex, flip):
self.va, self.vb = (vertex2, vertex1) if flip else (vertex1, vertex2)
self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va)
y1, y2 = self.va.co.y, self.vb.co.y
self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1)
def is_uvface_upwards(self):
return self.va.tup < self.vb.tup
def __repr__(self):
return "[{0.va} - {0.vb}]".format(self)
class UVFace:
"""Face in 2D"""
__slots__ = ('vertices', 'edges', 'face', 'island', 'flipped')
def __init__(self, face: bmesh.types.BMFace, island: Island, matrix=1, normal_matrix=1):
self.face = face
self.island = island
self.flipped = False # a flipped UVFace has edges clockwise
flatten = z_up_matrix(normal_matrix @ face.normal) @ matrix
self.vertices = {loop: UVVertex(flatten @ loop.vert.co) for loop in face.loops}
self.edges = {loop: UVEdge(self.vertices[loop], self.vertices[loop.link_loop_next], self, loop) for loop in face.loops}
class Arrow:
"""Mark in the document: an arrow denoting the number of the edge it points to"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'size')
def __init__(self, uvedge, size, index):
self.text = str(index)
edge = (uvedge.vb.co - uvedge.va.co) if not uvedge.uvface.flipped else (uvedge.va.co - uvedge.vb.co)
self.center = (uvedge.va.co + uvedge.vb.co) / 2
self.size = size
tangent = edge.normalized()
cos, sin = tangent
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
normal = M.Vector((sin, -cos))
self.bounds = [self.center, self.center + (1.2 * normal + tangent) * size, self.center + (1.2 * normal - tangent) * size]
class Sticker:
"""Mark in the document: sticker tab"""
__slots__ = ('bounds', 'center', 'points', 'rot', 'text', 'width')
def __init__(self, uvedge, default_width, index, other: UVEdge):
"""Sticker is directly attached to the given UVEdge"""
first_vertex, second_vertex = (uvedge.va, uvedge.vb) if not uvedge.uvface.flipped else (uvedge.vb, uvedge.va)
edge = first_vertex.co - second_vertex.co
sticker_width = min(default_width, edge.length / 2)
other_first, other_second = (other.va, other.vb) if not other.uvface.flipped else (other.vb, other.va)
other_edge = other_second.co - other_first.co
# angle a is at vertex uvedge.va, b is at uvedge.vb
cos_a = cos_b = 0.5
sin_a = sin_b = 0.75**0.5
# len_a is length of the side adjacent to vertex a, len_b likewise
len_a = len_b = sticker_width / sin_a
# fix overlaps with the most often neighbour - its sticking target
if first_vertex == other_second:
cos_a = max(cos_a, edge.dot(other_edge) / (edge.length_squared)) # angles between pi/3 and 0
elif second_vertex == other_first:
cos_b = max(cos_b, edge.dot(other_edge) / (edge.length_squared)) # angles between pi/3 and 0
# Fix tabs for sticking targets with small angles
try:
other_face_neighbor_left = other.neighbor_left
other_face_neighbor_right = other.neighbor_right
other_edge_neighbor_a = other_face_neighbor_left.vb.co - other.vb.co
other_edge_neighbor_b = other_face_neighbor_right.va.co - other.va.co
# Adjacent angles in the face
cos_a = max(cos_a, -other_edge.dot(other_edge_neighbor_a) / (other_edge.length*other_edge_neighbor_a.length))
cos_b = max(cos_b, other_edge.dot(other_edge_neighbor_b) / (other_edge.length*other_edge_neighbor_b.length))
except AttributeError: # neighbor data may be missing for edges with 3+ faces
pass
except ZeroDivisionError:
pass
# Calculate the lengths of the glue tab edges using the possibly smaller angles
sin_a = abs(1 - cos_a**2)**0.5
len_b = min(len_a, (edge.length * sin_a) / (sin_a * cos_b + sin_b * cos_a))
len_a = 0 if sin_a == 0 else min(sticker_width / sin_a, (edge.length - len_b*cos_b) / cos_a)
sin_b = abs(1 - cos_b**2)**0.5
len_a = min(len_a, (edge.length * sin_b) / (sin_a * cos_b + sin_b * cos_a))
len_b = 0 if sin_b == 0 else min(sticker_width / sin_b, (edge.length - len_a * cos_a) / cos_b)
v3 = second_vertex.co + M.Matrix(((cos_b, -sin_b), (sin_b, cos_b))) @ edge * len_b / edge.length
v4 = first_vertex.co + M.Matrix(((-cos_a, -sin_a), (sin_a, -cos_a))) @ edge * len_a / edge.length
if v3 != v4:
self.points = [second_vertex.co, v3, v4, first_vertex.co]
self.points = [second_vertex.co, v3, first_vertex.co]
sin, cos = edge.y / edge.length, edge.x / edge.length
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
self.width = sticker_width * 0.9
if index and uvedge.uvface.island is not other.uvface.island:
self.text = "{}:{}".format(other.uvface.island.abbreviation, index)
else:
self.text = index
self.center = (uvedge.va.co + uvedge.vb.co) / 2 + self.rot @ M.Vector((0, self.width * 0.2))
self.bounds = [v3, v4, self.center] if v3 != v4 else [v3, self.center]
class NumberAlone:
"""Mark in the document: numbering inside the island denoting edges to be sticked"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'size')
def __init__(self, uvedge, index, default_size=0.005):
"""Sticker is directly attached to the given UVEdge"""
edge = (uvedge.va.co - uvedge.vb.co) if not uvedge.uvface.flipped else (uvedge.vb.co - uvedge.va.co)
self.size = default_size
sin, cos = edge.y / edge.length, edge.x / edge.length
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
self.text = index
self.center = (uvedge.va.co + uvedge.vb.co) / 2 - self.rot @ M.Vector((0, self.size * 1.2))
self.bounds = [self.center]
def init_exporter(self, properties):
self.page_size = M.Vector((properties.output_size_x, properties.output_size_y))
self.style = properties.style
margin = properties.output_margin
self.margin = M.Vector((margin, margin))
self.pure_net = (properties.output_type == 'NONE')
self.do_create_stickers = properties.do_create_stickers
self.text_size = properties.sticker_width
self.angle_epsilon = properties.angle_epsilon
class Svg:
"""Simple SVG exporter"""
def __init__(self, properties):
init_exporter(self, properties)
@classmethod
def encode_image(cls, bpy_image):
import tempfile
import base64
with tempfile.TemporaryDirectory() as directory:
filename = directory + "/i.png"
bpy_image.filepath_raw = filename
bpy_image.save()
return base64.encodebytes(open(filename, "rb").read()).decode('ascii')
def format_vertex(self, vector):
"""Return a string with both coordinates of the given vertex."""
return "{:.6f} {:.6f}".format((vector.x + self.margin.x) * 1000, (self.page_size.y - vector.y - self.margin.y) * 1000)
def write(self, mesh, filename):
"""Write data to a file given by its name."""
line_through = " L ".join # used for formatting of SVG path data
rows = "\n".join
dl = ["{:.2f}".format(length * self.style.line_width * 1000) for length in (2, 5, 10)]
format_style = {
'SOLID': "none", 'DOT': "{0},{1}".format(*dl), 'DASH': "{1},{2}".format(*dl),
'LONGDASH': "{2},{1}".format(*dl), 'DASHDOT': "{2},{1},{0},{1}".format(*dl)}
def format_color(vec):
return "#{:02x}{:02x}{:02x}".format(round(vec[0] * 255), round(vec[1] * 255), round(vec[2] * 255))
def format_matrix(matrix):
return " ".join("{:.6f}".format(cell) for column in matrix for cell in column)
def path_convert(string, relto=os_path.dirname(filename)):
assert(os_path) # check the module was imported
string = os_path.relpath(string, relto)
if os_path.sep != '/':
string = string.replace(os_path.sep, '/')
return string
styleargs = {
name: format_color(getattr(self.style, name)) for name in (
"outer_color", "outbg_color", "convex_color", "concave_color", "freestyle_color",
"inbg_color", "sticker_color", "text_color")}
styleargs.update({
name: format_style[getattr(self.style, name)] for name in
("outer_style", "convex_style", "concave_style", "freestyle_style")})
styleargs.update({
name: getattr(self.style, attr)[3] for name, attr in (
("outer_alpha", "outer_color"), ("outbg_alpha", "outbg_color"),
("convex_alpha", "convex_color"), ("concave_alpha", "concave_color"),
("freestyle_alpha", "freestyle_color"),
("inbg_alpha", "inbg_color"), ("sticker_alpha", "sticker_color"),
("text_alpha", "text_color"))})
styleargs.update({
name: getattr(self.style, name) * self.style.line_width * 1000 for name in
("outer_width", "convex_width", "concave_width", "freestyle_width", "outbg_width", "inbg_width")})
for num, page in enumerate(mesh.pages):
page_filename = "{}_{}.svg".format(filename[:filename.rfind(".svg")], page.name) if len(mesh.pages) > 1 else filename
with open(page_filename, 'w') as f:
print(self.svg_base.format(width=self.page_size.x*1000, height=self.page_size.y*1000), file=f)
print(self.css_base.format(**styleargs), file=f)
if page.image_path:
print(
self.image_linked_tag.format(
pos="{0:.6f} {0:.6f}".format(self.margin.x*1000),
width=(self.page_size.x - 2 * self.margin.x)*1000,
height=(self.page_size.y - 2 * self.margin.y)*1000,
path=path_convert(page.image_path)),
file=f)
if len(page.islands) > 1:
print("<g>", file=f)
for island in page.islands:
print("<g>", file=f)
if island.image_path:
print(
self.image_linked_tag.format(
pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))),
width=island.bounding_box.x*1000,
height=island.bounding_box.y*1000,
path=path_convert(island.image_path)),
file=f)
elif island.embedded_image:
print(
self.image_embedded_tag.format(
pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))),
width=island.bounding_box.x*1000,
height=island.bounding_box.y*1000,
path=island.image_path),
island.embedded_image, "'/>",
file=f, sep="")
if island.title:
print(
self.text_tag.format(
size=1000 * self.text_size,
x=1000 * (island.bounding_box.x*0.5 + island.pos.x + self.margin.x),
y=1000 * (self.page_size.y - island.pos.y - self.margin.y - 0.2 * self.text_size),
label=island.title),
file=f)
data_markers, data_stickerfill = list(), list()
for marker in island.markers:
if isinstance(marker, Sticker):
data_stickerfill.append("M {} Z".format(
line_through(self.format_vertex(co + island.pos) for co in marker.points)))
if marker.text:
data_markers.append(self.text_transformed_tag.format(
label=marker.text,
pos=self.format_vertex(marker.center + island.pos),
mat=format_matrix(marker.rot),
size=marker.width * 1000))
elif isinstance(marker, Arrow):
size = marker.size * 1000
position = marker.center + marker.size * marker.rot @ M.Vector((0, -0.9))
data_markers.append(self.arrow_marker_tag.format(
index=marker.text,
arrow_pos=self.format_vertex(marker.center + island.pos),
pos=self.format_vertex(position + island.pos - marker.size*M.Vector((0, 0.4))),
mat=format_matrix(size * marker.rot)))
elif isinstance(marker, NumberAlone):
data_markers.append(self.text_transformed_tag.format(
label=marker.text,
pos=self.format_vertex(marker.center + island.pos),
mat=format_matrix(marker.rot),
size=marker.size * 1000))
if data_stickerfill and self.style.sticker_color[3] > 0:
print("<path class='sticker' d='", rows(data_stickerfill), "'/>", file=f)
data_outer, data_convex, data_concave, data_freestyle = (list() for i in range(4))
outer_edges = set(island.boundary)
while outer_edges:
data_loop = list()
uvedge = outer_edges.pop()
while 1:
if uvedge.sticker:
data_loop.extend(self.format_vertex(co + island.pos) for co in uvedge.sticker.points[1:])
else:
vertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
data_loop.append(self.format_vertex(vertex.co + island.pos))
uvedge = uvedge.neighbor_right
try:
outer_edges.remove(uvedge)
except KeyError:
break
data_outer.append("M {} Z".format(line_through(data_loop)))
visited_edges = set()
for loop, uvedge in island.edges.items():
edge = mesh.edges[loop.edge]
if edge.is_cut(uvedge.uvface.face) and not uvedge.sticker:
continue
data_uvedge = "M {}".format(
line_through(self.format_vertex(v.co + island.pos) for v in (uvedge.va, uvedge.vb)))
if edge.freestyle:
data_freestyle.append(data_uvedge)
# each uvedge is in two opposite-oriented variants; we want to add each only once
vertex_pair = frozenset((uvedge.va, uvedge.vb))
if vertex_pair not in visited_edges:
visited_edges.add(vertex_pair)
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
if edge.angle > self.angle_epsilon:
data_convex.append(data_uvedge)
elif edge.angle < -self.angle_epsilon:
data_concave.append(data_uvedge)
if island.is_inside_out:
data_convex, data_concave = data_concave, data_convex
if data_freestyle:
print("<path class='freestyle' d='", rows(data_freestyle), "'/>", file=f)
if (data_convex or data_concave) and not self.pure_net and self.style.use_inbg:
print("<path class='inner_background' d='", rows(data_convex + data_concave), "'/>", file=f)
if data_convex:
print("<path class='convex' d='", rows(data_convex), "'/>", file=f)
if data_concave:
print("<path class='concave' d='", rows(data_concave), "'/>", file=f)
if data_outer:
if not self.pure_net and self.style.use_outbg:
print("<path class='outer_background' d='", rows(data_outer), "'/>", file=f)
print("<path class='outer' d='", rows(data_outer), "'/>", file=f)
if data_markers:
print(rows(data_markers), file=f)
print("</g>", file=f)
if len(page.islands) > 1:
print("</g>", file=f)
print("</svg>", file=f)
image_linked_tag = "<image transform='translate({pos})' width='{width:.6f}' height='{height:.6f}' xlink:href='{path}'/>"
image_embedded_tag = "<image transform='translate({pos})' width='{width:.6f}' height='{height:.6f}' xlink:href='data:image/png;base64,"
text_tag = "<text transform='translate({x} {y})' style='font-size:{size:.2f}'><tspan>{label}</tspan></text>"
text_transformed_tag = "<text transform='matrix({mat} {pos})' style='font-size:{size:.2f}'><tspan>{label}</tspan></text>"
arrow_marker_tag = "<g><path transform='matrix({mat} {arrow_pos})' class='arrow' d='M 0 0 L 1 1 L 0 0.25 L -1 1 Z'/>" \
"<text transform='translate({pos})' style='font-size:{scale:.2f}'><tspan>{index}</tspan></text></g>"
svg_base = """<?xml version='1.0' encoding='UTF-8' standalone='no'?>
<svg xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' version='1.1'
width='{width:.2f}mm' height='{height:.2f}mm' viewBox='0 0 {width:.2f} {height:.2f}'>"""
css_base = """<style type="text/css">
path {{
fill: none;
stroke-linecap: butt;
stroke-linejoin: bevel;
stroke-dasharray: none;
}}
path.outer {{
stroke: {outer_color};
stroke-dasharray: {outer_style};
stroke-dashoffset: 0;
stroke-width: {outer_width:.2};
stroke-opacity: {outer_alpha:.2};
}}
path.convex {{
stroke: {convex_color};
stroke-dasharray: {convex_style};
stroke-dashoffset:0;
stroke-width:{convex_width:.2};
stroke-opacity: {convex_alpha:.2}
}}
path.concave {{
stroke: {concave_color};
stroke-dasharray: {concave_style};
stroke-dashoffset: 0;
stroke-width: {concave_width:.2};
stroke-opacity: {concave_alpha:.2}
}}
path.freestyle {{
stroke: {freestyle_color};
stroke-dasharray: {freestyle_style};
stroke-dashoffset: 0;
stroke-width: {freestyle_width:.2};
stroke-opacity: {freestyle_alpha:.2}
}}
path.outer_background {{
stroke: {outbg_color};
stroke-opacity: {outbg_alpha};
stroke-width: {outbg_width:.2}
}}
path.inner_background {{
stroke: {inbg_color};
stroke-opacity: {inbg_alpha};
stroke-width: {inbg_width:.2}
}}
path.sticker {{
fill: {sticker_color};
stroke: none;
fill-opacity: {sticker_alpha:.2};
}}
path.arrow {{
fill: {text_color};
}}
text {{
font-style: normal;
fill: {text_color};
fill-opacity: {text_alpha:.2};
stroke: none;
}}
text, tspan {{
text-anchor:middle;
}}
</style>"""
"""Simple PDF exporter"""
mm_to_pt = 72 / 25.4
character_width_packed = {
191: "'", 222: 'ijl\x82\x91\x92', 278: '|¦\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !,./:;I[\\]ft\xa0·ÌÍÎÏìíîï',
333: '()-`r\x84\x88\x8b\x93\x94\x98\x9b¡¨\xad¯²³´¸¹{}', 350: '\x7f\x81\x8d\x8f\x90\x95\x9d', 365: '"ºª*°', 469: '^', 500: 'Jcksvxyz\x9a\x9eçýÿ', 584: '¶+<=>~¬±×÷', 611: 'FTZ\x8e¿ßø',
667: '&ABEKPSVXY\x8a\x9fÀÁÂÃÄÅÈÉÊËÝÞ', 722: 'CDHNRUwÇÐÑÙÚÛÜ', 737: '©®', 778: 'GOQÒÓÔÕÖØ', 833: 'Mm¼½¾', 889: '%æ', 944: 'W\x9c', 1000: '\x85\x89\x8c\x97\x99Æ', 1015: '@', }
character_width = {c: value for (value, chars) in character_width_packed.items() for c in chars}
def __init__(self, properties):
init_exporter(self, properties)
self.styles = dict()
def text_width(self, text, scale=None):
return (scale or self.text_size) * sum(self.character_width.get(c, 556) for c in text) / 1000
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
def styling(self, name, do_stroke=True):
s, m, l = (length * self.style.line_width * 1000 for length in (1, 4, 9))
format_style = {'SOLID': [], 'DOT': [s, m], 'DASH': [m, l], 'LONGDASH': [l, m], 'DASHDOT': [l, m, s, m]}
style, color, width = (getattr(self.style, f"{name}_{arg}", None) for arg in ("style", "color", "width"))
style = style or 'SOLID'
result = ["q"]
if do_stroke:
result += [
"[ " + " ".join("{:.3f}".format(num) for num in format_style[style]) + " ] 0 d",
"{0:.3f} {1:.3f} {2:.3f} RG".format(*color),
"{:.3f} w".format(self.style.line_width * 1000 * width),
]
else:
result.append("{0:.3f} {1:.3f} {2:.3f} rg".format(*color))
if color[3] < 1:
style_name = "R{:03}".format(round(1000 * color[3]))
result.append("/{} gs".format(style_name))
if style_name not in self.styles:
self.styles[style_name] = {"CA": color[3], "ca": color[3]}
return result
@classmethod
def encode_image(cls, bpy_image):
data = bytes(int(255 * px) for (i, px) in enumerate(bpy_image.pixels) if i % 4 != 3)
image = {
"Type": "XObject", "Subtype": "Image", "Width": bpy_image.size[0], "Height": bpy_image.size[1],
"ColorSpace": "DeviceRGB", "BitsPerComponent": 8, "Interpolate": True,
"Filter": ["ASCII85Decode", "FlateDecode"], "stream": data}
return image
def write(self, mesh, filename):
def format_dict(obj, refs=tuple()):
content = "".join("/{} {}\n".format(key, format_value(value, refs)) for (key, value) in obj.items())
return f"<< {content} >>"
def line_through(seq):
fmt = "{0.x:.6f} {0.y:.6f} {1} ".format
return "".join(fmt(1000*co, cmd) for (co, cmd) in zip(seq, chain("m", repeat("l"))))
def format_value(value, refs=tuple()):
if value in refs:
return "{} 0 R".format(refs.index(value) + 1)
elif type(value) is dict:
return format_dict(value, refs)
elif type(value) in (list, tuple):
return "[ " + " ".join(format_value(item, refs) for item in value) + " ]"
elif type(value) is int:
return str(value)
elif type(value) is float:
return "{:.6f}".format(value)
elif type(value) is bool:
return "true" if value else "false"
else:
return "/{}".format(value) # this script can output only PDF names, no strings
def write_object(index, obj, refs, f, stream=None):
byte_count = f.write("{} 0 obj\n".format(index).encode())
if type(obj) is not dict:
stream, obj = obj, dict()
elif "stream" in obj:
stream = obj.pop("stream")
if stream:
obj["Filter"] = "FlateDecode"
stream = encode(stream)
obj["Length"] = len(stream)
byte_count += f.write(format_dict(obj, refs).encode())
byte_count += f.write(b"\nstream\n")
byte_count += f.write(stream)
byte_count += f.write(b"\nendstream")
return byte_count + f.write(b"\nendobj\n")
def encode(data):
from zlib import compress
if hasattr(data, "encode"):
data = data.encode()
return compress(data)
page_size_pt = 1000 * self.mm_to_pt * self.page_size
reset_style = ["Q"] # graphic command for later use
root = {"Type": "Pages", "MediaBox": [0, 0, page_size_pt.x, page_size_pt.y], "Kids": list()}
catalog = {"Type": "Catalog", "Pages": root}
font = {
"Type": "Font", "Subtype": "Type1", "Name": "F1",
"BaseFont": "Helvetica", "Encoding": "MacRomanEncoding"}
objects = [root, catalog, font]
for page in mesh.pages:
commands = ["{0:.6f} 0 0 {0:.6f} 0 0 cm".format(self.mm_to_pt)]
resources = {"Font": {"F1": font}, "ExtGState": self.styles, "ProcSet": ["PDF"]}
if any(island.embedded_image for island in page.islands):
resources["XObject"] = dict()
resources["ProcSet"].append("ImageC")
for island in page.islands:
commands.append("q 1 0 0 1 {0.x:.6f} {0.y:.6f} cm".format(1000*(self.margin + island.pos)))
if island.embedded_image:
identifier = "I{}".format(len(resources["XObject"]) + 1)
commands.append(self.command_image.format(1000 * island.bounding_box, identifier))
objects.append(island.embedded_image)
resources["XObject"][identifier] = island.embedded_image
if island.title:
commands += self.styling("text", do_stroke=False)
commands.append(self.command_label.format(
size=1000*self.text_size,
x=500 * (island.bounding_box.x - self.text_width(island.title)),
y=1000 * 0.2 * self.text_size,
label=island.title))
commands += reset_style
data_markers, data_stickerfill = list(), list()
for marker in island.markers:
if isinstance(marker, Sticker):
data_stickerfill.append(line_through(marker.points) + "f")
if marker.text:
data_markers.append(self.command_sticker.format(
label=marker.text,
pos=1000*marker.center,
mat=marker.rot,
align=-500 * self.text_width(marker.text, marker.width),
size=1000*marker.width))
elif isinstance(marker, Arrow):
size = 1000 * marker.size
position = 1000 * (marker.center + marker.size * marker.rot @ M.Vector((0, -0.9)))
data_markers.append(self.command_arrow.format(
index=marker.text,
arrow_pos=1000 * marker.center,
pos=position - 1000 * M.Vector((0.5 * self.text_width(marker.text), 0.4 * self.text_size)),
mat=size * marker.rot,
size=size))
elif isinstance(marker, NumberAlone):
data_markers.append(self.command_number.format(
label=marker.text,
pos=1000*marker.center,
size=1000*marker.size))
data_outer, data_convex, data_concave, data_freestyle = (list() for i in range(4))
outer_edges = set(island.boundary)
while outer_edges:
data_loop = list()
uvedge = outer_edges.pop()
while 1:
if uvedge.sticker:
data_loop.extend(uvedge.sticker.points[1:])
else:
vertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
data_loop.append(vertex.co)
uvedge = uvedge.neighbor_right
try:
outer_edges.remove(uvedge)
except KeyError:
break
data_outer.append(line_through(data_loop) + "s")
for loop, uvedge in island.edges.items():
edge = mesh.edges[loop.edge]
if edge.is_cut(uvedge.uvface.face) and not uvedge.sticker:
continue
data_uvedge = line_through((uvedge.va.co, uvedge.vb.co)) + "S"
if edge.freestyle:
data_freestyle.append(data_uvedge)
# each uvedge exists in two opposite-oriented variants; we want to add each only once
if uvedge.sticker or uvedge.uvface.flipped != (id(uvedge.va) > id(uvedge.vb)):
if edge.angle > self.angle_epsilon:
data_convex.append(data_uvedge)
elif edge.angle < -self.angle_epsilon:
data_concave.append(data_uvedge)
if island.is_inside_out:
data_convex, data_concave = data_concave, data_convex
if data_stickerfill and self.style.sticker_color[3] > 0:
commands += chain(self.styling("sticker", do_stroke=False), data_stickerfill, reset_style)
if data_freestyle:
commands += chain(self.styling("freestyle"), data_freestyle, reset_style)
if (data_convex or data_concave) and not self.pure_net and self.style.use_inbg:
commands += chain(self.styling("inbg"), data_convex, data_concave, reset_style)
if data_convex:
commands += chain(self.styling("convex"), data_convex, reset_style)
if data_concave:
commands += chain(self.styling("concave"), data_concave, reset_style)
if data_outer:
if not self.pure_net and self.style.use_outbg:
commands += chain(self.styling("outbg"), data_outer, reset_style)
commands += chain(self.styling("outer"), data_outer, reset_style)
if data_markers:
commands += chain(self.styling("text", do_stroke=False), data_markers, reset_style)
commands += reset_style # return from island to page coordinates
content = "\n".join(commands)
page = {"Type": "Page", "Parent": root, "Contents": content, "Resources": resources}
root["Kids"].append(page)
objects += page, content
objects.extend(self.styles.values())
root["Count"] = len(root["Kids"])
with open(filename, "wb+") as f:
xref_table = list()
position = 0
position += f.write(b"%PDF-1.4\n")
position += f.write(b"%\xde\xad\xbe\xef\n")
for index, obj in enumerate(objects, 1):
xref_table.append(position)
position += write_object(index, obj, objects, f)
xref_pos = position
f.write("xref\n0 {}\n".format(len(xref_table) + 1).encode())
f.write("{:010} {:05} f\r\n".format(0, 65535).encode())
for position in xref_table:
f.write("{:010} {:05} n\r\n".format(position, 0).encode())
f.write(b"trailer\n")
f.write(format_dict({"Size": len(xref_table) + 1, "Root": catalog}, objects).encode())
f.write("\nstartxref\n{}\n%%EOF\n".format(xref_pos).encode())
command_label = "q /F1 {size:.6f} Tf BT {x:.6f} {y:.6f} Td ({label}) Tj ET Q"
command_image = "q {0.x:.6f} 0 0 {0.y:.6f} 0 0 cm 1 0 0 -1 0 1 cm /{1} Do Q"
command_sticker = "q /F1 {size:.6f} Tf {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {pos.x:.6f} {pos.y:.6f} cm BT {align:.6f} 0 Td ({label}) Tj ET Q"
command_arrow = "q /F1 {size:.6f} Tf BT {pos.x:.6f} {pos.y:.6f} Td ({index}) Tj ET {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {arrow_pos.x:.6f} {arrow_pos.y:.6f} cm 0 0 m 1 -1 l 0 -0.25 l -1 -1 l f Q"
command_number = "q /F1 {size:.6f} Tf {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {pos.x:.6f} {pos.y:.6f} cm BT ({label}) Tj ET Q"
class Unfold(bpy.types.Operator):
"""Blender Operator: unfold the selected object."""
bl_idname = "mesh.unfold"
bl_label = "Unfold"
bl_description = "Mark seams so that the mesh can be exported as a paper model"
bl_options = {'REGISTER', 'UNDO'}
edit: bpy.props.BoolProperty(default=False, options={'HIDDEN'})
priority_effect_convex: bpy.props.FloatProperty(
name="Priority Convex", description="Priority effect for edges in convex angles",
default=default_priority_effect['CONVEX'], soft_min=-1, soft_max=10, subtype='FACTOR')
priority_effect_concave: bpy.props.FloatProperty(
name="Priority Concave", description="Priority effect for edges in concave angles",
default=default_priority_effect['CONCAVE'], soft_min=-1, soft_max=10, subtype='FACTOR')
priority_effect_length: bpy.props.FloatProperty(
name="Priority Length", description="Priority effect of edge length",
default=default_priority_effect['LENGTH'], soft_min=-10, soft_max=1, subtype='FACTOR')
do_create_uvmap: bpy.props.BoolProperty(
name="Create UVMap", description="Create a new UV Map showing the islands and page layout", default=False)
object = None
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == "MESH"
def draw(self, context):
layout = self.layout
col = layout.column()
col.active = not self.object or len(self.object.data.uv_layers) < 8
col.prop(self.properties, "do_create_uvmap")
layout.label(text="Edge Cutting Factors:")
col = layout.column(align=True)
col.label(text="Face Angle:")
col.prop(self.properties, "priority_effect_convex", text="Convex")
col.prop(self.properties, "priority_effect_concave", text="Concave")
layout.prop(self.properties, "priority_effect_length", text="Edge Length")
def execute(self, context):
sce = bpy.context.scene
settings = sce.paper_model
recall_mode = context.object.mode
bpy.ops.object.mode_set(mode='EDIT')
self.object = context.object
cage_size = M.Vector((settings.output_size_x, settings.output_size_y))
priority_effect = {
'CONVEX': self.priority_effect_convex,
'CONCAVE': self.priority_effect_concave,
'LENGTH': self.priority_effect_length}
try:
unfolder = Unfolder(self.object)
unfolder.do_create_uvmap = self.do_create_uvmap
scale = sce.unit_settings.scale_length / settings.scale
unfolder.prepare(cage_size, priority_effect, scale, settings.limit_by_page)
unfolder.mesh.mark_cuts()
except UnfoldError as error:
self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0])
error.mesh_select()
bpy.ops.object.mode_set(mode=recall_mode)
return {'CANCELLED'}
mesh = self.object.data
mesh.update()
if mesh.paper_island_list:
unfolder.copy_island_names(mesh.paper_island_list)
island_list = mesh.paper_island_list
attributes = {item.label: (item.abbreviation, item.auto_label, item.auto_abbrev) for item in island_list}
island_list.clear() # remove previously defined islands
for island in unfolder.mesh.islands:
# add islands to UI list and set default descriptions
list_item = island_list.add()
# add faces' IDs to the island
for face in island.faces:
lface = list_item.faces.add()
lface.id = face.index
list_item["label"] = island.label
list_item["abbreviation"], list_item["auto_label"], list_item["auto_abbrev"] = attributes.get(
island.label,
(island.abbreviation, True, True))
island_item_changed(list_item, context)
mesh.paper_island_index = -1
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
bpy.ops.object.mode_set(mode=recall_mode)
return {'FINISHED'}
class ClearAllSeams(bpy.types.Operator):
"""Blender Operator: clear all seams of the active Mesh and all its unfold data"""
bl_idname = "mesh.clear_all_seams"
bl_label = "Clear All Seams"
bl_description = "Clear all the seams and unfolded islands of the active object"
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == 'MESH'
def execute(self, context):
ob = context.active_object
mesh = ob.data
for edge in mesh.edges:
edge.use_seam = False
mesh.paper_island_list.clear()
return {'FINISHED'}
def page_size_preset_changed(self, context):
"""Update the actual document size to correct values"""
if hasattr(self, "limit_by_page") and not self.limit_by_page:
return
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
if self.page_size_preset == 'A4':
self.output_size_x = 0.210
self.output_size_y = 0.297
elif self.page_size_preset == 'A3':
self.output_size_x = 0.297
self.output_size_y = 0.420
elif self.page_size_preset == 'US_LETTER':
self.output_size_x = 0.216
self.output_size_y = 0.279
elif self.page_size_preset == 'US_LEGAL':
self.output_size_x = 0.216
self.output_size_y = 0.356
class PaperModelStyle(bpy.types.PropertyGroup):
line_styles = [
('SOLID', "Solid (----)", "Solid line"),
('DOT', "Dots (. . .)", "Dotted line"),
('DASH', "Short Dashes (- - -)", "Solid line"),
('LONGDASH', "Long Dashes (-- --)", "Solid line"),
('DASHDOT', "Dash-dotted (-- .)", "Solid line")
]
outer_color: bpy.props.FloatVectorProperty(
name="Outer Lines", description="Color of net outline",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
outer_style: bpy.props.EnumProperty(
name="Outer Lines Drawing Style", description="Drawing style of net outline",
default='SOLID', items=line_styles)
line_width: bpy.props.FloatProperty(
name="Base Lines Thickness", description="Base thickness of net lines, each actual value is a multiple of this length",
default=1e-4, min=0, soft_max=5e-3, precision=5, step=1e-2, subtype="UNSIGNED", unit="LENGTH")
outer_width: bpy.props.FloatProperty(
name="Outer Lines Thickness", description="Relative thickness of net outline",
default=3, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
use_outbg: bpy.props.BoolProperty(
name="Highlight Outer Lines", description="Add another line below every line to improve contrast",
outbg_color: bpy.props.FloatVectorProperty(
name="Outer Highlight", description="Color of the highlight for outer lines",
default=(1.0, 1.0, 1.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
outbg_width: bpy.props.FloatProperty(
name="Outer Highlight Thickness", description="Relative thickness of the highlighting lines",
default=5, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
convex_color: bpy.props.FloatVectorProperty(
name="Inner Convex Lines", description="Color of lines to be folded to a convex angle",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
convex_style: bpy.props.EnumProperty(
name="Convex Lines Drawing Style", description="Drawing style of lines to be folded to a convex angle",
default='DASH', items=line_styles)
convex_width: bpy.props.FloatProperty(
name="Convex Lines Thickness", description="Relative thickness of concave lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
concave_color: bpy.props.FloatVectorProperty(
name="Inner Concave Lines", description="Color of lines to be folded to a concave angle",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
concave_style: bpy.props.EnumProperty(
name="Concave Lines Drawing Style", description="Drawing style of lines to be folded to a concave angle",
default='DASHDOT', items=line_styles)
concave_width: bpy.props.FloatProperty(
name="Concave Lines Thickness", description="Relative thickness of concave lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
freestyle_color: bpy.props.FloatVectorProperty(
name="Freestyle Edges", description="Color of lines marked as Freestyle Edge",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
freestyle_style: bpy.props.EnumProperty(
name="Freestyle Edges Drawing Style", description="Drawing style of Freestyle Edges",
default='SOLID', items=line_styles)
freestyle_width: bpy.props.FloatProperty(
name="Freestyle Edges Thickness", description="Relative thickness of Freestyle edges",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
use_inbg: bpy.props.BoolProperty(
name="Highlight Inner Lines", description="Add another line below every line to improve contrast",
inbg_color: bpy.props.FloatVectorProperty(
name="Inner Highlight", description="Color of the highlight for inner lines",
default=(1.0, 1.0, 1.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
inbg_width: bpy.props.FloatProperty(
name="Inner Highlight Thickness", description="Relative thickness of the highlighting lines",
default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR')
sticker_color: bpy.props.FloatVectorProperty(
name="Tabs Fill", description="Fill color of sticking tabs",
default=(0.9, 0.9, 0.9, 1.0), min=0, max=1, subtype='COLOR', size=4)
text_color: bpy.props.FloatVectorProperty(
name="Text Color", description="Color of all text used in the document",
default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4)
bpy.utils.register_class(PaperModelStyle)
class ExportPaperModel(bpy.types.Operator):
"""Blender Operator: save the selected object's net and optionally bake its texture"""
bl_idname = "export_mesh.paper_model"
bl_label = "Export Paper Model"
bl_description = "Export the selected object's net and optionally bake its texture"
bl_options = {'PRESET'}
filepath: bpy.props.StringProperty(
name="File Path", description="Target file to save the SVG", options={'SKIP_SAVE'})
filename: bpy.props.StringProperty(
name="File Name", description="Name of the file", options={'SKIP_SAVE'})
directory: bpy.props.StringProperty(
name="Directory", description="Directory of the file", options={'SKIP_SAVE'})
page_size_preset: bpy.props.EnumProperty(
name="Page Size", description="Size of the exported document",
default='A4', update=page_size_preset_changed, items=global_paper_sizes)
output_size_x: bpy.props.FloatProperty(
name="Page Width", description="Width of the exported document",
default=0.210, soft_min=0.105, soft_max=0.841, subtype="UNSIGNED", unit="LENGTH")
output_size_y: bpy.props.FloatProperty(
name="Page Height", description="Height of the exported document",
default=0.297, soft_min=0.148, soft_max=1.189, subtype="UNSIGNED", unit="LENGTH")
output_margin: bpy.props.FloatProperty(
name="Page Margin", description="Distance from page borders to the printable area",
default=0.005, min=0, soft_max=0.1, step=0.1, subtype="UNSIGNED", unit="LENGTH")
output_type: bpy.props.EnumProperty(
name="Textures", description="Source of a texture for the model",
default='NONE', items=[
('NONE', "No Texture", "Export the net only"),
('TEXTURE', "From Materials", "Render the diffuse color and all painted textures"),
('AMBIENT_OCCLUSION', "Ambient Occlusion", "Render the Ambient Occlusion pass"),
('RENDER', "Full Render", "Render the material in actual scene illumination"),
('SELECTED_TO_ACTIVE', "Selected to Active", "Render all selected surrounding objects as a texture")
])
do_create_stickers: bpy.props.BoolProperty(
name="Create Tabs", description="Create gluing tabs around the net (useful for paper)",
do_create_numbers: bpy.props.BoolProperty(
name="Create Numbers", description="Enumerate edges to make it clear which edges should be sticked together",
sticker_width: bpy.props.FloatProperty(
name="Tabs and Text Size", description="Width of gluing tabs and their numbers",
default=0.005, soft_min=0, soft_max=0.05, step=0.1, subtype="UNSIGNED", unit="LENGTH")
angle_epsilon: bpy.props.FloatProperty(
name="Hidden Edge Angle", description="Folds with angle below this limit will not be drawn",
default=pi/360, min=0, soft_max=pi/4, step=0.01, subtype="ANGLE", unit="ROTATION")
output_dpi: bpy.props.FloatProperty(
name="Resolution (DPI)", description="Resolution of images in pixels per inch",
default=90, min=1, soft_min=30, soft_max=600, subtype="UNSIGNED")
bake_samples: bpy.props.IntProperty(
name="Samples", description="Number of samples to render for each pixel",
default=64, min=1, subtype="UNSIGNED")
file_format: bpy.props.EnumProperty(
name="Document Format", description="File format of the exported net",
default='PDF', items=[
('PDF', "PDF", "Adobe Portable Document Format 1.4"),
('SVG', "SVG", "W3C Scalable Vector Graphics"),
])
image_packing: bpy.props.EnumProperty(
name="Image Packing Method", description="Method of attaching baked image(s) to the SVG",
default='ISLAND_EMBED', items=[
('PAGE_LINK', "Single Linked", "Bake one image per page of output and save it separately"),
('ISLAND_LINK', "Linked", "Bake images separately for each island and save them in a directory"),
('ISLAND_EMBED', "Embedded", "Bake images separately for each island and embed them into the SVG")
])
name="Scale", description="Divisor of all dimensions when exporting",
default=1, soft_min=1.0, soft_max=100.0, subtype='FACTOR', precision=1)
do_create_uvmap: bpy.props.BoolProperty(
name="Create UVMap",
description="Create a new UV Map showing the islands and page layout",
default=False, options={'SKIP_SAVE'})
ui_expanded_document: bpy.props.BoolProperty(
name="Show Document Settings Expanded",
description="Shows the box 'Document Settings' expanded in user interface",
default=True, options={'SKIP_SAVE'})
ui_expanded_style: bpy.props.BoolProperty(
name="Show Style Settings Expanded",
description="Shows the box 'Colors and Style' expanded in user interface",
default=False, options={'SKIP_SAVE'})
style: bpy.props.PointerProperty(type=PaperModelStyle)
unfolder = None
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == 'MESH'
def prepare(self, context):
sce = context.scene
self.recall_mode = context.object.mode
bpy.ops.object.mode_set(mode='EDIT')
self.object = context.active_object
self.unfolder = Unfolder(self.object)
cage_size = M.Vector((sce.paper_model.output_size_x, sce.paper_model.output_size_y))
unfolder_scale = sce.unit_settings.scale_length/self.scale
self.unfolder.prepare(cage_size, scale=unfolder_scale, limit_by_page=sce.paper_model.limit_by_page)
if sce.paper_model.use_auto_scale:
self.scale = ceil(self.get_scale_ratio(sce))
def recall(self):
if self.unfolder:
del self.unfolder
bpy.ops.object.mode_set(mode=self.recall_mode)
def invoke(self, context, event):
self.scale = context.scene.paper_model.scale
try:
self.prepare(context)
except UnfoldError as error:
self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0])
error.mesh_select()
self.recall()
return {'CANCELLED'}
wm = context.window_manager
wm.fileselect_add(self)
return {'RUNNING_MODAL'}
def execute(self, context):
if not self.unfolder:
self.prepare(context)
self.unfolder.do_create_uvmap = self.do_create_uvmap
try:
if self.object.data.paper_island_list:
self.unfolder.copy_island_names(self.object.data.paper_island_list)
self.unfolder.save(self.properties)
self.report({'INFO'}, "Saved a {}-page document".format(len(self.unfolder.mesh.pages)))
return {'FINISHED'}
except UnfoldError as error:
self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0])
return {'CANCELLED'}
finally:
self.recall()
def get_scale_ratio(self, sce):
margin = self.output_margin + self.sticker_width
if min(self.output_size_x, self.output_size_y) <= 2 * margin:
return False
output_inner_size = M.Vector((self.output_size_x - 2*margin, self.output_size_y - 2*margin))
ratio = self.unfolder.mesh.largest_island_ratio(output_inner_size)
return ratio * sce.unit_settings.scale_length / self.scale
def draw(self, context):
layout = self.layout
layout.prop(self.properties, "do_create_uvmap")
layout.prop(self.properties, "scale", text="Scale: 1/")
scale_ratio = self.get_scale_ratio(context.scene)
if scale_ratio > 1:
layout.label(
text="An island is roughly {:.1f}x bigger than page".format(scale_ratio),
icon="ERROR")
elif scale_ratio > 0:
layout.label(text="Largest island is roughly 1/{:.1f} of page".format(1 / scale_ratio))
if context.scene.unit_settings.scale_length != 1:
layout.label(
text="Unit scale {:.1f} makes page size etc. not display correctly".format(
context.scene.unit_settings.scale_length), icon="ERROR")
box = layout.box()
row = box.row(align=True)
row.prop(
self.properties, "ui_expanded_document", text="",
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
icon=('TRIA_DOWN' if self.ui_expanded_document else 'TRIA_RIGHT'), emboss=False)
row.label(text="Document Settings")
if self.ui_expanded_document:
box.prop(self.properties, "file_format", text="Format")
box.prop(self.properties, "page_size_preset")
col = box.column(align=True)
col.active = self.page_size_preset == 'USER'
col.prop(self.properties, "output_size_x")
col.prop(self.properties, "output_size_y")
box.prop(self.properties, "output_margin")
col = box.column()
col.prop(self.properties, "do_create_stickers")
col.prop(self.properties, "do_create_numbers")
col = box.column()
col.active = self.do_create_stickers or self.do_create_numbers
col.prop(self.properties, "sticker_width")
box.prop(self.properties, "angle_epsilon")
box.prop(self.properties, "output_type")
col = box.column()
col.active = (self.output_type != 'NONE')
if len(self.object.data.uv_layers) >= 8:
col.label(text="No UV slots left, No Texture is the only option.", icon='ERROR')
elif context.scene.render.engine != 'CYCLES' and self.output_type != 'NONE':
col.label(text="Cycles will be used for texture baking.", icon='ERROR')
row = col.row()
row.active = self.output_type in ('AMBIENT_OCCLUSION', 'RENDER', 'SELECTED_TO_ACTIVE')
row.prop(self.properties, "bake_samples")
col.prop(self.properties, "output_dpi")
row = col.row()
row.active = self.file_format == 'SVG'
row.prop(self.properties, "image_packing", text="Images")
box = layout.box()
row = box.row(align=True)
row.prop(
self.properties, "ui_expanded_style", text="",
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
icon=('TRIA_DOWN' if self.ui_expanded_style else 'TRIA_RIGHT'), emboss=False)
row.label(text="Colors and Style")
if self.ui_expanded_style:
box.prop(self.style, "line_width", text="Default line width")
col = box.column()
col.prop(self.style, "outer_color")
col.prop(self.style, "outer_width", text="Relative width")
col.prop(self.style, "outer_style", text="Style")
col = box.column()
col.active = self.output_type != 'NONE'
col.prop(self.style, "use_outbg", text="Outer Lines Highlight:")
sub = col.column()
sub.active = self.output_type != 'NONE' and self.style.use_outbg
sub.prop(self.style, "outbg_color", text="")
sub.prop(self.style, "outbg_width", text="Relative width")
col = box.column()
col.prop(self.style, "convex_color")
col.prop(self.style, "convex_width", text="Relative width")
col.prop(self.style, "convex_style", text="Style")
col = box.column()
col.prop(self.style, "concave_color")
col.prop(self.style, "concave_width", text="Relative width")
col.prop(self.style, "concave_style", text="Style")
col = box.column()
col.prop(self.style, "freestyle_color")
col.prop(self.style, "freestyle_width", text="Relative width")
Loading
Loading full blame...