Newer
Older
# GPL # original by Buerbaum Martin (Pontiac), Elod Csirmaz
import bpy
from mathutils import *
from math import *
from bpy.types import Operator
from bpy.props import (
StringProperty,
IntProperty,
FloatProperty,
BoolProperty,
)
# List of safe functions for eval()
safe_list = ['math', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'cos', 'cosh',
'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hypot',
'ldexp', 'log', 'log10', 'modf', 'pi', 'pow', 'radians',
'sin', 'sinh', 'sqrt', 'tan', 'tanh']
# Use the list to filter the local namespace
safe_dict = dict((k, globals().get(k, None)) for k in safe_list)
# operator id in a property group ('recall_op') inside the object
# Could (in theory) be used for non-objects.
# Note: Replaces any existing property group with the same name!
# ob ... Object to store the properties in
# op ... The operator that should be used
# properties (operator arguments/parameters)
# Create a new mesh (object) from verts/edges/faces
# verts/edges/faces ... List of vertices/edges/faces for the
# new mesh (as used in from_pydata)
# name ... Name of the new mesh (& object)
def create_mesh_object(context, verts, edges, faces, name):
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Make a mesh from a list of verts/edges/faces
# Update mesh geometry after adding stuff
mesh.update()
Campbell Barton
committed
from bpy_extras import object_utils
return object_utils.object_data_add(context, mesh, operator=None)
# A very simple "bridge" tool
def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
if len(vertIdx1) < 2 and len(vertIdx2) < 2:
return None
fan = False
if (len(vertIdx1) != len(vertIdx2)):
if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
fan = True
else:
return None
total = len(vertIdx2)
# Bridge the start with the end
if flipped:
face = [
vertIdx1[0],
vertIdx2[0],
vertIdx2[total - 1]]
if not fan:
face.append(vertIdx1[total - 1])
faces.append(face)
else:
face = [vertIdx2[0], vertIdx1[0]]
if not fan:
face.append(vertIdx1[total - 1])
face.append(vertIdx2[total - 1])
faces.append(face)
# Bridge the rest of the faces
if flipped:
if fan:
face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
else:
face = [vertIdx2[num], vertIdx1[num],
vertIdx1[num + 1], vertIdx2[num + 1]]
faces.append(face)
else:
if fan:
face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
else:
face = [vertIdx1[num], vertIdx2[num],
vertIdx2[num + 1], vertIdx1[num + 1]]
faces.append(face)
class AddZFunctionSurface(Operator):
bl_idname = "mesh.primitive_z_function_surface"
bl_label = "Add Z Function Surface"
bl_description = "Add a surface defined defined by a function z=f(x,y)"
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
equation = StringProperty(
name="Z Equation",
description="Equation for z=f(x,y)",
default="1 - ( x**2 + y**2 )"
)
div_x = IntProperty(
name="X Subdivisions",
description="Number of vertices in x direction",
default=16,
min=3,
max=256
)
div_y = IntProperty(
name="Y Subdivisions",
description="Number of vertices in y direction",
default=16,
min=3,
max=256
)
size_x = FloatProperty(
name="X Size",
description="Size of the x axis",
default=2.0,
min=0.01,
max=100.0,
unit="LENGTH"
)
size_y = FloatProperty(
name="Y Size",
description="Size of the y axis",
default=2.0,
min=0.01,
max=100.0,
unit="LENGTH"
)
Thomas Dinges
committed
equation = self.equation
div_x = self.div_x
div_y = self.div_y
size_x = self.size_x
size_y = self.size_y
delta_x = size_x / (div_x - 1)
delta_y = size_y / (div_y - 1)
start_x = -(size_x / 2.0)
start_y = -(size_y / 2.0)
edgeloop_prev = []
if equation:
try:
expr_args = (
compile(equation, __file__, 'eval'),
{"__builtins__": None},
safe_dict)
except:
import traceback
# WARNING is used to prevent the constant pop-up spam
self.report({'WARNING'},
"Error parsing expression: {} "
"(Check the console for more info)".format(equation))
print("\n[Add Z Function Surface]:\n\n", traceback.format_exc(limit=1))
return {'CANCELLED'}
for row_x in range(div_x):
edgeloop_cur = []
x = start_x + row_x * delta_x
for row_y in range(div_y):
y = start_y + row_y * delta_y
z = 0.0
safe_dict['x'] = x
safe_dict['y'] = y
# Try to evaluate the equation.
try:
z = float(eval(*expr_args))
except:
import traceback
self.report({'WARNING'},
"Error evaluating expression: {} "
"(Check the console for more info)".format(equation))
print("\n[Add Z Function Surface]:\n\n", traceback.format_exc(limit=1))
edgeloop_cur.append(len(verts))
verts.append((x, y, z))
if len(edgeloop_prev) > 0:
faces_row = createFaces(edgeloop_prev, edgeloop_cur)
faces.extend(faces_row)
edgeloop_prev = edgeloop_cur
base = create_mesh_object(context, verts, [], faces, "Z Function")
else:
self.report({'WARNING'}, "Z Equation - No expression is given")
return {'CANCELLED'}
def xyz_function_surface_faces(self, x_eq, y_eq, z_eq,
range_u_min, range_u_max, range_u_step, wrap_u,
range_v_min, range_v_max, range_v_step, wrap_v,
a_eq, b_eq, c_eq, f_eq, g_eq, h_eq, n, close_v):
uStep = (range_u_max - range_u_min) / range_u_step
vStep = (range_v_max - range_v_min) / range_v_step
Martin Buerbaum
committed
# Number of steps in the vertex creation loops.
# Number of steps is the number of faces
# => Number of points is +1 unless wrapped.
Martin Buerbaum
committed
if wrap_u:
uRange = uRange - 1
if wrap_v:
vRange = vRange - 1
expr_args_x = (
compile(x_eq, __file__.replace(".py", "_x.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_y = (
compile(y_eq, __file__.replace(".py", "_y.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_z = (
compile(z_eq, __file__.replace(".py", "_z.py"), 'eval'),
{"__builtins__": None},
safe_dict)
Martin Buerbaum
committed
expr_args_a = (
compile(a_eq, __file__.replace(".py", "_a.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_b = (
compile(b_eq, __file__.replace(".py", "_b.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_c = (
compile(c_eq, __file__.replace(".py", "_c.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_f = (
compile(f_eq, __file__.replace(".py", "_f.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_g = (
compile(g_eq, __file__.replace(".py", "_g.py"), 'eval'),
{"__builtins__": None},
safe_dict)
expr_args_h = (
compile(h_eq, __file__.replace(".py", "_h.py"), 'eval'),
{"__builtins__": None},
safe_dict)
except:
import traceback
self.report({'WARNING'}, "Error parsing expression(s) - "
"Check the console for more info")
print("\n[Add X, Y, Z Function Surface]:\n\n", traceback.format_exc(limit=1))
for vN in range(vRange):
v = range_v_min + (vN * vStep)
for uN in range(uRange):
u = range_u_min + (uN * uStep)
safe_dict['u'] = u
safe_dict['v'] = v
Martin Buerbaum
committed
safe_dict['n'] = n
# Try to evaluate the equations.
safe_dict['a'] = float(eval(*expr_args_a))
safe_dict['b'] = float(eval(*expr_args_b))
safe_dict['c'] = float(eval(*expr_args_c))
safe_dict['f'] = float(eval(*expr_args_f))
safe_dict['g'] = float(eval(*expr_args_g))
safe_dict['h'] = float(eval(*expr_args_h))
Martin Buerbaum
committed
verts.append((
float(eval(*expr_args_x)),
float(eval(*expr_args_y)),
float(eval(*expr_args_z))))
self.report({'WARNING'}, "Error evaluating expression(s) - "
"Check the console for more info")
print("\n[Add X, Y, Z Function Surface]:\n\n", traceback.format_exc(limit=1))
Martin Buerbaum
committed
for vN in range(range_v_step):
vNext = vN + 1
Martin Buerbaum
committed
if wrap_v and (vNext >= vRange):
vNext = 0
for uN in range(range_u_step):
uNext = uN + 1
Martin Buerbaum
committed
if wrap_u and (uNext >= uRange):
uNext = 0
Martin Buerbaum
committed
faces.append([(vNext * uRange) + uNext,
(vNext * uRange) + uN,
(vN * uRange) + uN,
(vN * uRange) + uNext])
Martin Buerbaum
committed
if close_v and wrap_u and (not wrap_v):
for uN in range(1, range_u_step - 1):
faces.append([
range_u_step - 1,
range_u_step - 1 - uN,
range_u_step - 2 - uN])
faces.append([
range_v_step * uRange,
range_v_step * uRange + uN,
range_v_step * uRange + uN + 1])
return verts, faces
# Original Script "Parametric.py" by Ed Mackey.
# -> http://www.blinken.com/blender-plugins.php
# Partly converted for Blender 2.5 by tuga3d.
#
# Sphere:
# x = sin(2*pi*u)*sin(pi*v)
# y = cos(2*pi*u)*sin(pi*v)
# z = cos(pi*v)
# u_min = v_min = 0
# u_max = v_max = 1
#
# "Snail shell"
# x = 1.2**v*(sin(u)**2 *sin(v))
# y = 1.2**v*(sin(u)*cos(u))
# z = 1.2**v*(sin(u)**2 *cos(v))
# u_min = 0
# u_max = pi
# v_min = -pi/4,
# v max = 5*pi/2
class AddXYZFunctionSurface(Operator):
bl_idname = "mesh.primitive_xyz_function_surface"
bl_label = "Add X, Y, Z Function Surface"
bl_description = ("Add a surface defined defined by 3 functions:\n"
"x=F1(u,v), y=F2(u,v) and z=F3(u,v)")
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
x_eq = StringProperty(
name="X equation",
description="Equation for x=F(u,v). "
"Also available: n, a, b, c, f, g, h",
default="cos(v)*(1+cos(u))*sin(v/8)"
)
y_eq = StringProperty(
name="Y equation",
description="Equation for y=F(u,v). "
"Also available: n, a, b, c, f, g, h",
default="sin(u)*sin(v/8)+cos(v/8)*1.5"
)
z_eq = StringProperty(
name="Z equation",
description="Equation for z=F(u,v). "
"Also available: n, a, b, c, f, g, h",
default="sin(v)*(1+cos(u))*sin(v/8)"
)
range_u_min = FloatProperty(
name="U min",
description="Minimum U value. Lower boundary of U range",
min=-100.00,
max=0.00,
default=0.00
)
range_u_max = FloatProperty(
name="U max",
description="Maximum U value. Upper boundary of U range",
min=0.00,
max=100.00,
default=2 * pi
)
range_u_step = IntProperty(
name="U step",
description="U Subdivisions",
min=1,
max=1024,
default=32
)
wrap_u = BoolProperty(
name="U wrap",
description="U Wrap around",
default=True
)
range_v_min = FloatProperty(
name="V min",
description="Minimum V value. Lower boundary of V range",
min=-100.00,
max=0.00,
default=0.00
)
range_v_max = FloatProperty(
name="V max",
description="Maximum V value. Upper boundary of V range",
min=0.00,
max=100.00,
default=4 * pi
)
range_v_step = IntProperty(
name="V step",
description="V Subdivisions",
min=1,
max=1024,
default=128
)
wrap_v = BoolProperty(
name="V wrap",
description="V Wrap around",
default=False
)
close_v = BoolProperty(
name="Close V",
description="Create faces for first and last "
"V values (only if U is wrapped)",
default=False
)
n_eq = IntProperty(
name="Number of objects (n=0..N-1)",
description="The parameter n will be the index "
"of the current object, 0 to N-1",
min=1,
max=100,
default=1
)
a_eq = StringProperty(
name="A helper function",
description="Equation for a=F(u,v). Also available: n",
default="0"
)
b_eq = StringProperty(
name="B helper function",
description="Equation for b=F(u,v). Also available: n",
default="0"
)
c_eq = StringProperty(
name="C helper function",
description="Equation for c=F(u,v). Also available: n",
default="0"
)
f_eq = StringProperty(
name="F helper function",
description="Equation for f=F(u,v). Also available: n, a, b, c",
default="0"
)
g_eq = StringProperty(
name="G helper function",
description="Equation for g=F(u,v). Also available: n, a, b, c",
default="0"
)
h_eq = StringProperty(
name="H helper function",
description="Equation for h=F(u,v). Also available: n, a, b, c",
default="0"
)
Martin Buerbaum
committed
def execute(self, context):
for n in range(0, self.n_eq):
verts, faces = xyz_function_surface_faces(
self,
self.x_eq,
self.y_eq,
self.z_eq,
self.range_u_min,
self.range_u_max,
self.range_u_step,
self.wrap_u,
self.range_v_min,
self.range_v_max,
self.range_v_step,
self.wrap_v,
self.a_eq,
self.b_eq,
self.c_eq,
self.f_eq,
self.g_eq,
self.h_eq,
n,
Martin Buerbaum
committed
if not verts:
return {'CANCELLED'}
obj = create_mesh_object(context, verts, [], faces, "XYZ Function")
return {'FINISHED'}