Skip to content
Snippets Groups Projects
add_mesh_pipe_joint.py 31.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • # GPL # "author": "Buerbaum Martin (Pontiac)"
    
    
    import bpy
    
    from math import sin, cos, tan, pi, radians
    from bpy.types import Operator
    from bpy.props import (
            FloatProperty,
            IntProperty,
            )
    
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
    # Create a new mesh (object) from verts/edges/faces.
    # verts/edges/faces ... List of vertices/edges/faces for the
    
    #                       new mesh (as used in from_pydata)
    # name ... Name of the new mesh (& object)
    
    
    def create_mesh_object(context, verts, edges, faces, name):
    
        # Create new mesh
        mesh = bpy.data.meshes.new(name)
    
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
        # Make a mesh from a list of verts/edges/faces.
        mesh.from_pydata(verts, edges, faces)
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
        # Update mesh geometry after adding stuff.
    
        from bpy_extras import object_utils
        return object_utils.object_data_add(context, mesh, operator=None)
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
    # A very simple "bridge" tool.
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
    def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
        faces = []
    
    
        if not vertIdx1 or not vertIdx2:
            return None
    
        if len(vertIdx1) < 2 and len(vertIdx2) < 2:
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
            return None
    
    
        fan = False
        if (len(vertIdx1) != len(vertIdx2)):
            if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
                fan = True
            else:
                return None
    
        total = len(vertIdx2)
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
    
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
        if closed:
            # Bridge the start with the end.
            if flipped:
    
                face = [
                    vertIdx1[0],
                    vertIdx2[0],
                    vertIdx2[total - 1]]
                if not fan:
                    face.append(vertIdx1[total - 1])
                faces.append(face)
    
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
            else:
    
                face = [vertIdx2[0], vertIdx1[0]]
                if not fan:
                    face.append(vertIdx1[total - 1])
                face.append(vertIdx2[total - 1])
                faces.append(face)
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
    
        # Bridge the rest of the faces.
        for num in range(total - 1):
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
            if flipped:
    
                if fan:
                    face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
                else:
                    face = [vertIdx2[num], vertIdx1[num],
                        vertIdx1[num + 1], vertIdx2[num + 1]]
                faces.append(face)
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
            else:
    
                if fan:
                    face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
                else:
                    face = [vertIdx1[num], vertIdx2[num],
                        vertIdx2[num + 1], vertIdx1[num + 1]]
                faces.append(face)
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
    
        return faces
    
    
    
    # Create the vertices and polygons for a simple elbow (bent pipe)
    
    class AddElbowJoint(Operator):
    
        bl_idname = "mesh.primitive_elbow_joint_add"
        bl_label = "Add Pipe Elbow"
    
        bl_description = "Construct an elbow pipe mesh"
    
        bl_options = {'REGISTER', 'UNDO', 'PRESET'}
    
        radius: FloatProperty(
    
            description="The radius of the pipe",
    
            default=1.0,
            min=0.01,
            max=100.0,
    
        div: IntProperty(
    
            name="Divisions",
    
            description="Number of vertices (divisions)",
    
            default=32, min=3, max=256
            )
    
        angle: FloatProperty(
    
            name="Angle",
            description="The angle of the branching pipe (i.e. the 'arm' - "
    
                        "Measured from the center line of the main pipe",
    
            default=radians(45.0),
            min=radians(-179.9),
            max=radians(179.9),
    
        startLength: FloatProperty(
    
            name="Length Start",
    
            description="Length of the beginning of the pipe",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
        endLength: FloatProperty(
    
            name="End Length",
    
            description="Length of the end of the pipe",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
    
        def execute(self, context):
    
            startLength = self.startLength
            endLength = self.endLength
    
    
            verts = []
            faces = []
    
            loop1 = []        # The starting circle
            loop2 = []        # The elbow circle
            loop3 = []        # The end circle
    
            # Create start circle
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                locX = sin(curVertAngle)
                locY = cos(curVertAngle)
                locZ = -startLength
                loop1.append(len(verts))
                verts.append([locX * radius, locY * radius, locZ])
    
            # Create deformed joint circle
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                locX = sin(curVertAngle)
                locY = cos(curVertAngle)
                locZ = locX * tan(angle / 2.0)
                loop2.append(len(verts))
                verts.append([locX * radius, locY * radius, locZ * radius])
    
            # Create end circle
            baseEndLocX = -endLength * sin(angle)
            baseEndLocZ = endLength * cos(angle)
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                # Create circle
                locX = sin(curVertAngle) * radius
                locY = cos(curVertAngle) * radius
                locZ = 0.0
    
                # Rotate circle
                locZ = locX * cos(pi / 2.0 - angle)
                locX = locX * sin(pi / 2.0 - angle)
    
                loop3.append(len(verts))
                # Translate and add circle vertices to the list.
                verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
    
            # Create faces
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
            faces.extend(createFaces(loop1, loop2, closed=True))
            faces.extend(createFaces(loop2, loop3, closed=True))
    
            base = create_mesh_object(context, verts, [], faces, "Elbow Joint")
    
    
    # Create the vertices and polygons for a simple tee (T) joint
    # The base arm of the T can be positioned in an angle if needed though
    
    class AddTeeJoint(Operator):
    
        bl_idname = "mesh.primitive_tee_joint_add"
        bl_label = "Add Pipe Tee-Joint"
    
        bl_description = "Construct a tee-joint pipe mesh"
    
        bl_options = {'REGISTER', 'UNDO', 'PRESET'}
    
        radius: FloatProperty(
    
            description="The radius of the pipe",
    
            default=1.0,
            min=0.01,
            max=100.0,
    
        div: IntProperty(
    
            name="Divisions",
    
            description="Number of vertices (divisions)",
    
        angle: FloatProperty(
    
            name="Angle",
            description="The angle of the branching pipe (i.e. the 'arm' - "
    
                        "Measured from the center line of the main pipe",
    
            default=radians(90.0),
            min=radians(0.1),
            max=radians(179.9),
    
        startLength: FloatProperty(
    
            name="Length Start",
            description="Length of the beginning of the"
    
                        " main pipe (the straight one)",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
        endLength: FloatProperty(
    
            name="End Length",
            description="Length of the end of the"
    
                        " main pipe (the straight one)",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
        branchLength: FloatProperty(
    
            name="Arm Length",
    
            description="Length of the arm pipe (the bent one)",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
    
        def execute(self, context):
    
            startLength = self.startLength
            endLength = self.endLength
            branchLength = self.branchLength
    
                # Odd vertice number not supported (yet)
                self.report({'INFO'}, "Odd vertices number is not yet supported")
    
                return {'CANCELLED'}
    
            verts = []
            faces = []
    
            # List of vert indices of each cross section
    
            loopMainStart = []     # Vert indices for the beginning of the main pipe
            loopJoint1 = []        # Vert indices for joint that is used to connect the joint & loopMainStart
            loopJoint2 = []        # Vert indices for joint that is used to connect the joint & loopArm
            loopJoint3 = []        # Vert index for joint that is used to connect the joint & loopMainEnd
            loopArm = []           # Vert indices for the end of the arm
            loopMainEnd = []       # Vert indices for the end of the main pipe.
    
    
            # Create start circle (main pipe)
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                locX = sin(curVertAngle)
                locY = cos(curVertAngle)
                locZ = -startLength
                loopMainStart.append(len(verts))
                verts.append([locX * radius, locY * radius, locZ])
    
            # Create deformed joint circle
            vertTemp1 = None
            vertTemp2 = None
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                locX = sin(curVertAngle)
                locY = cos(curVertAngle)
    
                if vertIdx == 0:
                    vertTemp1 = len(verts)
                if vertIdx == div / 2:
                    # @todo: This will possibly break if we
                    # ever support odd divisions.
                    vertTemp2 = len(verts)
    
                loopJoint1.append(len(verts))
                if (vertIdx < div / 2):
                    # Straight side of main pipe.
                    locZ = 0
                    loopJoint3.append(len(verts))
                else:
                    # Branching side
                    locZ = locX * tan(angle / 2.0)
                    loopJoint2.append(len(verts))
    
                verts.append([locX * radius, locY * radius, locZ * radius])
    
            # Create 2. deformed joint (half-)circle
            loopTemp = []
            for vertIdx in range(div):
                if (vertIdx > div / 2):
                    curVertAngle = vertIdx * (2.0 * pi / div)
                    locX = sin(curVertAngle)
                    locY = -cos(curVertAngle)
                    locZ = -(radius * locX * tan((pi - angle) / 2.0))
                    loopTemp.append(len(verts))
                    verts.append([locX * radius, locY * radius, locZ])
    
            loopTemp2 = loopTemp[:]
    
            # Finalise 2. loop
            loopTemp.reverse()
            loopTemp.append(vertTemp1)
            loopJoint2.reverse()
            loopJoint2.extend(loopTemp)
            loopJoint2.reverse()
    
            # Finalise 3. loop
            loopTemp2.append(vertTemp2)
            loopTemp2.reverse()
            loopJoint3.extend(loopTemp2)
    
            # Create end circle (branching pipe)
            baseEndLocX = -branchLength * sin(angle)
            baseEndLocZ = branchLength * cos(angle)
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                # Create circle
                locX = sin(curVertAngle) * radius
                locY = cos(curVertAngle) * radius
                locZ = 0.0
    
                # Rotate circle
                locZ = locX * cos(pi / 2.0 - angle)
                locX = locX * sin(pi / 2.0 - angle)
    
                loopArm.append(len(verts))
    
                # Add translated circle.
                verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
    
            # Create end circle (main pipe)
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                locX = sin(curVertAngle)
                locY = cos(curVertAngle)
                locZ = endLength
                loopMainEnd.append(len(verts))
                verts.append([locX * radius, locY * radius, locZ])
    
            # Create faces
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
            faces.extend(createFaces(loopMainStart, loopJoint1, closed=True))
            faces.extend(createFaces(loopJoint2, loopArm, closed=True))
            faces.extend(createFaces(loopJoint3, loopMainEnd, closed=True))
    
            base = create_mesh_object(context, verts, [], faces, "Tee Joint")
    
            return {'FINISHED'}
    
    
    class AddWyeJoint(Operator):
    
        bl_idname = "mesh.primitive_wye_joint_add"
        bl_label = "Add Pipe Wye-Joint"
    
        bl_description = "Construct a wye-joint pipe mesh"
    
        bl_options = {'REGISTER', 'UNDO', 'PRESET'}
    
        radius: FloatProperty(
    
            description="The radius of the pipe",
    
            default=1.0,
            min=0.01,
            max=100.0,
    
        div: IntProperty(
    
            name="Divisions",
    
            description="Number of vertices (divisions)",
    
        angle1: FloatProperty(
    
            name="Angle 1",
            description="The angle of the 1. branching pipe "
    
                        "(measured from the center line of the main pipe)",
    
            default=radians(45.0),
            min=radians(-179.9),
            max=radians(179.9),
    
        angle2: FloatProperty(
    
            name="Angle 2",
            description="The angle of the 2. branching pipe "
    
                        "(measured from the center line of the main pipe) ",
    
            default=radians(45.0),
            min=radians(-179.9),
            max=radians(179.9),
    
        startLength: FloatProperty(
    
            name="Length Start",
            description="Length of the beginning of the"
    
                        " main pipe (the straight one)",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
        branch1Length: FloatProperty(
    
            name="Length Arm 1",
    
            description="Length of the 1. arm",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
        branch2Length: FloatProperty(
    
            name="Length Arm 2",
    
            description="Length of the 2. arm",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
    
        def execute(self, context):
    
            startLength = self.startLength
            branch1Length = self.branch1Length
            branch2Length = self.branch2Length
    
                # Odd vertice number not supported (yet)
                self.report({'INFO'}, "Odd vertices number is not yet supported")
    
                return {'CANCELLED'}
    
            verts = []
            faces = []
    
            # List of vert indices of each cross section
    
            loopMainStart = []      # Vert indices for the beginning of the main pipe
            loopJoint1 = []         # Vert index for joint that is used to connect the joint & loopMainStart
            loopJoint2 = []         # Vert index for joint that is used to connect the joint & loopArm1
            loopJoint3 = []         # Vert index for joint that is used to connect the joint & loopArm2
            loopArm1 = []           # Vert idxs for end of the 1. arm
            loopArm2 = []           # Vert idxs for end of the 2. arm
    
    
            # Create start circle
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                locX = sin(curVertAngle)
                locY = cos(curVertAngle)
                locZ = -startLength
                loopMainStart.append(len(verts))
                verts.append([locX * radius, locY * radius, locZ])
    
            # Create deformed joint circle
            vertTemp1 = None
            vertTemp2 = None
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                locX = sin(curVertAngle)
                locY = cos(curVertAngle)
    
                if vertIdx == 0:
                    vertTemp2 = len(verts)
                if vertIdx == div / 2:
                    # @todo: This will possibly break if we
                    # ever support odd divisions.
                    vertTemp1 = len(verts)
    
                loopJoint1.append(len(verts))
                if (vertIdx > div / 2):
                    locZ = locX * tan(angle1 / 2.0)
                    loopJoint2.append(len(verts))
                else:
                    locZ = locX * tan(-angle2 / 2.0)
                    loopJoint3.append(len(verts))
    
                verts.append([locX * radius, locY * radius, locZ * radius])
    
            # Create 2. deformed joint (half-)circle
            loopTemp = []
            angleJoint = (angle2 - angle1) / 2.0
            for vertIdx in range(div):
                if (vertIdx > div / 2):
                    curVertAngle = vertIdx * (2.0 * pi / div)
    
    
                    locX = (-sin(curVertAngle) * sin(angleJoint) / sin(angle2 - angleJoint))
    
                    locY = -cos(curVertAngle)
    
                    locZ = (-(sin(curVertAngle) * cos(angleJoint) / sin(angle2 - angleJoint)))
    
    
                    loopTemp.append(len(verts))
                    verts.append([locX * radius, locY * radius, locZ * radius])
    
            loopTemp2 = loopTemp[:]
    
            # Finalise 2. loop
            loopTemp.append(vertTemp1)
            loopTemp.reverse()
            loopTemp.append(vertTemp2)
            loopJoint2.reverse()
            loopJoint2.extend(loopTemp)
            loopJoint2.reverse()
    
            # Finalise 3. loop
            loopTemp2.reverse()
            loopJoint3.extend(loopTemp2)
    
            # Create end circle (1. branching pipe)
            baseEndLocX = -branch1Length * sin(angle1)
            baseEndLocZ = branch1Length * cos(angle1)
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                # Create circle
                locX = sin(curVertAngle) * radius
                locY = cos(curVertAngle) * radius
                locZ = 0.0
    
                # Rotate circle
                locZ = locX * cos(pi / 2.0 - angle1)
                locX = locX * sin(pi / 2.0 - angle1)
    
                loopArm1.append(len(verts))
                # Add translated circle.
                verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
    
            # Create end circle (2. branching pipe)
            baseEndLocX = branch2Length * sin(angle2)
            baseEndLocZ = branch2Length * cos(angle2)
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                # Create circle
                locX = sin(curVertAngle) * radius
                locY = cos(curVertAngle) * radius
                locZ = 0.0
    
                # Rotate circle
                locZ = locX * cos(pi / 2.0 + angle2)
                locX = locX * sin(pi / 2.0 + angle2)
    
                loopArm2.append(len(verts))
                # Add translated circle
                verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
    
            # Create faces
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
            faces.extend(createFaces(loopMainStart, loopJoint1, closed=True))
            faces.extend(createFaces(loopJoint2, loopArm1, closed=True))
            faces.extend(createFaces(loopJoint3, loopArm2, closed=True))
    
            base = create_mesh_object(context, verts, [], faces, "Wye Joint")
    
            return {'FINISHED'}
    
    
    # Create the vertices and polygons for a cross (+ or X) pipe joint
    
    class AddCrossJoint(Operator):
    
        bl_idname = "mesh.primitive_cross_joint_add"
    
        bl_label = "Add Pipe Cross-Joint"
    
        bl_description = "Construct a cross-joint pipe mesh"
    
        bl_options = {'REGISTER', 'UNDO', 'PRESET'}
    
        radius: FloatProperty(
    
            description="The radius of the pipe",
    
            default=1.0,
            min=0.01,
            max=100.0,
    
        div: IntProperty(
    
            name="Divisions",
    
            description="Number of vertices (divisions)",
    
        angle1: FloatProperty(
    
            description="The angle of the 1. arm (from the main axis)",
    
            default=radians(90.0),
            min=radians(-179.9),
            max=radians(179.9),
    
        angle2: FloatProperty(name="Angle 2",
    
            description="The angle of the 2. arm (from the main axis)",
    
            default=radians(90.0),
            min=radians(-179.9),
            max=radians(179.9),
    
        angle3: FloatProperty(name="Angle 3 (center)",
    
            description="The angle of the center arm (from the main axis)",
    
            default=radians(0.0),
            min=radians(-179.9),
            max=radians(179.9),
    
        startLength: FloatProperty(
    
            name="Length Start",
            description="Length of the beginning of the "
    
                        "main pipe (the straight one)",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
        branch1Length: FloatProperty(name="Length Arm 1",
    
            description="Length of the 1. arm",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
        branch2Length: FloatProperty(
    
            name="Length Arm 2",
    
            description="Length of the 2. arm",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
        branch3Length: FloatProperty(
    
            name="Length Arm 3 (center)",
    
            description="Length of the center arm",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
    
        def execute(self, context):
    
            angle1 = self.angle1
            angle2 = self.angle2
            angle3 = self.angle3
    
            startLength = self.startLength
            branch1Length = self.branch1Length
            branch2Length = self.branch2Length
            branch3Length = self.branch3Length
    
                # Odd vertice number not supported (yet)
                self.report({'INFO'}, "Odd vertices number is not yet supported")
    
                return {'CANCELLED'}
    
            verts = []
            faces = []
    
            # List of vert indices of each cross section
    
            loopMainStart = []      # Vert indices for the beginning of the main pipe
            loopJoint1 = []         # Vert index for joint that is used to connect the joint & loopMainStart
            loopJoint2 = []         # Vert index for joint that is used to connect the joint & loopArm1
            loopJoint3 = []         # Vert index for joint that is used to connect the joint & loopArm2
            loopJoint4 = []         # Vert index for joint that is used to connect the joint & loopArm3
            loopArm1 = []           # Vert idxs for the end of the 1. arm
            loopArm2 = []           # Vert idxs for the end of the 2. arm
            loopArm3 = []           # Vert idxs for the center arm end
    
    
            # Create start circle
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                locX = sin(curVertAngle)
                locY = cos(curVertAngle)
                locZ = -startLength
                loopMainStart.append(len(verts))
                verts.append([locX * radius, locY * radius, locZ])
    
            # Create 1. deformed joint circle
            vertTemp1 = None
            vertTemp2 = None
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                locX = sin(curVertAngle)
                locY = cos(curVertAngle)
    
                if vertIdx == 0:
                    vertTemp2 = len(verts)
                if vertIdx == div / 2:
                    # @todo: This will possibly break if we
                    # ever support odd divisions.
                    vertTemp1 = len(verts)
    
                loopJoint1.append(len(verts))
                if (vertIdx > div / 2):
                    locZ = locX * tan(angle1 / 2.0)
                    loopJoint2.append(len(verts))
                else:
                    locZ = locX * tan(-angle2 / 2.0)
                    loopJoint3.append(len(verts))
    
                verts.append([locX * radius, locY * radius, locZ * radius])
    
            # Create 2. deformed joint circle
            loopTempA = []
            loopTempB = []
            angleJoint1 = (angle1 - angle3) / 2.0
            angleJoint2 = (angle2 + angle3) / 2.0
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
    
                # Skip pole vertices
                # @todo: This will possibly break if
    
                # we ever support odd divisions
    
                if not (vertIdx == 0) and not (vertIdx == div / 2):
    
                    if (vertIdx > div / 2):
                        angleJoint = angleJoint1
                        angle = angle1
                        Z = -1.0
                        loopTempA.append(len(verts))
    
                    else:
                        angleJoint = angleJoint2
                        angle = angle2
                        Z = 1.0
                        loopTempB.append(len(verts))
    
    
                    locX = (sin(curVertAngle) * sin(angleJoint) / sin(angle - angleJoint))
    
                    locY = -cos(curVertAngle)
    
                    locZ = (Z * (sin(curVertAngle) * cos(angleJoint) / sin(angle - angleJoint)))
    
    
                    verts.append([locX * radius, locY * radius, locZ * radius])
    
            loopTempA2 = loopTempA[:]
            loopTempB2 = loopTempB[:]
            loopTempB3 = loopTempB[:]
    
            # Finalise 2. loop
            loopTempA.append(vertTemp1)
            loopTempA.reverse()
            loopTempA.append(vertTemp2)
            loopJoint2.reverse()
            loopJoint2.extend(loopTempA)
            loopJoint2.reverse()
    
            # Finalise 3. loop
            loopJoint3.extend(loopTempB3)
    
            # Finalise 4. loop
            loopTempA2.append(vertTemp1)
            loopTempA2.reverse()
            loopTempB2.append(vertTemp2)
            loopJoint4.extend(reversed(loopTempB2))
            loopJoint4.extend(loopTempA2)
    
            # Create end circle (1. branching pipe)
            baseEndLocX = -branch1Length * sin(angle1)
            baseEndLocZ = branch1Length * cos(angle1)
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                # Create circle
                locX = sin(curVertAngle) * radius
                locY = cos(curVertAngle) * radius
                locZ = 0.0
    
                # Rotate circle
                locZ = locX * cos(pi / 2.0 - angle1)
                locX = locX * sin(pi / 2.0 - angle1)
    
                loopArm1.append(len(verts))
                # Add translated circle.
                verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
    
            # Create end circle (2. branching pipe)
            baseEndLocX = branch2Length * sin(angle2)
            baseEndLocZ = branch2Length * cos(angle2)
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                # Create circle
                locX = sin(curVertAngle) * radius
                locY = cos(curVertAngle) * radius
                locZ = 0.0
    
                # Rotate circle
                locZ = locX * cos(pi / 2.0 + angle2)
                locX = locX * sin(pi / 2.0 + angle2)
    
                loopArm2.append(len(verts))
                # Add translated circle
                verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
    
            # Create end circle (center pipe)
            baseEndLocX = branch3Length * sin(angle3)
            baseEndLocZ = branch3Length * cos(angle3)
            for vertIdx in range(div):
                curVertAngle = vertIdx * (2.0 * pi / div)
                # Create circle
                locX = sin(curVertAngle) * radius
                locY = cos(curVertAngle) * radius
                locZ = 0.0
    
                # Rotate circle
                locZ = locX * cos(pi / 2.0 + angle3)
                locX = locX * sin(pi / 2.0 + angle3)
    
                loopArm3.append(len(verts))
                # Add translated circle
                verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
    
            # Create faces
    
    Martin Buerbaum's avatar
    Martin Buerbaum committed
            faces.extend(createFaces(loopMainStart, loopJoint1, closed=True))
            faces.extend(createFaces(loopJoint2, loopArm1, closed=True))
            faces.extend(createFaces(loopJoint3, loopArm2, closed=True))
            faces.extend(createFaces(loopJoint4, loopArm3, closed=True))
    
            base = create_mesh_object(context, verts, [], faces, "Cross Joint")
    
    
    # Create the vertices and polygons for a regular n-joint
    
    class AddNJoint(Operator):
    
        bl_idname = "mesh.primitive_n_joint_add"
        bl_label = "Add Pipe N-Joint"
    
        bl_description = "Construct a n-joint pipe mesh"
    
        bl_options = {'REGISTER', 'UNDO', 'PRESET'}
    
        radius: FloatProperty(
    
            description="The radius of the pipe",
    
            default=1.0,
            min=0.01,
            max=100.0,
    
        div: IntProperty(
    
            name="Divisions",
    
            description="Number of vertices (divisions)",
    
        number: IntProperty(
    
            name="Arms / Joints",
            description="Number of joints / arms",
    
        length: FloatProperty(
    
            name="Length",
            description="Length of each joint / arm",
    
            default=3.0,
            min=0.01,
            max=100.0,
    
    
        def execute(self, context):
    
            radius = self.radius
            div = self.div
            number = self.number
            length = self.length
    
                # Odd vertice number not supported (yet)
                self.report({'INFO'}, "Odd vertices number is not yet supported")
    
                return {'CANCELLED'}
    
            if (number < 2):
                return {'CANCELLED'}
    
            verts = []
            faces = []
    
            loopsEndCircles = []
            loopsJointsTemp = []
            loopsJoints = []
    
            vertTemp1 = None
            vertTemp2 = None
    
            angleDiv = (2.0 * pi / number)
    
    
            # Create vertices for the end circles
    
            for num in range(number):
                circle = []
                # Create start circle
                angle = num * angleDiv
    
                baseEndLocX = length * sin(angle)
                baseEndLocZ = length * cos(angle)
                for vertIdx in range(div):
                    curVertAngle = vertIdx * (2.0 * pi / div)
                    # Create circle
                    locX = sin(curVertAngle) * radius
                    locY = cos(curVertAngle) * radius
                    locZ = 0.0
    
                    # Rotate circle
                    locZ = locX * cos(pi / 2.0 + angle)
                    locX = locX * sin(pi / 2.0 + angle)
    
                    circle.append(len(verts))
                    # Add translated circle
                    verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
    
                loopsEndCircles.append(circle)
    
    
                # Create vertices for the joint circles
    
                loopJoint = []
                for vertIdx in range(div):
                    curVertAngle = vertIdx * (2.0 * pi / div)
                    locX = sin(curVertAngle)
                    locY = cos(curVertAngle)
    
                    skipVert = False
                    # Store pole vertices
                    if vertIdx == 0:
                        if (num == 0):
                            vertTemp2 = len(verts)
                        else:
                            skipVert = True
                    elif vertIdx == div / 2:
                        # @todo: This will possibly break if we
    
                        # ever support odd divisions
    
                        if (num == 0):
                            vertTemp1 = len(verts)
                        else:
                            skipVert = True
    
                    if not skipVert:
                        if (vertIdx > div / 2):
                            locZ = -locX * tan((pi - angleDiv) / 2.0)
                            loopJoint.append(len(verts))
    
                            # Rotate the vert
                            cosAng = cos(-angle)
                            sinAng = sin(-angle)
                            LocXnew = locX * cosAng - locZ * sinAng
                            LocZnew = locZ * cosAng + locX * sinAng
                            locZ = LocZnew
                            locX = LocXnew
    
                            verts.append([
                                locX * radius,
                                locY * radius,
                                locZ * radius])
                        else:
                            # These two vertices will only be
                            # added the very first time.
                            if vertIdx == 0 or vertIdx == div / 2:
                                verts.append([locX * radius, locY * radius, locZ])
    
                loopsJointsTemp.append(loopJoint)
    
            # Create complete loops (loopsJoints) out of the
    
            # double number of half loops in loopsJointsTemp
    
            for halfLoopIdx in range(len(loopsJointsTemp)):
                if (halfLoopIdx == len(loopsJointsTemp) - 1):
                    idx1 = halfLoopIdx
                    idx2 = 0
                else:
                    idx1 = halfLoopIdx
                    idx2 = halfLoopIdx + 1
    
                loopJoint = []
                loopJoint.append(vertTemp2)
                loopJoint.extend(reversed(loopsJointsTemp[idx2]))
                loopJoint.append(vertTemp1)
                loopJoint.extend(loopsJointsTemp[idx1])
    
                loopsJoints.append(loopJoint)
    
            # Create faces from the two
    
            # loop arrays (loopsJoints -> loopsEndCircles)
    
            for loopIdx in range(len(loopsEndCircles)):
                faces.extend(