Skip to content
Snippets Groups Projects
add_mesh_archimedean_solids.py 35.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    bl_addon_info = {
        'name': 'Add Mesh: Archimedean Solids',
        'author': 'Buerbaum Martin (Pontiac)',
        'version': '0.1',
        'blender': (2, 5, 3),
        'location': 'View3D > Add > Mesh > Archimedean Solids',
        'description': 'Adds various archimedean solids to the Add Mesh menu',
        'url':
        'http://wiki.blender.org/index.php/Extensions:2.5/Py/' \
            'Scripts/Add_Mesh/',  # @todo Create wiki page and fix this link.
        'category': 'Add Mesh'}
    
    import bpy
    from math import sqrt
    from mathutils import *
    from bpy.props import *
    
    
    # Stores the values of a list of properties and the
    # operator id in a property group ('recall_op') inside the object.
    # Could (in theory) be used for non-objects.
    # Note: Replaces any existing property group with the same name!
    # ob ... Object to store the properties in.
    # op ... The operator that should be used.
    # op_args ... A dictionary with valid Blender
    #             properties (operator arguments/parameters).
    def store_recall_properties(ob, op, op_args):
        if ob and op and op_args:
            recall_properties = {}
    
            # Add the operator identifier and op parameters to the properties.
            recall_properties['op'] = op.bl_idname
            recall_properties['args'] = op_args
    
            # Store new recall properties.
            ob['recall'] = recall_properties
    
    
    # Apply view rotation to objects if "Align To" for
    # new objects was set to "VIEW" in the User Preference.
    def apply_object_align(context, ob):
        obj_align = bpy.context.user_preferences.edit.object_align
    
        if (context.space_data.type == 'VIEW_3D'
            and obj_align == 'VIEW'):
                view3d = context.space_data
                region = view3d.region_3d
                viewMatrix = region.view_matrix
                rot = viewMatrix.rotation_part()
                ob.rotation_euler = rot.invert().to_euler()
    
    
    # Create a new mesh (object) from verts/edges/faces.
    # verts/edges/faces ... List of vertices/edges/faces for the
    #                       new mesh (as used in from_pydata).
    # name ... Name of the new mesh (& object).
    # edit ... Replace existing mesh data.
    # Note: Using "edit" will destroy/delete existing mesh data.
    def create_mesh_object(context, verts, edges, faces, name, edit):
        scene = context.scene
        obj_act = scene.objects.active
    
        # Can't edit anything, unless we have an active obj.
        if edit and not obj_act:
            return None
    
        # Create new mesh
        mesh = bpy.data.meshes.new(name)
    
        # Make a mesh from a list of verts/edges/faces.
        mesh.from_pydata(verts, edges, faces)
    
        # Update mesh geometry after adding stuff.
        mesh.update()
    
        # Deselect all objects.
        bpy.ops.object.select_all(action='DESELECT')
    
        if edit:
            # Replace geometry of existing object
    
            # Use the active obj and select it.
            ob_new = obj_act
            ob_new.selected = True
    
            if obj_act.mode == 'OBJECT':
                # Get existing mesh datablock.
                old_mesh = ob_new.data
    
                # Set object data to nothing
                ob_new.data = None
    
                # Clear users of existing mesh datablock.
                old_mesh.user_clear()
    
                # Remove old mesh datablock if no users are left.
                if (old_mesh.users == 0):
                    bpy.data.meshes.remove(old_mesh)
    
                # Assign new mesh datablock.
                ob_new.data = mesh
    
        else:
            # Create new object
            ob_new = bpy.data.objects.new(name, mesh)
    
            # Link new object to the given scene and select it.
            scene.objects.link(ob_new)
            ob_new.selected = True
    
            # Place the object at the 3D cursor location.
            ob_new.location = scene.cursor_location
    
            apply_object_align(context, ob_new)
    
        if obj_act and obj_act.mode == 'EDIT':
            if not edit:
                # We are in EditMode, switch to ObjectMode.
                bpy.ops.object.mode_set(mode='OBJECT')
    
                # Select the active object as well.
                obj_act.selected = True
    
                # Apply location of new object.
                scene.update()
    
                # Join new object into the active.
                bpy.ops.object.join()
    
                # Switching back to EditMode.
                bpy.ops.object.mode_set(mode='EDIT')
    
                ob_new = obj_act
    
        else:
            # We are in ObjectMode.
            # Make the new object the active one.
            scene.objects.active = ob_new
    
        return ob_new
    
    
    # A very simple "bridge" tool.
    # Connects two equally long vertex rows with faces.
    # Returns a list of the new faces (list of  lists)
    #
    # vertIdx1 ... First vertex list (list of vertex indices).
    # vertIdx2 ... Second vertex list (list of vertex indices).
    # closed ... Creates a loop (first & last are closed).
    # flipped ... Invert the normal of the face(s).
    #
    # Note: You can set vertIdx1 to a single vertex index to create
    #       a fan/star of faces.
    # Note: If both vertex idx list are the same length they have
    #       to have at least 2 vertices.
    def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
        faces = []
    
        if not vertIdx1 or not vertIdx2:
            return None
    
        if len(vertIdx1) < 2 and len(vertIdx2) < 2:
            return None
    
        fan = False
        if (len(vertIdx1) != len(vertIdx2)):
            if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
                fan = True
            else:
                return None
    
        total = len(vertIdx2)
    
        if closed:
            # Bridge the start with the end.
            if flipped:
                face = [
                    vertIdx1[0],
                    vertIdx2[0],
                    vertIdx2[total - 1]]
                if not fan:
                    face.append(vertIdx1[total - 1])
                faces.append(face)
    
            else:
                face = [vertIdx2[0], vertIdx1[0]]
                if not fan:
                    face.append(vertIdx1[total - 1])
                face.append(vertIdx2[total - 1])
                faces.append(face)
    
        # Bridge the rest of the faces.
        for num in range(total - 1):
            if flipped:
                if fan:
                    face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
                else:
                    face = [vertIdx2[num], vertIdx1[num],
                        vertIdx1[num + 1], vertIdx2[num + 1]]
                faces.append(face)
            else:
                if fan:
                    face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
                else:
                    face = [vertIdx1[num], vertIdx2[num],
                        vertIdx2[num + 1], vertIdx1[num + 1]]
                faces.append(face)
    
        return faces
    
    
    ########################
    
    # Converts regular ngons to quads
    # Note: Exists because most "fill" functions can not be
    # controlled as easily.
    def ngon_fill(ngon, offset=0):
    
        if offset > 0:
            for i in range(offset):
                ngon = ngon[1:] + [ngon[0]]
    
    
        if len(ngon) == 6:
            # Hexagon
            return [
                [ngon[0], ngon[1], ngon[2], ngon[3]],
                [ngon[0], ngon[3], ngon[4], ngon[5]]]
    
        elif len(ngon) == 8:
            # Octagon
            return [
                [ngon[0], ngon[1], ngon[2], ngon[3]],
                [ngon[0], ngon[3], ngon[4], ngon[7]],
                [ngon[7], ngon[4], ngon[5], ngon[6]]]
    
        else:
            return None
            # Not supported (yet)
    
    
    # Returns the middle location of a _regular_ polygon.
    
    # verts ... List of vertex coordinates (Vector) used by the ngon.
    # ngon ... List of ngones (vertex indices of each ngon point)
    
    def get_polygon_center(verts, ngons):
        faces = []
    
        for f in ngons:
    
    
            for vert_idx in f:
                loc = loc + Vector(verts[vert_idx])
    
            loc = loc / len(f)
    
            vert_idx_new = len(verts)
            verts.append(loc)
    
            face_star = createFaces([vert_idx_new], f, closed=True)
            faces.extend(face_star)
    
        return verts, faces
    
    
    
    # v1 ... First vertex point (Vector)
    # v2 ... Second vertex point (Vector)
    # edgelength_middle .. Length of the middle section (va->vb)
    # (v1)----(va)---------------(vb)----(v2)
    
    def subdivide_edge_2_cuts(v1, v2, edgelength_middle):
        length = (v2 - v1).length
        vn = (v2 - v1).normalize()
    
        edgelength_1a_b2 = (length - edgelength_middle) / 2.0
    
        va = v1 + vn * edgelength_1a_b2
        vb = v1 + vn * (edgelength_1a_b2 + edgelength_middle)
    
        return (va, vb)
    
    
    
    # Invert the normal of a face.
    # Inverts the order of the vertices to change the normal direction of a face.
    def invert_face_normal(face):
        return [face[0]] + list(reversed(face[1:]))
    
    ########################
    
    
    
    def add_truncated_tetrahedron(hexagon_side=2.0 * sqrt(2.0) / 3.0,
        star_ngons=False):
    
    
        if (hexagon_side < 0.0
            or hexagon_side > 2.0 * sqrt(2.0)):
            return None, None
    
    
        verts = []
        faces = []
    
        # Vertices of a simple Tetrahedron
        verts_tet = [
    
            Vector((1.0, 1.0, -1.0)),    # tip 0
            Vector((-1.0, 1.0, 1.0)),    # tip 1
            Vector((1.0, -1.0, 1.0)),    # tip 2
            Vector((-1.0, -1.0, -1.0))]  # tip 3
    
    
        # Calculate truncated vertices
        tri0 = []
        tri1 = []
        tri2 = []
        tri3 = []
    
        va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[1], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri0.append(va_idx)
        tri1.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[2], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri0.append(va_idx)
        tri2.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[3], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri0.append(va_idx)
        tri3.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_tet[1], verts_tet[2], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri1.append(va_idx)
        tri2.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_tet[1], verts_tet[3], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri1.append(va_idx)
        tri3.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_tet[2], verts_tet[3], hexagon_side)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tri2.append(va_idx)
        tri3.append(vb_idx)
    
        # Hexagon polygons (n-gons)
        ngon012 = [tri0[1], tri0[0], tri1[0], tri1[1], tri2[1], tri2[0]]
        ngon031 = [tri0[0], tri0[2], tri3[0], tri3[1], tri1[2], tri1[0]]
        ngon023 = [tri0[2], tri0[1], tri2[0], tri2[2], tri3[2], tri3[0]]
        ngon132 = [tri1[1], tri1[2], tri3[1], tri3[2], tri2[2], tri2[1]]
    
        if star_ngons:
            # Create stars from hexagons
            verts, faces_star = get_polygon_center(verts,
                [ngon012, ngon031, ngon023, ngon132])
            faces.extend(faces_star)
    
        else:
            # Create quads from hexagons
    
            hex_quads = ngon_fill(ngon012)
            faces.extend(hex_quads)
            hex_quads = ngon_fill(ngon031)
            faces.extend(hex_quads)
            hex_quads = ngon_fill(ngon023)
            faces.extend(hex_quads)
            hex_quads = ngon_fill(ngon132)
            faces.extend(hex_quads)
    
    
        # Invert face normals
        tri1 = [tri1[0]] + list(reversed(tri1[1:]))
        tri3 = [tri3[0]] + list(reversed(tri3[1:]))
    
        # Tri faces
        faces.extend([tri0, tri1, tri2, tri3])
    
        return verts, faces
    
    
    
    def add_cuboctahedron(octagon_side=0.0, star_ngons=False):
        if (octagon_side > 2.0 or octagon_side < 0.0):
            return None, None, None
    
        s = octagon_side
        verts = []
        faces = []
    
        name = "Cuboctahedron"
        if s == 0.0:
            # Upper quad face
            dist = z = size / 2.0
            face_top = [len(verts), len(verts) + 1, len(verts) + 2, len(verts) + 3]
            verts.append(Vector((dist, 0.0, z)))
            verts.append(Vector((0.0, dist, z)))
            verts.append(Vector((-dist, 0.0, z)))
            verts.append(Vector((0.0, -dist, z)))
            faces.append(face_top)
    
            # 4 vertices on the z=0.0 plane
            z = 0.0
            v_xp_yp = len(verts)
            verts.append(Vector((dist, dist, z)))
            v_xp_yn = len(verts)
            verts.append(Vector((dist, -dist, z)))
            v_xn_yn = len(verts)
            verts.append(Vector((-dist, -dist, z)))
            v_xn_yp = len(verts)
            verts.append(Vector((-dist, dist, z)))
    
            # Lower quad face
            z = -size / 2.0
            face_bot = [len(verts), len(verts) + 1, len(verts) + 2, len(verts) + 3]
            verts.append((dist, 0.0, z))
            verts.append((0.0, -dist, z))
            verts.append((-dist, 0.0, z))
            verts.append((0.0, dist, z))
            faces.append(face_bot)
    
            # Last 4 faces
            face_yp = [v_xp_yp, face_bot[3], v_xn_yp, face_top[1]]
            face_yn = [v_xn_yn, face_bot[1], v_xp_yn, face_top[3]]
            face_xp = [v_xp_yn, face_bot[0], v_xp_yp, face_top[0]]
            face_xn = [v_xn_yp, face_bot[2], v_xn_yn, face_top[2]]
            faces.extend([face_yp, face_yn, face_xp, face_xn])
    
            # Tris top
            tri_xp_yp_zp = [v_xp_yp, face_top[1], face_top[0]]
            tri_xp_yn_zp = [v_xp_yn, face_top[0], face_top[3]]
            tri_xn_yp_zp = [v_xn_yp, face_top[2], face_top[1]]
            tri_xn_yn_zp = [v_xn_yn, face_top[3], face_top[2]]
            faces.extend([tri_xp_yp_zp, tri_xp_yn_zp, tri_xn_yp_zp, tri_xn_yn_zp])
    
            # Tris bottom
            tri_xp_yp_zn = [v_xp_yn, face_bot[1], face_bot[0]]
            tri_xp_yn_zn = [v_xp_yp, face_bot[0], face_bot[3]]
            tri_xn_yp_zn = [v_xn_yn, face_bot[2], face_bot[1]]
            tri_xn_yn_zn = [v_xn_yp, face_bot[3], face_bot[2]]
            faces.extend([tri_xp_yp_zn, tri_xp_yn_zn, tri_xn_yp_zn, tri_xn_yn_zn])
    
        else:
            name = "TruncatedCube"
    
            # Vertices of a simple Cube
            verts_cube = [
                Vector((1.0, 1.0, 1.0)),     # tip 0
                Vector((1.0, -1.0, 1.0)),    # tip 1
                Vector((-1.0, -1.0, 1.0)),   # tip 2
                Vector((-1.0, 1.0, 1.0)),    # tip 3
                Vector((1.0, 1.0, -1.0)),    # tip 4
                Vector((1.0, -1.0, -1.0)),   # tip 5
                Vector((-1.0, -1.0, -1.0)),  # tip 6
                Vector((-1.0, 1.0, -1.0))]   # tip 7
    
            tri_xp_yp_zp = []
            tri_xp_yn_zp = []
            tri_xn_yp_zp = []
            tri_xn_yn_zp = []
            tri_xp_yp_zn = []
            tri_xp_yn_zn = []
            tri_xn_yp_zn = []
            tri_xn_yn_zn = []
    
            # Prepare top & bottom octagons.
            ngon_top = []
            ngon_bot = []
    
            # Top edges
            va, vb = subdivide_edge_2_cuts(verts_cube[0], verts_cube[1], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xp_yp_zp.append(va_idx)
            tri_xp_yn_zp.append(vb_idx)
            ngon_top.extend([va_idx, vb_idx])
            va, vb = subdivide_edge_2_cuts(verts_cube[1], verts_cube[2], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xp_yn_zp.append(va_idx)
            tri_xn_yn_zp.append(vb_idx)
            ngon_top.extend([va_idx, vb_idx])
            va, vb = subdivide_edge_2_cuts(verts_cube[2], verts_cube[3], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xn_yn_zp.append(va_idx)
            tri_xn_yp_zp.append(vb_idx)
            ngon_top.extend([va_idx, vb_idx])
            va, vb = subdivide_edge_2_cuts(verts_cube[3], verts_cube[0], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xn_yp_zp.append(va_idx)
            tri_xp_yp_zp.append(vb_idx)
            ngon_top.extend([va_idx, vb_idx])
    
            # Top-down edges
            va, vb = subdivide_edge_2_cuts(verts_cube[0], verts_cube[4], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xp_yp_zp.append(va_idx)
            tri_xp_yp_zn.append(vb_idx)
            top_down_0 = [va_idx, vb_idx]
            va, vb = subdivide_edge_2_cuts(verts_cube[1], verts_cube[5], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xp_yn_zp.append(va_idx)
            tri_xp_yn_zn.append(vb_idx)
            top_down_1 = [va_idx, vb_idx]
            va, vb = subdivide_edge_2_cuts(verts_cube[2], verts_cube[6], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xn_yn_zp.append(va_idx)
            tri_xn_yn_zn.append(vb_idx)
            top_down_2 = [va_idx, vb_idx]
            va, vb = subdivide_edge_2_cuts(verts_cube[3], verts_cube[7], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xn_yp_zp.append(va_idx)
            tri_xn_yp_zn.append(vb_idx)
            top_down_3 = [va_idx, vb_idx]
    
            # Bottom edges
            va, vb = subdivide_edge_2_cuts(verts_cube[4], verts_cube[5], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xp_yp_zn.append(va_idx)
            tri_xp_yn_zn.append(vb_idx)
            ngon_bot.extend([va_idx, vb_idx])
            va, vb = subdivide_edge_2_cuts(verts_cube[5], verts_cube[6], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xp_yn_zn.append(va_idx)
            tri_xn_yn_zn.append(vb_idx)
            ngon_bot.extend([va_idx, vb_idx])
            va, vb = subdivide_edge_2_cuts(verts_cube[6], verts_cube[7], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xn_yn_zn.append(va_idx)
            tri_xn_yp_zn.append(vb_idx)
            ngon_bot.extend([va_idx, vb_idx])
            va, vb = subdivide_edge_2_cuts(verts_cube[7], verts_cube[4], s)
            va_idx, vb_idx = len(verts), len(verts) + 1
            verts.extend([va, vb])
            tri_xn_yp_zn.append(va_idx)
            tri_xp_yp_zn.append(vb_idx)
            ngon_bot.extend([va_idx, vb_idx])
    
            # Octagon polygons (n-gons)
            ngon_0 = [
                top_down_0[1], top_down_0[0], ngon_top[0], ngon_top[1],
                top_down_1[0], top_down_1[1], ngon_bot[1], ngon_bot[0]]
            ngon_1 = [
                top_down_1[1], top_down_1[0], ngon_top[2], ngon_top[3],
                top_down_2[0], top_down_2[1], ngon_bot[3], ngon_bot[2]]
            ngon_2 = [
                top_down_2[1], top_down_2[0], ngon_top[4], ngon_top[5],
                top_down_3[0], top_down_3[1], ngon_bot[5], ngon_bot[4]]
            ngon_3 = [
                top_down_3[1], top_down_3[0], ngon_top[6], ngon_top[7],
                top_down_0[0], top_down_0[1], ngon_bot[7], ngon_bot[6]]
    
             # Invert face normals where needed.
            ngon_top = invert_face_normal(ngon_top)
            tri_xp_yp_zp = invert_face_normal(tri_xp_yp_zp)
            tri_xp_yn_zn = invert_face_normal(tri_xp_yn_zn)
            tri_xn_yp_zn = invert_face_normal(tri_xn_yp_zn)
            tri_xn_yn_zn = invert_face_normal(tri_xn_yn_zn)
    
            # Tris
            faces.extend([tri_xp_yp_zp, tri_xp_yn_zp, tri_xn_yp_zp, tri_xn_yn_zp])
            faces.extend([tri_xp_yp_zn, tri_xp_yn_zn, tri_xn_yp_zn, tri_xn_yn_zn])
    
            if star_ngons:
    
                ngons = [ngon_top, ngon_bot, ngon_0, ngon_1, ngon_2, ngon_3]
    
                # Create stars from octagons.
                verts, faces_star = get_polygon_center(verts, ngons)
                faces.extend(faces_star)
    
            else:
                # Create quads from octagons.
    
    
                # The top octagon is the only polygon we don't need to offset.
    
                oct_quads = ngon_fill(ngon_top)
                faces.extend(oct_quads)
    
                ngons = [ngon_bot, ngon_0, ngon_1, ngon_2, ngon_3]
    
                for ngon in ngons:
    
                    # offset=1 Offset vertices so QUADS are created with
                    # orthagonal edges. Superficial change - Could be omitted.
    
                    oct_quads = ngon_fill(ngon, offset=1)
                    faces.extend(oct_quads)
    
        return verts, faces, name
    
    
    def add_rhombicuboctahedron(quad_size=sqrt(2.0) / (1.0 + sqrt(2) / 2.0)):
        if (quad_size > 2.0 or quad_size < 0.0):
            return None, None
    
        faces = []
        verts = []
    
        size = 2.0
    
        # Top & bottom faces (quads)
        face_top = []
        face_bot = []
        for z, up in [(size / 2.0, True), (-size / 2.0, False)]:
            face = []
            face.append(len(verts))
            verts.append(Vector((quad_size / 2.0, quad_size / 2.0, z)))
            face.append(len(verts))
            verts.append(Vector((quad_size / 2.0, -quad_size / 2.0, z)))
            face.append(len(verts))
            verts.append(Vector((-quad_size / 2.0, -quad_size / 2.0, z)))
            face.append(len(verts))
            verts.append(Vector((-quad_size / 2.0, quad_size / 2.0, z)))
    
            if up:
                # Top face (quad)
                face_top = face
            else:
                # Bottom face (quad)
                face_bot = face
    
        edgeloop_up = []
        edgeloop_low = []
        for z, up in [(quad_size / 2.0, True), (-quad_size / 2.0, False)]:
            edgeloop = []
    
            edgeloop.append(len(verts))
            verts.append(Vector((size / 2.0, quad_size / 2.0, z)))
            edgeloop.append(len(verts))
            verts.append(Vector((size / 2.0, -quad_size / 2.0, z)))
            edgeloop.append(len(verts))
            verts.append(Vector((quad_size / 2.0, -size / 2.0, z)))
            edgeloop.append(len(verts))
            verts.append(Vector((-quad_size / 2.0, -size / 2.0, z)))
            edgeloop.append(len(verts))
            verts.append(Vector((-size / 2.0, -quad_size / 2.0, z)))
            edgeloop.append(len(verts))
            verts.append(Vector((-size / 2.0, quad_size / 2.0, z)))
            edgeloop.append(len(verts))
            verts.append(Vector((-quad_size / 2.0, size / 2.0, z)))
            edgeloop.append(len(verts))
            verts.append(Vector((quad_size / 2.0, size / 2.0, z)))
    
            if up:
                # Upper 8-sider
                edgeloop_up = edgeloop
            else:
                # Lower 8-sider
                edgeloop_low = edgeloop
    
        face_top_idx = len(faces)
        faces.append(face_top)
        faces.append(face_bot)
        faces_middle = createFaces(edgeloop_low, edgeloop_up, closed=True)
        faces.extend(faces_middle)
    
        # Upper Quads
        faces.append([edgeloop_up[0], face_top[0], face_top[1], edgeloop_up[1]])
        faces.append([edgeloop_up[2], face_top[1], face_top[2], edgeloop_up[3]])
        faces.append([edgeloop_up[4], face_top[2], face_top[3], edgeloop_up[5]])
        faces.append([edgeloop_up[6], face_top[3], face_top[0], edgeloop_up[7]])
    
        # Upper Tris
        faces.append([face_top[0], edgeloop_up[0], edgeloop_up[7]])
        faces.append([face_top[1], edgeloop_up[2], edgeloop_up[1]])
        faces.append([face_top[2], edgeloop_up[4], edgeloop_up[3]])
        faces.append([face_top[3], edgeloop_up[6], edgeloop_up[5]])
    
        # Lower Quads
        faces.append([edgeloop_low[0], edgeloop_low[1], face_bot[1], face_bot[0]])
        faces.append([edgeloop_low[2], edgeloop_low[3], face_bot[2], face_bot[1]])
        faces.append([edgeloop_low[4], edgeloop_low[5], face_bot[3], face_bot[2]])
        faces.append([edgeloop_low[6], edgeloop_low[7], face_bot[0], face_bot[3]])
    
        # Lower Tris
        faces.append([face_bot[0], edgeloop_low[7], edgeloop_low[0]])
        faces.append([face_bot[1], edgeloop_low[1], edgeloop_low[2]])
        faces.append([face_bot[2], edgeloop_low[3], edgeloop_low[4]])
        faces.append([face_bot[3], edgeloop_low[5], edgeloop_low[6]])
    
        # Invert face normal
        f = faces[face_top_idx]
        faces[face_top_idx] = invert_face_normal(faces[face_top_idx])
    
        return verts, faces
    
    def add_truncated_octahedron(hexagon_side=sqrt(2) / 3.0, star_ngons=False):
        if (hexagon_side < 0.0
            or hexagon_side > sqrt(2)):
            return None, None
    
        hs = hexagon_side
    
        verts = []
        faces = []
    
        # Vertices of a simple Octahedron
        verts_oct = [
            Vector((0.0, 0.0, 1.0)),    # tip 0 - Top
            Vector((1.0, 0.0, 0.0)),    # tip 1 - xp y0
            Vector((0.0, -1.0, 0.0)),   # tip 2 - x0 yn
            Vector((-1.0, 0.0, 0.0)),   # tip 3 - xn y0
            Vector((0.0, 1.0, 0.0)),    # tip 4 - x0 yp
            Vector((0.0, 0.0, -1.0))]   # tip 5 - Bottom
    
        tip_top = []
        tip_1 = []
        tip_2 = []
        tip_3 = []
        tip_4 = []
        tip_bot = []
    
        # Top edges
        va, vb = subdivide_edge_2_cuts(verts_oct[0], verts_oct[1], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_top.append(va_idx)
        tip_1.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_oct[0], verts_oct[2], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_top.append(va_idx)
        tip_2.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_oct[0], verts_oct[3], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_top.append(va_idx)
        tip_3.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_oct[0], verts_oct[4], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_top.append(va_idx)
        tip_4.append(vb_idx)
    
        # Circumference edges
        va, vb = subdivide_edge_2_cuts(verts_oct[1], verts_oct[2], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_1.append(va_idx)
        tip_2.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_oct[2], verts_oct[3], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_2.append(va_idx)
        tip_3.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_oct[3], verts_oct[4], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_3.append(va_idx)
        tip_4.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_oct[4], verts_oct[1], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_4.append(va_idx)
        tip_1.append(vb_idx)
    
        # Bottom edges
        va, vb = subdivide_edge_2_cuts(verts_oct[5], verts_oct[1], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_bot.append(va_idx)
        tip_1.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_oct[5], verts_oct[2], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_bot.append(va_idx)
        tip_2.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_oct[5], verts_oct[3], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_bot.append(va_idx)
        tip_3.append(vb_idx)
        va, vb = subdivide_edge_2_cuts(verts_oct[5], verts_oct[4], hs)
        va_idx, vb_idx = len(verts), len(verts) + 1
        verts.extend([va, vb])
        tip_bot.append(va_idx)
        tip_4.append(vb_idx)
    
        # Hexagons
        ngon_12_zp = [tip_top[0], tip_top[1],
            tip_2[0], tip_2[1],
            tip_1[1], tip_1[0]]
        ngon_23_zp = [tip_top[1], tip_top[2],
            tip_3[0], tip_3[1],
            tip_2[2], tip_2[0]]
        ngon_34_zp = [tip_top[2], tip_top[3],
            tip_4[0], tip_4[1],
            tip_3[2], tip_3[0]]
        ngon_41_zp = [tip_top[3], tip_top[0],
            tip_1[0], tip_1[2],
            tip_4[2], tip_4[0]]
    
        ngon_12_zn = [tip_bot[0], tip_bot[1],
            tip_2[3], tip_2[1],
            tip_1[1], tip_1[3]]
        ngon_23_zn = [tip_bot[1], tip_bot[2],
            tip_3[3], tip_3[1],
            tip_2[2], tip_2[3]]
        ngon_34_zn = [tip_bot[2], tip_bot[3],
            tip_4[3], tip_4[1],
            tip_3[2], tip_3[3]]
        ngon_41_zn = [tip_bot[3], tip_bot[0],
            tip_1[3], tip_1[2],
            tip_4[2], tip_4[3]]
    
        # Fix vertex order (and fix normal at the same time)
        tip_1 = tip_1[:2] + list(reversed(tip_1[2:]))
        tip_2 = list(reversed(tip_2[:2])) + tip_2[2:]
        tip_3 = list(reversed(tip_3[:2])) + tip_3[2:]
        tip_4 = list(reversed(tip_4[:2])) + tip_4[2:]
    
        # Invert face normals
        tip_top = invert_face_normal(tip_top)
        ngon_12_zn = invert_face_normal(ngon_12_zn)
        ngon_23_zn = invert_face_normal(ngon_23_zn)
        ngon_34_zn = invert_face_normal(ngon_34_zn)
        ngon_41_zn = invert_face_normal(ngon_41_zn)
    
        # Tip quads
        faces.extend([tip_top, tip_bot])
        faces.extend([tip_1, tip_2, tip_3, tip_4])
    
        if star_ngons:
                ngons = [ngon_12_zp, ngon_23_zp, ngon_34_zp, ngon_41_zp,
                    ngon_12_zn, ngon_23_zn, ngon_34_zn, ngon_41_zn]
                # Create stars from octagons.
                verts, faces_star = get_polygon_center(verts, ngons)
                faces.extend(faces_star)
    
        else:
            # Create quads from hexagons.
            ngons = [ngon_12_zp, ngon_23_zp, ngon_34_zp, ngon_41_zp]
            for ngon in ngons:
                # offset=2 Offset vertices so QUADS are created with
                # orthagonal edges. Superficial change - Could be omitted.
                hex_quads = ngon_fill(ngon, offset=2)
                faces.extend(hex_quads)
    
            ngons = [ngon_12_zn, ngon_23_zn, ngon_34_zn, ngon_41_zn]
            for ngon in ngons:
                # offset=1 Offset vertices so QUADS are created with
                # orthagonal edges. Superficial change - Could be omitted.
                hex_quads = ngon_fill(ngon, offset=1)
                faces.extend(hex_quads)
    
        return verts, faces
    
    
    
    class AddTruncatedTetrahedron(bpy.types.Operator):
        '''Add a mesh for a truncated tetrahedron.'''
        bl_idname = 'mesh.primitive_truncated_tetrahedron_add'
        bl_label = 'Add Truncated Tetrahedron'
        bl_description = 'Create a mesh for a truncated tetrahedron.'
        bl_options = {'REGISTER', 'UNDO'}
    
        # edit - Whether to add or update.
        edit = BoolProperty(name='',
            description='',
            default=False,
            options={'HIDDEN'})
        hexagon_side = FloatProperty(name='Hexagon Side',
            description='One length of the hexagon side' \
                ' (on the original tetrahedron edge).',
            min=0.01,
            max=2.0 * sqrt(2.0) - 0.01,
            default=2.0 * sqrt(2.0) / 3.0)
        star_ngons = BoolProperty(name='Star N-Gon',
            description='Create star-shaped hexagons.',
            default=False)
    
        def execute(self, context):
            props = self.properties
    
            verts, faces = add_truncated_tetrahedron(
                props.hexagon_side,
                props.star_ngons)
    
    
            if not verts:
                return {'CANCELLED'}
    
    
            obj = create_mesh_object(context, verts, [], faces,
                'TrTetrahedron', props.edit)
    
            # Store 'recall' properties in the object.
            recall_args_list = {
                'edit': True,
                'hexagon_side': props.hexagon_side,
                'star_ngons': props.star_ngons}
            store_recall_properties(obj, self, recall_args_list)
    
            return {'FINISHED'}
    
    
    
    class AddCuboctahedron(bpy.types.Operator):
        '''Add a mesh for a cuboctahedron (truncated cube).'''
        bl_idname = 'mesh.primitive_cuboctahedron_add'
        bl_label = 'Add Cuboctahedron'
        bl_description = 'Create a mesh for a cuboctahedron (truncated cube).'
        bl_options = {'REGISTER', 'UNDO'}
    
        # edit - Whether to add or update.
        edit = BoolProperty(name='',
            description='',
            default=False,
            options={'HIDDEN'})
        octagon_side = FloatProperty(name='Octagon Side',
            description='One length of the octagon side' \
                ' (on the original cube edge).',
            min=0.00,
            max=1.99,
            default=0.0)
        star_ngons = BoolProperty(name='Star N-Gon',
            description='Create star-shaped octagons.',
            default=False)
    
        def execute(self, context):
            props = self.properties
    
            verts, faces, name = add_cuboctahedron(
                props.octagon_side,
                props.star_ngons)
    
            if not verts:
                return {'CANCELLED'}
    
            obj = create_mesh_object(context, verts, [], faces, name, props.edit)
    
            # Store 'recall' properties in the object.
            recall_args_list = {
                'edit': True,
                'octagon_side': props.octagon_side,
                'star_ngons': props.star_ngons}
            store_recall_properties(obj, self, recall_args_list)
    
            return {'FINISHED'}
    
    
    class AddRhombicuboctahedron(bpy.types.Operator):
        '''Add a mesh for a thombicuboctahedron.'''
        bl_idname = 'mesh.primitive_thombicuboctahedron_add'
        bl_label = 'Add Rhombicuboctahedron'
        bl_description = 'Create a mesh for a thombicuboctahedron.'
        bl_options = {'REGISTER', 'UNDO'}
    
        # edit - Whether to add or update.
        edit = BoolProperty(name='',
            description='',
            default=False,
            options={'HIDDEN'})
        quad_size = FloatProperty(name="Quad Size",
            description="Size of the orthogonal quad faces.",
            min=0.01,
            max=1.99,
            default=sqrt(2.0) / (1.0 + sqrt(2) / 2.0))
    
        def execute(self, context):
            props = self.properties
    
            verts, faces = add_rhombicuboctahedron(props.quad_size)
    
            if not verts:
                return {'CANCELLED'}
    
            obj = create_mesh_object(context, verts, [], faces,
                'Rhombicuboctahedron', props.edit)
    
            # Store 'recall' properties in the object.
            recall_args_list = {
                'edit': True,
                'quad_size': props.quad_size}
            store_recall_properties(obj, self, recall_args_list)
    
            return {'FINISHED'}
    
    
    
    class AddTruncatedOctahedron(bpy.types.Operator):
        '''Add a mesh for a truncated octahedron.'''
        bl_idname = 'mesh.primitive_truncated_octahedron_add'
        bl_label = 'Add Truncated Octahedron'
        bl_description = 'Create a mesh for a truncated octahedron.'
        bl_options = {'REGISTER', 'UNDO'}
    
        # edit - Whether to add or update.
        edit = BoolProperty(name='',