Newer
Older
Bart Crouch
committed
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
"blender": (2, 79, 0),
"location": "Tool Shelf > Create Tab",
"description": "Creates Volumetric Clouds",
"wiki_url": "https://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Object/Cloud_Gen",
"category": "Object",
}
from bpy.props import (
BoolProperty,
EnumProperty,
)
from bpy.types import (
Operator,
Panel,
)
# For Cycles Render we create node groups or if it already exists we return it.
def CreateNodeGroup(Type):
# Look for NodeTree if it already exists return it
CreateGroup = True
for Group in bpy.data.node_groups:
if Group.name == Type:
CreateGroup = False
NodeGroup = Group
if CreateGroup is True:
NodeGroup = bpy.data.node_groups.new(name=Type, type="ShaderNodeTree")
NodeGroup.name = Type
NodeGroup.bl_label = Type
NodeGroup.nodes.clear()
# Create a bunch of nodes and group them based on input to the def
# Function type
if Type == 'CloudGen_VolumeProperties':
AddAddAndEmission = NodeGroup.nodes.new('ShaderNodeAddShader')
AddAddAndEmission.location = [300, 395]
AddAbsorptionAndScatter = NodeGroup.nodes.new('ShaderNodeAddShader')
AddAbsorptionAndScatter.location = [0, 395]
VolumeAbsorption = NodeGroup.nodes.new('ShaderNodeVolumeAbsorption')
VolumeAbsorption.location = [-300, 395]
VolumeScatter = NodeGroup.nodes.new('ShaderNodeVolumeScatter')
VolumeScatter.location = [-300, 0]
VolumeEmission = NodeGroup.nodes.new('ShaderNodeEmission')
VolumeEmission.location = [-300, -300]
MathAbsorptionMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathAbsorptionMultiply.location = [-750, 395]
MathAbsorptionMultiply.operation = 'MULTIPLY'
MathScatterMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathScatterMultiply.location = [-750, 0]
MathScatterMultiply.operation = 'MULTIPLY'
MathEmissionMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathEmissionMultiply.location = [-750, -300]
MathEmissionMultiply.operation = 'MULTIPLY'
MathBrightnessMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathBrightnessMultiply.location = [-1200, 0]
MathBrightnessMultiply.operation = 'MULTIPLY'
MathGreaterThan = NodeGroup.nodes.new('ShaderNodeMath')
MathGreaterThan.location = [-1200, 600]
MathGreaterThan.operation = 'GREATER_THAN'
MathGreaterThan.inputs[1].default_value = 0
NodeGroup.links.new(AddAddAndEmission.inputs[0], AddAbsorptionAndScatter.outputs[0])
NodeGroup.links.new(AddAddAndEmission.inputs[1], VolumeEmission.outputs[0])
NodeGroup.links.new(AddAbsorptionAndScatter.inputs[0], VolumeAbsorption.outputs[0])
NodeGroup.links.new(AddAbsorptionAndScatter.inputs[1], VolumeScatter.outputs[0])
NodeGroup.links.new(VolumeAbsorption.inputs[1], MathAbsorptionMultiply.outputs[0])
NodeGroup.links.new(VolumeScatter.inputs[1], MathScatterMultiply.outputs[0])
NodeGroup.links.new(VolumeEmission.inputs[1], MathEmissionMultiply.outputs[0])
NodeGroup.links.new(MathAbsorptionMultiply.inputs[0], MathGreaterThan.outputs[0])
NodeGroup.links.new(MathScatterMultiply.inputs[0], MathGreaterThan.outputs[0])
NodeGroup.links.new(MathEmissionMultiply.inputs[0], MathGreaterThan.outputs[0])
NodeGroup.links.new(VolumeAbsorption.inputs[0], MathBrightnessMultiply.outputs[0])
# Create and Link In/Out to Group Node
# Outputs
group_outputs = NodeGroup.nodes.new('NodeGroupOutput')
group_outputs.location = (600, 395)
NodeGroup.outputs.new('NodeSocketShader', 'shader_out')
NodeGroup.links.new(AddAddAndEmission.outputs[0], group_outputs.inputs['shader_out'])
group_inputs = NodeGroup.nodes.new('NodeGroupInput')
group_inputs.location = (-1500, -300)
NodeGroup.inputs.new('NodeSocketFloat', 'Density')
NodeGroup.inputs.new('NodeSocketFloat', 'Absorption Multiply')
NodeGroup.inputs.new('NodeSocketColor', 'Absorption Color')
NodeGroup.inputs.new('NodeSocketFloat', 'Scatter Multiply')
NodeGroup.inputs.new('NodeSocketColor', 'Scatter Color')
NodeGroup.inputs.new('NodeSocketFloat', 'Emission Amount')
NodeGroup.inputs.new('NodeSocketFloat', 'Cloud Brightness')
NodeGroup.links.new(group_inputs.outputs['Density'], MathGreaterThan.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Absorption Multiply'], MathAbsorptionMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Absorption Color'], MathBrightnessMultiply.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Scatter Multiply'], MathScatterMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Scatter Color'], VolumeScatter.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Emission Amount'], MathEmissionMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Cloud Brightness'], MathBrightnessMultiply.inputs[1])
if Type == 'CloudGen_TextureProperties':
MathAdd = NodeGroup.nodes.new('ShaderNodeMath')
MathAdd.location = [-200, 0]
MathAdd.operation = 'ADD'
MathDensityMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathDensityMultiply.location = [-390, 0]
MathDensityMultiply.operation = 'MULTIPLY'
PointDensityRamp = NodeGroup.nodes.new('ShaderNodeValToRGB')
PointDensityRamp.location = [-675, -250]
PointRamp = PointDensityRamp.color_ramp
PElements = PointRamp.elements
PElements[0].position = 0.418
PElements[0].color = 0, 0, 0, 1
PElements[1].position = 0.773
PElements[1].color = 1, 1, 1, 1
CloudRamp = NodeGroup.nodes.new('ShaderNodeValToRGB')
CloudRamp.location = [-675, 0]
CRamp = CloudRamp.color_ramp
CElements = CRamp.elements
CElements[0].position = 0.527
CElements[0].color = 0, 0, 0, 1
CElements[1].position = 0.759
CElements[1].color = 1, 1, 1, 1
NoiseTex = NodeGroup.nodes.new('ShaderNodeTexNoise')
NoiseTex.location = [-940, 0]
NoiseTex.inputs['Detail'].default_value = 4
TexCoord = NodeGroup.nodes.new('ShaderNodeTexCoord')
TexCoord.location = [-1250, 0]
NodeGroup.links.new(MathAdd.inputs[0], MathDensityMultiply.outputs[0])
NodeGroup.links.new(MathAdd.inputs[1], PointDensityRamp.outputs[0])
NodeGroup.links.new(MathDensityMultiply.inputs[0], CloudRamp.outputs[0])
NodeGroup.links.new(CloudRamp.inputs[0], NoiseTex.outputs[0])
NodeGroup.links.new(NoiseTex.inputs[0], TexCoord.outputs[3])
# Create and Link In/Out to Group Nodes
# Outputs
group_outputs = NodeGroup.nodes.new('NodeGroupOutput')
group_outputs.location = (0, 0)
NodeGroup.outputs.new('NodeSocketFloat', 'Density W_CloudTex')
NodeGroup.links.new(MathAdd.outputs[0], group_outputs.inputs['Density W_CloudTex'])
group_inputs = NodeGroup.nodes.new('NodeGroupInput')
group_inputs.location = (-1250, -300)
NodeGroup.inputs.new('NodeSocketFloat', 'Scale')
NodeGroup.inputs.new('NodeSocketFloat', 'Point Density In')
NodeGroup.links.new(group_inputs.outputs['Scale'], NoiseTex.inputs['Scale'])
NodeGroup.links.new(group_inputs.outputs['Point Density In'], MathDensityMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Point Density In'], PointDensityRamp.inputs[0])
return NodeGroup
# This routine takes an object and deletes all of the geometry in it
# and adds a bounding box to it.
# It will add or subtract the bound box size by the variable sizeDifference.
def getMeshandPutinEditMode(view_layer, object):
# Go into Object Mode
bpy.ops.object.mode_set(mode='OBJECT')
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object
# Go into Edit Mode
bpy.ops.object.mode_set(mode='EDIT')
mesh = getMeshandPutinEditMode(view_layer, object)
# Set the max and min verts to the first vertex on the list
maxVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]
minVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]
# Create Max and Min Vertex array for the outer corners of the box
if vert.co[0] > maxVert[0]:
maxVert[0] = vert.co[0]
if vert.co[1] > maxVert[1]:
maxVert[1] = vert.co[1]
if vert.co[2] > maxVert[2]:
maxVert[2] = vert.co[2]
if vert.co[0] < minVert[0]:
minVert[0] = vert.co[0]
if vert.co[1] < minVert[1]:
minVert[1] = vert.co[1]
if vert.co[2] < minVert[2]:
minVert[2] = vert.co[2]
def makeObjectIntoBoundBox(view_layer, objects, sizeDifference, takeFromObject):
# Let's find the max and min of the reference object,
# it can be the same as the destination object
[maxVert, minVert] = maxAndMinVerts(view_layer, takeFromObject)
mesh = getMeshandPutinEditMode(view_layer, objects)
# Add the size difference to the max size of the box
maxVert[0] = maxVert[0] + sizeDifference
maxVert[1] = maxVert[1] + sizeDifference
maxVert[2] = maxVert[2] + sizeDifference
# subtract the size difference to the min size of the box
minVert[0] = minVert[0] - sizeDifference
minVert[1] = minVert[1] - sizeDifference
minVert[2] = minVert[2] - sizeDifference
# Create arrays of verts and faces to be added to the mesh
addVerts.append([maxVert[0], maxVert[1], maxVert[2]])
addVerts.append([maxVert[0], maxVert[1], minVert[2]])
addVerts.append([maxVert[0], minVert[1], minVert[2]])
addVerts.append([maxVert[0], minVert[1], maxVert[2]])
addVerts.append([minVert[0], maxVert[1], maxVert[2]])
addVerts.append([minVert[0], maxVert[1], minVert[2]])
addVerts.append([minVert[0], minVert[1], minVert[2]])
addVerts.append([minVert[0], minVert[1], maxVert[2]])
# Make the faces of the bounding box.
addFaces = []
# Draw a box on paper and number the vertices.
# Use right hand rule to come up with number orders for faces on
# the box (with normals pointing out).
addFaces.append([0, 3, 2, 1])
addFaces.append([4, 5, 6, 7])
addFaces.append([0, 1, 5, 4])
addFaces.append([1, 2, 6, 5])
addFaces.append([2, 3, 7, 6])
addFaces.append([0, 4, 7, 3])
# Delete all geometry from the object.
bpy.ops.mesh.select_all(action='SELECT')
# Must be in object mode for from_pydata to work
bpy.ops.object.mode_set(mode='OBJECT')
# Add the mesh data.
mesh.from_pydata(addVerts, [], addFaces)
mesh.update()
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object
bpy.ops.object.transform_apply(location=True, rotation=True, scale=True)
bpy.data.objects.remove(obj, do_unlink=True)
def makeParent(parentobj, childobj, view_layer):
applyScaleRotLoc(view_layer, parentobj)
applyScaleRotLoc(view_layer, childobj)
childobj.parent = parentobj
def addNewObject(collection, name, copyobj):
# avoid creating not needed meshes pro forme
# Create a new object
ob_new_data = tempme.copy()
ob_new = bpy.data.objects.new(name, ob_new_data)
ob_new.scale = copyobj.scale
ob_new.location = copyobj.location
# Link new object to the given scene and select it
# Material slot can be empty
mat = getattr(mslot, "material", None)
if mat:
for tslot in mat.texture_slots:
if tslot != 'NoneType':
tex = tslot.texture
if tex.type == 'POINT_DENSITY':
if tex.point_density.point_source == 'PARTICLE_SYSTEM':
return tex
def removeParticleSystemFromObj(view_layer, obj):
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
bpy.ops.object.particle_system_remove()
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
def convertParticlesToMesh(view_layer, particlesobj, destobj, replacemesh):
# Select the Destination object
bpy.ops.object.mode_set(mode='EDIT', toggle=False)
# Delete everything in mesh if replace is true
if replacemesh:
bpy.ops.mesh.select_all(action='SELECT')
meshPnts = destobj.data
listCloudParticles = particlesobj.particles
listMeshPnts = []
for pTicle in listCloudParticles:
listMeshPnts.append(pTicle.location)
# Must be in object mode for from_pydata to work
# Update and Validate the mesh
meshPnts.validate()
meshPnts.update()
def combineObjects(view_layer, combined, listobjs):
# scene is the current scene
# combined is the object we want to combine everything into
# listobjs is the list of objects to stick into combined
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the new object.
Campbell Barton
committed
if len(listobjs) > 0:
for i in listobjs:
# Add a modifier
bpy.ops.object.modifier_add(type='BOOLEAN')
Campbell Barton
committed
union = combined.modifiers
union[0].name = "AddEmUp"
union[0].object = i
union[0].operation = 'UNION'
Campbell Barton
committed
# Apply modifier
bpy.ops.object.modifier_apply(apply_as='DATA', modifier=union[0].name)
# Returns the action we want to take
def getActionToDo(obj):
if not obj or obj.type != 'MESH':
return 'NOT_OBJ_DO_NOTHING'
elif obj is None:
return 'NO_SELECTION_DO_NOTHING'
if obj["CloudMember"] is not None:
return 'DEGENERATE'
elif obj["CloudMember"] == "CreatedObj" and len(obj.particle_systems) > 0:
return 'CLOUD_CONVERT_TO_MESH'
class VIEW3D_PT_tools_cloud(Panel):
bl_region_type = 'UI'
bl_label = "Cloud Generator"
bl_context = "objectmode"
active_obj = context.active_object
layout = self.layout
col = layout.column(align=True)
WhatToDo = getActionToDo(active_obj)
if WhatToDo == 'DEGENERATE':
col.operator("cloud.generate_cloud", text="DeGenerate")
elif WhatToDo == 'CLOUD_CONVERT_TO_MESH':
col.operator("cloud.generate_cloud", text="Convert to Mesh")
elif WhatToDo == 'NO_SELECTION_DO_NOTHING':
col.label(text="Select one or more")
col.label(text="objects to generate")
col.label(text="a cloud")
elif WhatToDo == 'CLOUD_DO_NOTHING':
col.label(text="Must select")
col.label(text="bound box")
elif WhatToDo == 'GENERATE':
col.operator("cloud.generate_cloud", text="Generate Cloud")
col.prop(context.scene, "cloud_type")
col.prop(context.scene, "cloudsmoothing")
else:
col.label(text="Select one or more", icon="INFO")
col.label(text="objects to generate", icon="BLANK1")
col.label(text="a cloud", icon="BLANK1")
class GenerateCloud(Operator):
bl_idname = "cloud.generate_cloud"
bl_label = "Generate Cloud"
bl_description = ("Create a Cloud, Undo a Cloud, or convert to "
"Mesh Cloud depending on selection\n"
"Needs an Active Mesh Object")
bl_options = {"REGISTER", "UNDO"}
@classmethod
def poll(cls, context):
obj = context.active_object
return (obj and obj.type == 'MESH')
Bart Crouch
committed
# Prevent unsupported Execution in Local View modes
space_data = bpy.context.space_data
# if True in space_data.layers_local_view:
# self.report({'INFO'},
# "Works with Global Perspective modes only. Operation Cancelled")
# return {'CANCELLED'}
# Make variable that is the active object selected by user
active_object = context.active_object
# Make variable scene that is current scene
Bart Crouch
committed
# Parameters the user may want to change:
# Number of points this number is multiplied by the volume to get
# the number of points the scripts will put in the volume.
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
numOfPoints = 1.0
maxNumOfPoints = 100000
maxPointDensityRadius = 1.5
scattering = 2.5
pointDensityRadiusFactor = 1.0
densityScale = 1.5
elif bpy.context.scene.render.engine == 'CYCLES':
numOfPoints = .80
maxNumOfPoints = 100000
maxPointDensityRadius = 1.0
scattering = 2.5
pointDensityRadiusFactor = .37
densityScale = 1.5
# What should we do?
WhatToDo = getActionToDo(active_object)
Bart Crouch
committed
Campbell Barton
committed
# Degenerate Cloud
mainObj = active_object
bpy.ops.object.hide_view_clear()
Campbell Barton
committed
cloudMembers = active_object.children
createdObjects = []
definitionObjects = []
Campbell Barton
committed
for member in cloudMembers:
Campbell Barton
committed
if member["CloudMember"] == "CreatedObj":
createdObjects.append(member)
else:
definitionObjects.append(member)
Campbell Barton
committed
for defObj in definitionObjects:
# Delete cloudmember data from objects
if "CloudMember" in defObj:
del(defObj["CloudMember"])
Campbell Barton
committed
for createdObj in createdObjects:
Campbell Barton
committed
# Delete the blend_data object
Campbell Barton
committed
# Select all of the left over boxes so people can immediately
# press generate again if they want
Campbell Barton
committed
for eachMember in definitionObjects:
eachMember.display_type = 'SOLID'
Campbell Barton
committed
eachMember.hide_render = False
Campbell Barton
committed
cloudParticles = active_object.particle_systems.active
Campbell Barton
committed
bounds = active_object.parent
# Create CloudPnts for putting points in #
Campbell Barton
committed
# Create a new object cloudPnts
cloudPnts = addNewObject(collection, "CloudPoints", bounds)
Campbell Barton
committed
cloudPnts["CloudMember"] = "CreatedObj"
cloudPnts.display_type = 'WIRE'
Campbell Barton
committed
cloudPnts.hide_render = True
makeParent(bounds, cloudPnts, view_layer)
convertParticlesToMesh(view_layer, cloudParticles, cloudPnts, True)
removeParticleSystemFromObj(view_layer, active_object)
Campbell Barton
committed
pDensity = getpdensitytexture(bounds)
pDensity.point_density.point_source = 'OBJECT'
pDensity.point_density.object = cloudPnts
# Let's resize the bound box to be more accurate
how_much_bigger = pDensity.point_density.radius
makeObjectIntoBoundBox(view_layer, bounds, how_much_bigger, cloudPnts)
Campbell Barton
committed
Bart Crouch
committed
else:
# Generate Cloud
# Create Combined Object bounds #
# Make a list of all Selected objects
Bart Crouch
committed
selectedObjects = bpy.context.selected_objects
if not selectedObjects:
selectedObjects = [bpy.context.active_object]
# Create a new object bounds
Bart Crouch
committed
bounds.display_type = 'BOUNDS'
Bart Crouch
committed
# Just add a Definition Property designating this
Bart Crouch
committed
bounds["CloudMember"] = "MainObj"
# Since we used iteration 0 to copy with object we
# delete it off the list.
firstObject = selectedObjects[0]
del selectedObjects[0]
# Apply location Rotation and Scale to all objects involved
Bart Crouch
committed
for each in selectedObjects:
Bart Crouch
committed
# Let's combine all of them together.
combineObjects(view_layer, bounds, selectedObjects)
Bart Crouch
committed
# Let's add some property info to the objects
Bart Crouch
committed
for selObj in selectedObjects:
selObj["CloudMember"] = "DefinitionObj"
selObj.name = "DefinitionObj"
selObj.display_type = 'WIRE'
selObj.hide = True
Bart Crouch
committed
# Do the same to the 1. object since it is no longer in list.
firstObject["CloudMember"] = "DefinitionObj"
firstObject.name = "DefinitionObj"
firstObject.display_type = 'WIRE'
makeParent(bounds, firstObject, view_layer)
Bart Crouch
committed
# Create Cloud for putting Cloud Mesh #
Bart Crouch
committed
# Create a new object cloud.
cloud = addNewObject(collection, "CloudMesh", bounds)
Bart Crouch
committed
cloud["CloudMember"] = "CreatedObj"
cloud.display_type = 'WIRE'
Bart Crouch
committed
Bart Crouch
committed
bpy.ops.object.editmode_toggle()
bpy.ops.mesh.select_all(action='SELECT')
# Don't subdivide object or smooth if smoothing box not checked.
if scene.cloudsmoothing:
bpy.ops.mesh.subdivide(number_cuts=2, fractal=0, smoothness=1)
bpy.ops.mesh.vertices_smooth(repeat=20)
Bart Crouch
committed
bpy.ops.mesh.tris_convert_to_quads()
bpy.ops.mesh.faces_shade_smooth()
bpy.ops.object.editmode_toggle()
# Create Particles in cloud obj #
Bart Crouch
committed
Bart Crouch
committed
scene.frame_current = 0
# Add a new particle system
Bart Crouch
committed
bpy.ops.object.particle_system_add()
# Particle settings setting it up!
cloudParticles = cloud.particle_systems.active
Bart Crouch
committed
cloudParticles.name = "CloudParticles"
cloudParticles.settings.frame_start = 0
cloudParticles.settings.frame_end = 0
cloudParticles.settings.emit_from = 'VOLUME'
cloudParticles.settings.display_method = 'DOT'
cloudParticles.settings.render_type = 'NONE'
Bart Crouch
committed
cloudParticles.settings.distribution = 'RAND'
cloudParticles.settings.physics_type = 'NEWTON'
cloudParticles.settings.normal_factor = 0
Bart Crouch
committed
# Gravity does not affect the particle system
eWeights = cloudParticles.settings.effector_weights
eWeights.gravity = 0
Bart Crouch
committed
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object.
Bart Crouch
committed
# Turn bounds object into a box. Use itself as a reference
makeObjectIntoBoundBox(view_layer, bounds, 1.0, bounds)
Bart Crouch
committed
# Delete all material slots in bounds object
Bart Crouch
committed
for i in range(len(bounds.material_slots)):
bounds.active_material_index = i - 1
bpy.ops.object.material_slot_remove()
# Add a new material
cloudMaterial = bpy.data.materials.new("CloudMaterial")
Bart Crouch
committed
bpy.ops.object.material_slot_add()
bounds.material_slots[0].material = cloudMaterial
# Set Up Material for Blender Internal
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
# Set Up the Cloud Material
cloudMaterial.name = "CloudMaterial"
cloudMaterial.type = 'VOLUME'
mVolume = cloudMaterial.volume
mVolume.scattering = scattering
mVolume.density = 0
mVolume.density_scale = densityScale
mVolume.transmission_color = 3.0, 3.0, 3.0
mVolume.step_size = 0.1
mVolume.use_light_cache = True
mVolume.cache_resolution = 45
# Add a texture
# vMaterialTextureSlots = cloudMaterial.texture_slots # UNUSED
cloudtex = bpy.data.textures.new("CloudTex", type='CLOUDS')
cloudtex.noise_type = 'HARD_NOISE'
cloudtex.noise_scale = 2
mtex = cloudMaterial.texture_slots.add()
mtex.texture = cloudtex
mtex.texture_coords = 'ORCO'
mtex.use_map_color_diffuse = True
# Set time
scene.frame_current = 1
# Add a Point Density texture
pDensity = bpy.data.textures.new("CloudPointDensity", 'POINT_DENSITY')
mtex = cloudMaterial.texture_slots.add()
mtex.texture = pDensity
mtex.texture_coords = 'GLOBAL'
mtex.use_map_density = True
mtex.use_rgb_to_intensity = True
mtex.texture_coords = 'GLOBAL'
pDensity.point_density.vertex_cache_space = 'WORLD_SPACE'
pDensity.point_density.use_turbulence = True
pDensity.point_density.noise_basis = 'VORONOI_F2'
pDensity.point_density.turbulence_depth = 3
pDensity.use_color_ramp = True
pRamp = pDensity.color_ramp
# pRamp.use_interpolation = 'LINEAR'
pRampElements = pRamp.elements
# pRampElements[1].position = .9
# pRampElements[1].color = 0.18, 0.18, 0.18, 0.8
bpy.ops.texture.slot_move(type='UP')
# Set Up Material for Cycles Engine
elif bpy.context.scene.render.engine == 'CYCLES':
VolumePropertiesGroup = CreateNodeGroup('CloudGen_VolumeProperties')
CloudTexPropertiesGroup = CreateNodeGroup('CloudGen_TextureProperties')
cloudMaterial.name = "CloudMaterial"
# Add a texture
cloudtex = bpy.data.textures.new("CloudTex", type='CLOUDS')
cloudtex.noise_type = 'HARD_NOISE'
cloudMaterial.use_nodes = True
cloudTree = cloudMaterial.node_tree
cloudMatNodes = cloudTree.nodes
cloudMatNodes.clear()
outputNode = cloudMatNodes.new('ShaderNodeOutputMaterial')
outputNode.location = (200, 300)
tranparentNode = cloudMatNodes.new('ShaderNodeBsdfTransparent')
tranparentNode.location = (0, 300)
volumeGroup = cloudMatNodes.new("ShaderNodeGroup")
volumeGroup.node_tree = VolumePropertiesGroup
volumeGroup.location = (0, 150)
cloudTexGroup = cloudMatNodes.new("ShaderNodeGroup")
cloudTexGroup.node_tree = CloudTexPropertiesGroup
cloudTexGroup.location = (-200, 150)
PointDensityNode = cloudMatNodes.new("ShaderNodeTexPointDensity")
PointDensityNode.location = (-400, 150)
PointDensityNode.resolution = 100
PointDensityNode.space = 'OBJECT'
# PointDensityNode.color_source = 'CONSTANT'
cloudTree.links.new(outputNode.inputs[0], tranparentNode.outputs[0])
cloudTree.links.new(outputNode.inputs[1], volumeGroup.outputs[0])
cloudTree.links.new(volumeGroup.inputs[0], cloudTexGroup.outputs[0])
cloudTree.links.new(cloudTexGroup.inputs[1], PointDensityNode.outputs[1])
Bart Crouch
committed
# Estimate the number of particles for the size of bounds.
volumeBoundBox = (bounds.dimensions[0] * bounds.dimensions[1] * bounds.dimensions[2])
Bart Crouch
committed
numParticles = int((2.4462 * volumeBoundBox + 430.4) * numOfPoints)
if numParticles > maxNumOfPoints:
numParticles = maxNumOfPoints
if numParticles < 10000:
numParticles = int(numParticles + 15 * volumeBoundBox)
# Set the number of particles according to the volume of bounds
cloudParticles.settings.count = numParticles
PDensityRadius = (.00013764 * volumeBoundBox + .3989) * pointDensityRadiusFactor
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
pDensity.point_density.radius = PDensityRadius
if pDensity.point_density.radius > maxPointDensityRadius:
pDensity.point_density.radius = maxPointDensityRadius
elif bpy.context.scene.render.engine == 'CYCLES':
PointDensityNode.radius = PDensityRadius
if PDensityRadius > maxPointDensityRadius:
PointDensityNode.radius = maxPointDensityRadius
Bart Crouch
committed
# Set time to 1.
scene.frame_current = 1
# Create CloudPnts for putting points in #
cloudPnts = addNewObject(collection, "CloudPoints", bounds)
cloudPnts.display_type = 'WIRE'
makeParent(bounds, cloudPnts, view_layer)
convertParticlesToMesh(view_layer, cloudParticles, cloudPnts, True)
# Add a modifier.
bpy.ops.object.modifier_add(type='DISPLACE')
cldPntsModifiers = cloudPnts.modifiers
cldPntsModifiers[0].name = "CloudPnts"
cldPntsModifiers[0].texture = cloudtex
cldPntsModifiers[0].texture_coords = 'OBJECT'
Campbell Barton
committed
cldPntsModifiers[0].texture_coords_object = cloud
# Apply modifier
bpy.ops.object.modifier_apply(apply_as='DATA', modifier=cldPntsModifiers[0].name)
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
pDensity.point_density.point_source = 'OBJECT'
pDensity.point_density.object = cloudPnts
elif bpy.context.scene.render.engine == 'CYCLES':
PointDensityNode.point_source = 'OBJECT'
PointDensityNode.object = cloudPnts
removeParticleSystemFromObj(view_layer, cloud)
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
pDensity.point_density.point_source = 'PARTICLE_SYSTEM'
pDensity.point_density.object = cloud
pDensity.point_density.particle_system = cloudParticles
elif bpy.context.scene.render.engine == 'CYCLES':
PointDensityNode.point_source = 'PARTICLE_SYSTEM'
PointDensityNode.particle_system = cloudPnts
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
if scene.cloud_type == '1': # Cumulous
mVolume.density_scale = 2.22
pDensity.point_density.turbulence_depth = 10
pDensity.point_density.turbulence_strength = 6.3
pDensity.point_density.turbulence_scale = 2.9
pRampElements[1].position = .606
pDensity.point_density.radius = pDensity.point_density.radius + 0.1
elif scene.cloud_type == '2': # Cirrus
pDensity.point_density.turbulence_strength = 22
mVolume.transmission_color = 3.5, 3.5, 3.5
mVolume.scattering = 0.13
elif scene.cloud_type == '3': # Explosion
mVolume.emission = 1.42
mtex.use_rgb_to_intensity = False
pRampElements[0].position = 0.825
pRampElements[0].color = 0.119, 0.119, 0.119, 1
pRampElements[1].position = .049
pRampElements[1].color = 1.0, 1.0, 1.0, 0
pDensity.point_density.turbulence_strength = 1.5
pRampElement1 = pRampElements.new(.452)
pRampElement1.color = 0.814, 0.112, 0, 1
pRampElement2 = pRampElements.new(.234)
pRampElement2.color = 0.814, 0.310, 0.002, 1
pRampElement3 = pRampElements.new(0.669)
pRampElement3.color = 0.0, 0.0, 0.040, 1
elif bpy.context.scene.render.engine == 'CYCLES':
volumeGroup.inputs['Absorption Multiply'].default_value = 50
volumeGroup.inputs['Absorption Color'].default_value = (1.0, 1.0, 1.0, 1.0)
volumeGroup.inputs['Scatter Multiply'].default_value = 30
volumeGroup.inputs['Scatter Color'].default_value = (.58, .58, .58, 1.0)
volumeGroup.inputs['Emission Amount'].default_value = .1
volumeGroup.inputs['Cloud Brightness'].default_value = 1.3
noiseCloudScale = volumeBoundBox * (-.001973) + 5.1216
if noiseCloudScale < .05:
cloudTexGroup.inputs['Scale'].default_value = noiseCloudScale
# to cloud to view in cycles in render mode we need to hide geometry meshes...
firstObject.hide_viewport = True
cloud.hide_viewport = True
Bart Crouch
committed
# Select the object.
# Let's resize the bound box to be more accurate.
how_much_bigger = PDensityRadius + 0.1
# If it's a particle cloud use cloud mesh if otherwise use point mesh
makeObjectIntoBoundBox(view_layer, bounds, how_much_bigger, cloudPnts)
makeObjectIntoBoundBox(view_layer, bounds, how_much_bigger, cloud)
cloud_string = "Cumulous" if scene.cloud_type == '1' else "Cirrus" if \
scene.cloud_type == '2' else "Stratus" if \
scene.cloud_type == '0' else "Explosion"
self.report({'INFO'},
"Created the cloud of type {}".format(cloud_string))
# List The Classes #
classes = (
VIEW3D_PT_tools_cloud,
GenerateCloud
)
Bart Crouch
committed
def register():
for cls in classes:
bpy.utils.register_class(cls)
Campbell Barton
committed
bpy.types.Scene.cloudparticles = BoolProperty(
name="Particles",
description="Generate Cloud as Particle System",
default=False
)
name="Smoothing",
description="Smooth Resultant Geometry From Gen Cloud Operation",
default=True
)
bpy.types.Scene.cloud_type = EnumProperty(
name="Type",
description="Select the type of cloud to create with material settings",
items=[("0", "Stratus", "Generate Stratus (foggy) Cloud"),
("1", "Cumulous", "Generate Cumulous (puffy) Cloud"),
("2", "Cirrus", "Generate Cirrus (wispy) Cloud"),
("3", "Explosion", "Generate Explosion"),
],
default='0'
)
Bart Crouch
committed
def unregister():
for cls in reversed(classes):
bpy.utils.unregister_class(cls)
Campbell Barton
committed
del bpy.types.Scene.cloudsmoothing
Bart Crouch
committed