Newer
Older

Michal Kravcenko
committed
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 14.6.18 -
*/
#include <iostream>
#include <cstdio>
#include <fstream>
#include <vector>
#include <utility>
#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>

Michal Kravcenko
committed
#include "Network/NeuralNetwork.h"
#include "Neuron/NeuronLinear.h"

Michal Kravcenko
committed
#include "Neuron/NeuronLogistic.h"

Michal Kravcenko
committed
#include "NetConnection/Connection.h"
#include "NetConnection/ConnectionWeightIdentity.h"

Michal Kravcenko
committed
#include "LearningMethods/ParticleSwarm.h"
#include "Neuron/NeuronBinary.h"
#include "Neuron/NeuronTanh.h"

Michal Kravcenko
committed
//TODO rewrite "tests" to separate examples
//TODO prepsat tak, aby neuronova sit managovala destruktory vsech potrebnych objektu (kvuli serializaci)

Michal Kravcenko
committed
/**
* Test of simple neural network
* Network should evaluate the function f(x) = x + 1
*/

Michal Kravcenko
committed
void test1( ){

Michal Kravcenko
committed
std::vector<double> in(1);
std::vector<double> out(1);
NeuralNetwork net;
NeuronLinear* u1 = new NeuronLinear(1.0, 1.0); //f(x) = x + 1.0
NeuronLinear* u2 = new NeuronLinear(0.0, 1.0); //f(x) = x
int idx1 = net.add_neuron(u1);
int idx2 = net.add_neuron(u2);
////////////////////// SIMPLE EDGE WEIGHT ////////////////////////////////////////
// net.add_connection_simple(idx1, idx2, -1, 1.0);
////////////////////// END SIMPLE EDGE WEIGHT ////////////////////////////////////////
/////////////////////////BEGIN OF COMPLEX EDGE WEIGHT//////////////////////////////
std::function<double(double *, size_t*, size_t)> weight_function = [](double * weight_array, size_t * index_array, size_t n_params){
//w(x, y) = x + y
double a = weight_array[index_array[0]];
double b = weight_array[index_array[1]];
// printf("eval: %f, %f\n", a, b);
return (a + 0.0 * b);
};
double weight_values [2] = {1.0, 5.0};
net.add_connection_general(idx1, idx2, &weight_function, weight_indices, weight_values, 2);
/////////////////////////END OF COMPLEX EDGE WEIGHT//////////////////////////////

Michal Kravcenko
committed
for(int i = 0; i < 20; ++i){
in[0] = 0.05 * i;
net.eval_single(in, out);
printf("x = %3.2f, f(x) = %3.2f, expected output = %3.2f\n", in[0], out[0], in[0] + 1.0);
}
//clean-up phase
delete u1;
delete u2;

Michal Kravcenko
committed
}
/**
* Test of DataSet serialization
*/
void test3() {
std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec;
std::vector<double> inp, out;
for(int i = 0; i < 3; i++) {
inp.push_back(i);
out.push_back(i+4);
}
data_vec.emplace_back(std::make_pair(inp, out));
DataSet ds(&data_vec);
ds.print_data();
ds.store_text("stored_data.4ds");
DataSet ds2("stored_data.4ds");
ds2.print_data();
}

Michal Kravcenko
committed
double particle_swarm_test_function(double *x){
// return x[0] * x[1] - x[0] * x[0] + x[1] * x[2];
return x[0] * x[0];
}
NeuralNetwork net;
std::vector<std::vector<double>*> *train_data_input;
std::vector<std::vector<double>*> *train_data_output;
Martin Beseda
committed

Michal Kravcenko
committed
double test_particle_swarm_neural_net_error_function(double *weights){
net.copy_weights(weights);
unsigned int dim_out = train_data_output->at(0)->size();
// unsigned int dim_in = train_data_input->at(0)->size();

Michal Kravcenko
committed
double error = 0.0, val;
std::vector<double> output( dim_out );
for(unsigned int i = 0; i < train_data_input->size(); ++i){
net.eval_single(*train_data_input->at(i), output);
for(unsigned int j = 0; j < dim_out; ++j){
val = output[j] - train_data_output->at(i)->at(j);
error += val * val;
}
}
Martin Beseda
committed
/*

Michal Kravcenko
committed
printf("INPUT: ");
for(unsigned int i = 0; i < dim_in; ++i){
printf("%f ", weights[i]);
}
printf(", ERROR: %f\n", 0.5 * error);
Martin Beseda
committed
*/

Michal Kravcenko
committed
return 0.5 * error;
}
//TODO proper memory management
void test_particle_swarm_neural_net(){
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// unsigned int dim_in = 2;
// unsigned int dim_out = 1;
//
// /* TRAIN DATA DEFINITION */
// train_data_input = new std::vector<std::vector<double>*>();
// train_data_output = new std::vector<std::vector<double>*>();
//
// std::vector<double> *input_01 = new std::vector<double>(dim_in);
// std::vector<double> *input_02 = new std::vector<double>(dim_in);
//
// std::vector<double> *output_01 = new std::vector<double>(dim_out);
// std::vector<double> *output_02 = new std::vector<double>(dim_out);
//
// (*input_01)[0] = 0.0;
// (*input_01)[1] = 1.0;
// (*output_01)[0] = 0.5;
//
// (*input_02)[0] = 1.0;
// (*input_02)[1] = 0.5;
// (*output_02)[0] = 0.75;
//
// train_data_input->push_back(input_01);
// train_data_output->push_back(output_01);
//
// train_data_input->push_back(input_02);
// train_data_output->push_back(output_02);
// /* NETWORK DEFINITION */
//
//
// NeuronLinear* i1 = new NeuronLinear(0.0, 1.0); //f(x) = x
// NeuronLinear* i2 = new NeuronLinear(0.0, 1.0); //f(x) = x
//
//// NeuronLogistic* o1 = new NeuronLogistic(1.0, 0.0); //f(x) = (1 + e^(-x + 0.0))^(1.0)
// NeuronLinear* o1 = new NeuronLinear(1.0, 2.0); //f(x) = 2x + 1
//
// int idx1 = net.add_neuron(i1);
// int idx2 = net.add_neuron(i2);
// int idx3 = net.add_neuron(o1);
//
// net.add_connection_simple(idx1, idx3, -1, 1.0);
// net.add_connection_simple(idx2, idx3, -1, 1.0);
//
// /* PARTICLE SETUP */
// double (*F)(double*) = &test_particle_swarm_neural_net_error_function;
//
// unsigned int n_edges = 2;
// unsigned int dim = n_edges, max_iters = 2000;
//
//
// double domain_bounds [4] = {-800.0, 800.0, -800.0, 800.0};
//
// double c1 = 0.5, c2 = 1.5, w = 0.8;
//
// unsigned int n_particles = 10;
//
// ParticleSwarm swarm_01(F, dim, domain_bounds, c1, c2, w, n_particles, max_iters);
//
// swarm_01.optimize(0.5, 0.02);
//
// /* CLEANUP PHASE */
// for( std::vector<double> *input: *train_data_input){
// delete input;
// }
// for( std::vector<double> *output: *train_data_output){
// delete output;
// }
//
// delete train_data_output;
// delete train_data_input;

Michal Kravcenko
committed
//
//void test_particle_swarm(){
// double (*F)(double*) = &particle_swarm_test_function;
//
// unsigned int dim = 3, max_iters = 100;
//
//// double domain_bounds [2] = {2.0, 3.0};
// double domain_bounds [6] = {-3.0, 3.0, 2.0, 5.0, 1.0, 15.0};
//
// double c1 = 0.5, c2 = 1.5, w = 1.0;
//
// unsigned int n_particles = 1000;
//
// double accuracy = 1e-6;
//
// ParticleSwarm swarm_01(F, dim, domain_bounds, c1, c2, w, n_particles, max_iters);
//
// swarm_01.optimize(0.5, accuracy);
//}

Michal Kravcenko
committed
int main(int argc, char** argv){

Michal Kravcenko
committed
// test1();
// test_particle_swarm();

Michal Kravcenko
committed
test_particle_swarm_neural_net();

Michal Kravcenko
committed
// test3();

Michal Kravcenko
committed
return 0;