Skip to content
Snippets Groups Projects
ErrorFunctions.cpp 4.46 KiB
Newer Older
//
// Created by martin on 7/15/18.
//

#include <vector>

#include "ErrorFunctions.h"
size_t ErrorFunction::get_dimension() {
    return this->dimension;
}

MSE::MSE(NeuralNetwork *net, DataSet *ds) {
    this->net = net;
    this->ds = ds;
Michal Kravcenko's avatar
Michal Kravcenko committed
    this->dimension = net->get_n_weights() + net->get_n_biases();
Michal Kravcenko's avatar
Michal Kravcenko committed
double MSE::eval(std::vector<double> *weights) {
    size_t dim_out = this->ds->get_output_dim();
    size_t n_elements = this->ds->get_n_elements();
    double error = 0.0, val;

    std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = this->ds->get_data();

Michal Kravcenko's avatar
Michal Kravcenko committed
//    //TODO instead use something smarter
//    this->net->copy_weights(weights);

    std::vector<double> output( dim_out );

    for( auto el: *data ){  // Iterate through every element in the test set
        this->net->eval_single(el.first, output, weights);  // Compute the net output and store it into 'output' variable
Michal Kravcenko's avatar
Michal Kravcenko committed

//        printf("errors: ");
        for(size_t j = 0; j < dim_out; ++j) {  // Compute difference for every element of the output vector
            error += val * val;
Michal Kravcenko's avatar
Michal Kravcenko committed

//            printf("%f, ", val * val);
Michal Kravcenko's avatar
Michal Kravcenko committed
//        printf("\n");
Michal Kravcenko's avatar
Michal Kravcenko committed
//    printf("n_elements: %d\n", n_elements);
    return error/n_elements;
void MSE::calculate_error_gradient( std::vector<double> &params, std::vector<double> &grad, double alpha ) {

    size_t dim_out = this->ds->get_output_dim( );
    size_t n_elements = this->ds->get_n_elements();

    std::vector<std::pair<std::vector<double>, std::vector<double>>>* data = this->ds->get_data();

    std::vector<double> error_derivative( dim_out );


    for( auto el: *data ){  // Iterate through every element in the test set

        this->net->eval_single(el.first, error_derivative, &params);  // Compute the net output and store it into 'output' variable

        for( size_t j = 0; j < dim_out; ++j){
            error_derivative[ j ] = 2.0 * (error_derivative[ j ] - el.second[ j ]); //real - expected result
        }

        this->net->add_to_gradient_single( el.first, error_derivative, alpha / n_elements, grad );
    }
}

std::vector<double>* MSE::get_parameters() {
    std::vector<double> *output = new std::vector<double>( this->net->get_n_weights( ) + this->net->get_n_biases( ) );

    size_t i = 0;

    for(auto el: *this->net->get_parameter_ptr_weights()){
        output->at( i ) = el;
        ++i;
    }

    for(auto el: *this->net->get_parameter_ptr_biases()){
        output->at( i ) = el;
        ++i;
    }

    return output;
}

Michal Kravcenko's avatar
Michal Kravcenko committed
ErrorSum::ErrorSum() {
    this->summand_coefficient = nullptr;
Michal Kravcenko's avatar
Michal Kravcenko committed
    this->dimension = 0;
Michal Kravcenko's avatar
Michal Kravcenko committed
ErrorSum::~ErrorSum(){
    if( this->summand ){
        delete this->summand;
    }
    if( this->summand_coefficient ){
        delete this->summand_coefficient;
    }
Michal Kravcenko's avatar
Michal Kravcenko committed
double ErrorSum::eval(std::vector<double> *weights) {
    ErrorFunction *ef = nullptr;
    for( unsigned int i = 0; i < this->summand->size(); ++i ){
        ef = this->summand->at( i );

        if( ef ){
            output += ef->eval( weights ) * this->summand_coefficient->at( i );
        }
void ErrorSum::calculate_error_gradient( std::vector<double> &params, std::vector<double> &grad, double alpha ) {

    ErrorFunction *ef = nullptr;
    for( size_t i = 0; i < this->summand->size( ); ++i ){
        ef = this->summand->at( i );

        if( ef ){
            ef->calculate_error_gradient( params, grad, this->summand_coefficient->at( i ) * alpha );
        }
    }
}

void ErrorSum::add_error_function( ErrorFunction *F, double alpha ) {
    if(!this->summand){
        this->summand = new std::vector<ErrorFunction*>(0);
    }
    this->summand->push_back( F );

    if(!this->summand_coefficient){
        this->summand_coefficient = new std::vector<double>(0);
    }
    this->summand_coefficient->push_back( alpha );
    if(F){
        if(F->get_dimension() > this->dimension){
            this->dimension = F->get_dimension();
        }
Michal Kravcenko's avatar
Michal Kravcenko committed
    }
Michal Kravcenko's avatar
Michal Kravcenko committed
size_t ErrorSum::get_dimension() {
Michal Kravcenko's avatar
Michal Kravcenko committed
//    if(!this->dimension) {
//        size_t max = 0;
//        for(auto e : *this->summand) {
//            if(e->get_dimension() > max) {
//                max = e->get_dimension();
//            }
//        };
//
//        this->dimension = max;
//    }
Martin Beseda's avatar
Martin Beseda committed
    return this->dimension;
}

std::vector<double>* ErrorSum::get_parameters() {
    return this->summand->at( 0 )->get_parameters( );