Newer
Older

Michal Kravcenko
committed
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 13.6.18 -
*/
#include "NeuralNetwork.h"
Martin Beseda
committed
#include "NeuralNetworkSerialization.h"

Michal Kravcenko
committed
NeuralNetwork::NeuralNetwork() {
this->neurons = new std::vector<Neuron*>(0);

Michal Kravcenko
committed
this->neuron_biases = new std::vector<double>(0);
this->neuron_potentials = new std::vector<double>(0);

Michal Kravcenko
committed
this->neuron_bias_indices = new std::vector<int>(0);

Michal Kravcenko
committed
this->connection_weights =new std::vector<double>(0);
this->connection_list = new std::vector<ConnectionFunctionGeneral*>(0);
this->inward_adjacency = new std::vector<std::vector<std::pair<size_t, size_t>>*>(0);
this->outward_adjacency = new std::vector<std::vector<std::pair<size_t, size_t>>*>(0);
this->neuron_layers_feedforward = new std::vector<std::vector<size_t>*>(0);
this->neuron_layers_feedbackward = new std::vector<std::vector<size_t>*>(0);

Michal Kravcenko
committed
this->input_neuron_indices = new std::vector<size_t>(0);
this->output_neuron_indices = new std::vector<size_t>(0);
this->delete_weights = true;
this->delete_biases = true;
this->layers_analyzed = false;
}
NeuralNetwork::NeuralNetwork(std::string filepath) {
std::ifstream ifs(filepath);
boost::archive::text_iarchive ia(ifs);
ia >> *this;
ifs.close();
}
for( auto n: *(this->neurons) ){
if(this->neuron_potentials){
delete this->neuron_potentials;
this->neuron_potentials = nullptr;
}

Michal Kravcenko
committed
if(this->neuron_bias_indices){
delete this->neuron_bias_indices;
this->neuron_bias_indices = nullptr;
}
if(this->output_neuron_indices){
delete this->output_neuron_indices;
this->output_neuron_indices = nullptr;
if(this->input_neuron_indices){
delete this->input_neuron_indices;
this->input_neuron_indices = nullptr;
}
if(this->connection_weights && this->delete_weights){
delete this->connection_weights;
this->connection_weights = nullptr;
}
if(this->neuron_biases && this->delete_biases){
delete this->neuron_biases;
this->neuron_biases = nullptr;
}
if(this->delete_weights){
for(auto c: *this->connection_list){
delete c;
c = nullptr;
}
delete this->connection_list;
this->connection_list = nullptr;
}
if(this->inward_adjacency){
for(auto e: *this->inward_adjacency){
if(e){
delete e;
e = nullptr;
}
}
delete this->inward_adjacency;
this->inward_adjacency = nullptr;
}
if(this->outward_adjacency){
for(auto e: *this->outward_adjacency){
if(e){
delete e;
e = nullptr;
}
delete this->outward_adjacency;
this->outward_adjacency = nullptr;
if(this->neuron_layers_feedforward){
for(auto e: *this->neuron_layers_feedforward){
delete e;
e = nullptr;
delete this->neuron_layers_feedforward;
this->neuron_layers_feedforward = nullptr;
}
if(this->neuron_layers_feedbackward){
for(auto e: *this->neuron_layers_feedbackward){
delete e;
e = nullptr;
delete this->neuron_layers_feedbackward;
this->neuron_layers_feedbackward = nullptr;
}
}
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
NeuralNetwork* NeuralNetwork::get_subnet(std::vector<size_t> &input_neuron_indices, std::vector<size_t> &output_neuron_indices){
NeuralNetwork *output_net = nullptr;
// TODO rework due to the changed structure of the class
// Neuron * active_neuron, * target_neuron;
//
// size_t n = this->neurons->size();
// bool *part_of_subnetwork = new bool[n];
// std::fill(part_of_subnetwork, part_of_subnetwork + n, false);
//
// bool *is_reachable_from_source = new bool[n];
// bool *is_reachable_from_destination = new bool[n];
// std::fill(is_reachable_from_source, is_reachable_from_source + n, false);
// std::fill(is_reachable_from_destination, is_reachable_from_destination + n, false);
//
// bool *visited_neurons = new bool[n];
// std::fill(visited_neurons, visited_neurons + n, false);
//
// size_t active_set_size[2];
// active_set_size[0] = 0;
// active_set_size[1] = 0;
// size_t * active_neuron_set = new size_t[2 * n];
// size_t idx1 = 0, idx2 = 1;
//
// /* MAPPING BETWEEN NEURONS AND THEIR INDICES */
// size_t idx = 0, idx_target;
// for(Neuron *v: *this->neurons){
// v->set_idx( idx );
// idx++;
// }
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// for(size_t i: input_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
//
// visited_neurons[i] = true;
// }
//
// /* FORWARD PASS */
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_source[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// for(Connection* connection: *(active_neuron->get_connections_out())){
//
// target_neuron = connection->get_neuron_out( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// active_set_size[0] = active_set_size[1] = 0;
// std::fill(visited_neurons, visited_neurons + n, false);
//
// for(size_t i: output_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
//
// visited_neurons[i] = true;
// }
//
// /* BACKWARD PASS */
// size_t n_new_neurons = 0;
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_destination[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// if(is_reachable_from_source[ idx ]){
// n_new_neurons++;
// }
//
// for(Connection* connection: *(active_neuron->get_connections_in())){
//
// target_neuron = connection->get_neuron_in( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
// /* FOR CONSISTENCY REASONS */
// for(size_t in: input_neuron_indices){
// if( !is_reachable_from_destination[in] ){
// n_new_neurons++;
// }
// is_reachable_from_destination[in] = true;
// }
// /* FOR CONSISTENCY REASONS */
// for(size_t in: output_neuron_indices){
// if( !is_reachable_from_source[in] ){
// n_new_neurons++;
// }
// is_reachable_from_source[in] = true;
// }
//
// /* WE FORM THE SET OF NEURONS IN THE OUTPUT NETWORK */
// if(n_new_neurons > 0){
//// printf("Number of new neurons: %d\n", n_new_neurons);
// output_net = new NeuralNetwork();
// output_net->set_weight_array( this->connection_weights );
//
// std::vector<size_t > local_inputs(0), local_outputs(0);
// local_inputs.reserve(input_neuron_indices.size());
// local_outputs.reserve(output_neuron_indices.size());
//
// std::vector<Neuron*> local_n_arr(0);
// local_n_arr.reserve( n_new_neurons );
//
// std::vector<Neuron*> local_local_n_arr(0);
// local_local_n_arr.reserve( n_new_neurons );
//
// int * neuron_local_mapping = new int[ n ];
// std::fill(neuron_local_mapping, neuron_local_mapping + n, -1);
// idx = 0;
// for(size_t i = 0; i < n; ++i){
// if(is_reachable_from_source[i] && is_reachable_from_destination[i]){
// neuron_local_mapping[i] = (int)idx;
// idx++;
//
// Neuron *new_neuron = this->neurons->at(i)->get_copy( );
//
// output_net->add_neuron( new_neuron );
// local_local_n_arr.push_back( new_neuron );
// local_n_arr.push_back( this->neurons->at(i) );
// }
// }
// for(size_t in: input_neuron_indices){
// local_inputs.push_back(neuron_local_mapping[in]);
// }
// for(size_t in: output_neuron_indices){
// local_outputs.push_back(neuron_local_mapping[in]);
// }
//
//// printf("%d\n", local_n_arr.size());
//// printf("inputs: %d, outputs: %d\n", local_inputs.size(), local_outputs.size());
// int local_idx_1, local_idx_2;
// for(Neuron* source_neuron: local_n_arr){
// //we also add the relevant edges
// local_idx_1 = neuron_local_mapping[source_neuron->get_idx()];
//
// for(Connection* connection: *(source_neuron->get_connections_out( ))){
// target_neuron = connection->get_neuron_out();
//
// local_idx_2 = neuron_local_mapping[target_neuron->get_idx()];
// if(local_idx_2 >= 0){
// //this edge is part of the subnetwork
// Connection* new_connection = connection->get_copy( local_local_n_arr[local_idx_1], local_local_n_arr[local_idx_2] );
//
// local_local_n_arr[local_idx_1]->add_connection_out(new_connection);
// local_local_n_arr[local_idx_2]->add_connection_in(new_connection);
//
//// printf("adding a connection between neurons %d, %d\n", local_idx_1, local_idx_2);
// }
//
// }
//
// }
// output_net->specify_input_neurons(local_inputs);
// output_net->specify_output_neurons(local_outputs);
//
//
// delete [] neuron_local_mapping;
// }
//
// delete [] is_reachable_from_source;
// delete [] is_reachable_from_destination;
// delete [] part_of_subnetwork;
// delete [] visited_neurons;
// delete [] active_neuron_set;
//
//
return output_net;
}

Michal Kravcenko
committed
size_t NeuralNetwork::add_neuron(Neuron* n, BIAS_TYPE bt, size_t bias_idx) {

Michal Kravcenko
committed
if( bt == BIAS_TYPE::NO_BIAS ){
this->neuron_bias_indices->push_back(-1);

Michal Kravcenko
committed
else if( bt == BIAS_TYPE::NEXT_BIAS ){
this->neuron_bias_indices->push_back((int)this->neuron_biases->size());
this->neuron_biases->resize(this->neuron_biases->size() + 1);

Michal Kravcenko
committed
else if( bt == BIAS_TYPE::EXISTING_BIAS ){
if( bias_idx >= this->neuron_biases->size()){
std::cerr << "The supplied bias index is too large!\n" << std::endl;
}
this->neuron_bias_indices->push_back((int)bias_idx);
this->outward_adjacency->push_back(new std::vector<std::pair<size_t, size_t>>(0));
this->inward_adjacency->push_back(new std::vector<std::pair<size_t, size_t>>(0));

Michal Kravcenko
committed
this->neurons->push_back(n);

Michal Kravcenko
committed
return this->neurons->size() - 1;
}

Michal Kravcenko
committed
size_t NeuralNetwork::add_connection_simple( size_t n1_idx, size_t n2_idx, SIMPLE_CONNECTION_TYPE sct, size_t weight_idx ) {

Michal Kravcenko
committed
ConnectionFunctionIdentity *con_weight_u1u2;
if( sct == SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT ){
con_weight_u1u2 = new ConnectionFunctionIdentity( );

Michal Kravcenko
committed
if( sct == SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT ){
weight_idx = this->connection_weights->size();
this->connection_weights->resize(weight_idx + 1);
}
else if( sct == SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT ){
if( weight_idx >= this->connection_weights->size()){
std::cerr << "The supplied connection weight index is too large!\n" << std::endl;
}
}

Michal Kravcenko
committed
con_weight_u1u2 = new ConnectionFunctionIdentity( weight_idx );
size_t conn_idx = this->add_new_connection_to_list(con_weight_u1u2);
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
void NeuralNetwork::add_existing_connection(size_t n1_idx, size_t n2_idx, size_t connection_idx,
NeuralNetwork &parent_network) {
size_t conn_idx = this->add_new_connection_to_list(parent_network.connection_list->at( connection_idx ));
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
}
void NeuralNetwork::copy_parameter_space(std::vector<double> *parameters) {
if(parameters != nullptr){
for(unsigned int i = 0; i < this->connection_weights->size(); ++i){
(*this->connection_weights)[i] = (*parameters)[i];
}
for(unsigned int i = 0; i < this->neuron_biases->size(); ++i){
(*this->neuron_biases)[i] = (*parameters)[i + this->connection_weights->size()];
}
}

Michal Kravcenko
committed
}
void NeuralNetwork::set_parameter_space_pointers(NeuralNetwork &parent_network) {

Michal Kravcenko
committed
if(this->connection_weights){
delete connection_weights;

Michal Kravcenko
committed
}
if(this->neuron_biases){
delete this->neuron_biases;

Michal Kravcenko
committed
}
this->connection_weights = parent_network.connection_weights;
this->neuron_biases = parent_network.neuron_biases;

Michal Kravcenko
committed
this->delete_weights = false;
}
void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> &output, std::vector<double> * custom_weights_and_biases) {

Michal Kravcenko
committed
if((this->input_neuron_indices->size() * this->output_neuron_indices->size()) <= 0){
std::cerr << "Input and output neurons have not been specified\n" << std::endl;

Michal Kravcenko
committed
}

Michal Kravcenko
committed
if(this->input_neuron_indices->size() != input.size()){
std::cerr << "Error, input size != Network input size\n" << std::endl;
exit(-1);

Michal Kravcenko
committed
}

Michal Kravcenko
committed
if(this->output_neuron_indices->size() != output.size()){
std::cerr << "Error, output size != Network output size\n" << std::endl;
exit(-1);

Michal Kravcenko
committed
}

Michal Kravcenko
committed
double potential, bias;
int bias_idx;

Michal Kravcenko
committed
this->copy_parameter_space( custom_weights_and_biases );
/* reset of the output and the neuron potentials */

Michal Kravcenko
committed
std::fill(output.begin(), output.end(), 0.0);
std::fill(this->neuron_potentials->begin(), this->neuron_potentials->end(), 0.0);

Michal Kravcenko
committed

Michal Kravcenko
committed
for(size_t i = 0; i < this->input_neuron_indices->size(); ++i){
this->neuron_potentials->at( this->input_neuron_indices->at(i) ) = input[ i ];

Michal Kravcenko
committed
}

Michal Kravcenko
committed
/* we iterate through all the feed-forward layers and transfer the signals */
for( auto layer: *this->neuron_layers_feedforward){
/* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */

Michal Kravcenko
committed

Michal Kravcenko
committed
bias = 0.0;
bias_idx = this->neuron_bias_indices->at( si );
if( bias_idx >= 0 ){
bias = this->neuron_biases->at( bias_idx );
}
potential = this->neurons->at(si)->activate(this->neuron_potentials->at( si ), bias);

Michal Kravcenko
committed
for(auto c: *this->outward_adjacency->at( si )){
size_t ti = c.first;
size_t ci = c.second;

Michal Kravcenko
committed

Michal Kravcenko
committed
this->neuron_potentials->at( ti ) += this->connection_list->at( ci )->eval( *this->connection_weights ) * potential;

Michal Kravcenko
committed
unsigned int i = 0;
for(auto oi: *this->output_neuron_indices){

Michal Kravcenko
committed
bias = 0.0;
bias_idx = this->neuron_bias_indices->at( oi );
if( bias_idx >= 0 ){
bias = this->neuron_biases->at( bias_idx );
}
output[i] = this->neurons->at( oi )->activate( this->neuron_potentials->at( oi ), bias );

Michal Kravcenko
committed
++i;
}

Michal Kravcenko
committed

Michal Kravcenko
committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
void NeuralNetwork::add_to_gradient_single( std::vector<double> &input, std::vector<double> &error_derivative, double error_scaling, std::vector<double> &gradient) {
std::vector<double> scaling_backprog( this->get_n_neurons( ) );
std::fill( scaling_backprog.begin(), scaling_backprog.end(), 0.0);
size_t bias_shift = this->get_n_weights();
size_t neuron_idx;
int bias_idx;
double neuron_potential, neuron_potential_t, neuron_bias, connection_weight;
NeuronDifferentiable *active_neuron;
/* initial error propagation */
std::vector<size_t>* current_layer = this->neuron_layers_feedforward->at(this->neuron_layers_feedforward->size() - 1);
//TODO might not work in the future as the output neurons could be permuted
for(size_t i = 0; i < current_layer->size(); ++i){
neuron_idx = current_layer->at( i );
scaling_backprog[neuron_idx] = error_derivative[ i ] * error_scaling;
}
/* we iterate through all the layers in reverse order and calculate partial derivatives scaled correspondingly */
for(size_t j = this->neuron_layers_feedforward->size(); j > 0; --j){
current_layer = this->neuron_layers_feedforward->at(j - 1);
for(size_t i = 0; i < current_layer->size(); ++i){
neuron_idx = current_layer->at( i );
active_neuron = dynamic_cast<NeuronDifferentiable*> (this->neurons->at( neuron_idx ));
if( active_neuron ){
bias_idx = this->neuron_bias_indices->at( neuron_idx );
neuron_potential = this->neuron_potentials->at( neuron_idx );
if( bias_idx >= 0 ){
neuron_bias = this->neuron_biases->at( bias_idx );
gradient[ bias_shift + bias_idx ] += scaling_backprog[neuron_idx] * active_neuron->activation_function_eval_derivative_bias( neuron_potential, neuron_bias );
scaling_backprog[neuron_idx] *= active_neuron->activation_function_eval_derivative(neuron_potential, neuron_bias);
}
/* connections to lower level neurons */
for(auto c: *this->inward_adjacency->at( neuron_idx )){
size_t ti = c.first;
size_t ci = c.second;
neuron_potential_t = this->neuron_potentials->at( ti );
connection_weight = this->connection_list->at( ci )->eval( *this->connection_weights );
this->connection_list->at( ci )->eval_partial_derivative( *this->get_parameter_ptr_weights(), gradient, neuron_potential_t * scaling_backprog[neuron_idx] );
scaling_backprog[ti] += scaling_backprog[neuron_idx] * connection_weight;
}
}
else{
throw std::invalid_argument("Neuron used in backpropagation does not contain differentiable activation function!\n");
}
}
}
}

Michal Kravcenko
committed

Michal Kravcenko
committed
// Init weight guess ("optimal" for logistic activation functions)

Michal Kravcenko
committed
double r = 4 * sqrt(6./(this->connection_weights->size()));

Michal Kravcenko
committed
boost::random::uniform_real_distribution<> dist(-r, r);

Michal Kravcenko
committed

Michal Kravcenko
committed
for(size_t i = 0; i < this->connection_weights->size(); i++) {

Michal Kravcenko
committed
}
boost::random::mt19937 gen;
// Init weight guess ("optimal" for logistic activation functions)
boost::random::uniform_real_distribution<> dist(-1, 1);

Michal Kravcenko
committed
for(size_t i = 0; i < this->neuron_biases->size(); i++) {

Michal Kravcenko
committed
void NeuralNetwork::randomize_parameters() {
this->randomize_biases();
this->randomize_weights();
}

Michal Kravcenko
committed
return this->input_neuron_indices->size();
}
size_t NeuralNetwork::get_n_outputs() {

Michal Kravcenko
committed
return this->output_neuron_indices->size();
}
size_t NeuralNetwork::get_n_weights() {
}
size_t NeuralNetwork::get_n_biases() {
return this->neuron_biases->size();
}

Michal Kravcenko
committed
int NeuralNetwork::get_neuron_bias_index(size_t neuron_idx) {
return this->neuron_bias_indices->at( neuron_idx );

Michal Kravcenko
committed
}

Michal Kravcenko
committed
return this->neurons->size();
}
void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) {
if( !this->input_neuron_indices ){
this->input_neuron_indices = new std::vector<size_t>(input_neurons_indices);
}
else{
delete this->input_neuron_indices;
this->input_neuron_indices = new std::vector<size_t>(input_neurons_indices);
}
}
void NeuralNetwork::specify_output_neurons(std::vector<size_t> &output_neurons_indices) {
if( !this->output_neuron_indices ){
this->output_neuron_indices = new std::vector<size_t>(output_neurons_indices);
else{
delete this->output_neuron_indices;
this->output_neuron_indices = new std::vector<size_t>(output_neurons_indices);
}
}
void NeuralNetwork::print_weights() {
printf("Connection weights: ");
if(this->connection_weights){
for( size_t i = 0; i < this->connection_weights->size() - 1; ++i){
printf("%f, ", this->connection_weights->at(i));
}
printf("%f", this->connection_weights->at(this->connection_weights->size() - 1));
}
printf("\n");
}
void NeuralNetwork::print_stats(){
std::cout << "Number of neurons: " << this->neurons->size() << std::endl
<< "Number of connections: " << this->connection_list->size() << std::endl
<< "Number of active weights: " << this->connection_weights->size() << std::endl
<< "Number of active biases: " << this->neuron_biases->size() << std::endl;
}
std::vector<double>* NeuralNetwork::get_parameter_ptr_biases() {
return this->neuron_biases;
}
std::vector<double>* NeuralNetwork::get_parameter_ptr_weights() {
return this->connection_weights;
}
size_t NeuralNetwork::add_new_connection_to_list(ConnectionFunctionGeneral *con) {
this->connection_list->push_back(con);
return this->connection_list->size() - 1;
}
void NeuralNetwork::add_inward_connection(size_t s, size_t t, size_t con_idx) {
if(!this->inward_adjacency->at(s)){
this->inward_adjacency->at(s) = new std::vector<std::pair<size_t, size_t>>(0);
}
this->inward_adjacency->at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
}
void NeuralNetwork::add_outward_connection(size_t s, size_t t, size_t con_idx) {
if(!this->outward_adjacency->at(s)){
this->outward_adjacency->at(s) = new std::vector<std::pair<size_t, size_t>>(0);
}
this->outward_adjacency->at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
}
void NeuralNetwork::analyze_layer_structure() {
if(this->layers_analyzed){
//nothing to do
return;
}

Michal Kravcenko
committed
/* buffer preparation */
this->neuron_potentials->resize(this->get_n_neurons());
/* space allocation */
if(this->neuron_layers_feedforward){
for(auto e: *this->neuron_layers_feedforward){
delete e;
e = nullptr;
}
delete this->neuron_layers_feedforward;
this->neuron_layers_feedforward = nullptr;
}

Michal Kravcenko
committed
// if(this->neuron_layers_feedbackward){
// for(auto e: *this->neuron_layers_feedbackward){
// delete e;
// e = nullptr;
// }
// delete this->neuron_layers_feedbackward;
// this->neuron_layers_feedbackward = nullptr;
// }
this->neuron_layers_feedforward = new std::vector<std::vector<size_t>*>(0);

Michal Kravcenko
committed
// this->neuron_layers_feedbackward = new std::vector<std::vector<size_t>*>(0);
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
auto n = this->neurons->size();
/* helpful counters */
std::vector<size_t> inward_saturation(n);
std::vector<size_t> outward_saturation(n);
std::fill(inward_saturation.begin(), inward_saturation.end(), 0);
std::fill(outward_saturation.begin(), outward_saturation.end(), 0);
for(unsigned int i = 0; i < n; ++i){
if(this->inward_adjacency->at(i)){
inward_saturation[i] = this->inward_adjacency->at(i)->size();
}
if(this->outward_adjacency->at(i)){
outward_saturation[i] = this->outward_adjacency->at(i)->size();
}
}
std::vector<size_t> active_eval_set(2 * n);
size_t active_set_size[2];
/* feedforward analysis */
active_set_size[0] = 0;
active_set_size[1] = 0;
size_t idx1 = 0, idx2 = 1;

Michal Kravcenko
committed
active_set_size[0] = this->get_n_inputs();

Michal Kravcenko
committed
for(i = 0; i < this->get_n_inputs(); ++i){
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
active_eval_set[i] = this->input_neuron_indices->at(i);
}
size_t active_ni;
while(active_set_size[idx1] > 0){
/* we add the current active set as the new outward layer */
std::vector<size_t> *new_feedforward_layer = new std::vector<size_t>(active_set_size[idx1]);
this->neuron_layers_feedforward->push_back( new_feedforward_layer );
//we iterate through the active neurons and propagate the signal
for(i = 0; i < active_set_size[idx1]; ++i){
active_ni = active_eval_set[i + n * idx1];
new_feedforward_layer->at( i ) = active_ni;
if(!this->outward_adjacency->at(active_ni)){
continue;
}
for(auto ni: *(this->outward_adjacency->at(active_ni))){
inward_saturation[ni.first]--;
if(inward_saturation[ni.first] == 0){
active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
active_set_size[idx2]++;
}
}
}
idx1 = idx2;
idx2 = (idx1 + 1) % 2;
active_set_size[idx2] = 0;
}

Michal Kravcenko
committed
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
// /* feed backward analysis */
// active_set_size[0] = 0;
// active_set_size[1] = 0;
//
// idx1 = 0;
// idx2 = 1;
//
// active_set_size[0] = this->get_n_outputs();
// for(i = 0; i < this->get_n_outputs(); ++i){
// active_eval_set[i] = this->output_neuron_indices->at(i);
// }
//
// while(active_set_size[idx1] > 0){
//
// /* we add the current active set as the new outward layer */
// std::vector<size_t> *new_feedbackward_layer = new std::vector<size_t>(active_set_size[idx1]);
// this->neuron_layers_feedbackward->push_back( new_feedbackward_layer );
//
// //we iterate through the active neurons and propagate the signal backward
// for(i = 0; i < active_set_size[idx1]; ++i){
// active_ni = active_eval_set[i + n * idx1];
// new_feedbackward_layer->at( i ) = active_ni;
//
// if(!this->inward_adjacency->at(active_ni)){
// continue;
// }
//
// for(auto ni: *(this->inward_adjacency->at(active_ni))){
// outward_saturation[ni.first]--;
//
// if(outward_saturation[ni.first] == 0){
// active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
// active_set_size[idx2]++;
// }
// }
// }
//
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
//
// active_set_size[idx2] = 0;
// }
}
void NeuralNetwork::save_text(std::string filepath) {
std::ofstream ofs(filepath);
{
boost::archive::text_oarchive oa(ofs);
oa << *this;
ofs.close();
}