Skip to content
Snippets Groups Projects
NeuralNetwork.cpp 25.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • /**
     * DESCRIPTION OF THE FILE
     *
     * @author Michal Kravčenko
     * @date 13.6.18 - 
     */
    
    #include "NeuralNetwork.h"
    
    BOOST_CLASS_EXPORT(NeuronBinary);
    BOOST_CLASS_EXPORT(NeuronConstant);
    BOOST_CLASS_EXPORT(NeuronLinear);
    BOOST_CLASS_EXPORT(NeuronLogistic);
    BOOST_CLASS_EXPORT(NeuronLogistic_d1);
    BOOST_CLASS_EXPORT(NeuronLogistic_d2);
    BOOST_CLASS_EXPORT(ConnectionFunctionGeneral);
    BOOST_CLASS_EXPORT(ConnectionFunctionIdentity);
    
    
    NeuralNetwork::NeuralNetwork() {
        this->neurons = new std::vector<Neuron*>(0);
    
        this->neuron_biases = new std::vector<double>(0);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->neuron_potentials = new std::vector<double>(0);
    
        this->neuron_bias_indices = new std::vector<int>(0);
    
        this->connection_weights =new std::vector<double>(0);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->connection_list = new std::vector<ConnectionFunctionGeneral*>(0);
        this->inward_adjacency = new std::vector<std::vector<std::pair<size_t, size_t>>*>(0);
        this->outward_adjacency = new std::vector<std::vector<std::pair<size_t, size_t>>*>(0);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->neuron_layers_feedforward = new std::vector<std::vector<size_t>*>(0);
        this->neuron_layers_feedbackward = new std::vector<std::vector<size_t>*>(0);
    
        this->input_neuron_indices = new std::vector<size_t>(0);
        this->output_neuron_indices = new std::vector<size_t>(0);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->delete_weights = true;
        this->delete_biases = true;
        this->layers_analyzed = false;
    }
    
    NeuralNetwork::NeuralNetwork(std::string filepath) {
        std::ifstream ifs(filepath);
        boost::archive::text_iarchive ia(ifs);
        ia >> *this;
        ifs.close();
    }
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    NeuralNetwork::~NeuralNetwork() {
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->neurons){
    
            for( auto n: *(this->neurons) ){
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
                delete n;
                n = nullptr;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            delete this->neurons;
            this->neurons = nullptr;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->neuron_potentials){
            delete this->neuron_potentials;
            this->neuron_potentials = nullptr;
        }
    
        if(this->neuron_bias_indices){
            delete this->neuron_bias_indices;
            this->neuron_bias_indices = nullptr;
        }
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->output_neuron_indices){
            delete this->output_neuron_indices;
            this->output_neuron_indices = nullptr;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->input_neuron_indices){
            delete this->input_neuron_indices;
            this->input_neuron_indices = nullptr;
        }
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->connection_weights && this->delete_weights){
            delete this->connection_weights;
            this->connection_weights = nullptr;
        }
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->neuron_biases && this->delete_biases){
            delete this->neuron_biases;
            this->neuron_biases = nullptr;
        }
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->connection_list){
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            if(this->delete_weights){
                for(auto c: *this->connection_list){
                    delete c;
                    c = nullptr;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            }
            delete this->connection_list;
            this->connection_list = nullptr;
        }
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->inward_adjacency){
            for(auto e: *this->inward_adjacency){
                if(e){
                    delete e;
                    e = nullptr;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            delete this->inward_adjacency;
            this->inward_adjacency = nullptr;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->outward_adjacency){
            for(auto e: *this->outward_adjacency){
                if(e){
                    delete e;
                    e = nullptr;
                }
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            delete this->outward_adjacency;
            this->outward_adjacency = nullptr;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        if(this->neuron_layers_feedforward){
            for(auto e: *this->neuron_layers_feedforward){
                delete e;
                e = nullptr;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            delete this->neuron_layers_feedforward;
            this->neuron_layers_feedforward = nullptr;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->neuron_layers_feedbackward){
            for(auto e: *this->neuron_layers_feedbackward){
                delete e;
                e = nullptr;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            delete this->neuron_layers_feedbackward;
            this->neuron_layers_feedbackward = nullptr;
        }
    }
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    NeuralNetwork* NeuralNetwork::get_subnet(std::vector<size_t> &input_neuron_indices, std::vector<size_t> &output_neuron_indices){
        NeuralNetwork *output_net = nullptr;
    // TODO rework due to the changed structure of the class
    //    Neuron * active_neuron, * target_neuron;
    //
    //    size_t n = this->neurons->size();
    //    bool *part_of_subnetwork = new bool[n];
    //    std::fill(part_of_subnetwork, part_of_subnetwork + n, false);
    //
    //    bool *is_reachable_from_source = new bool[n];
    //    bool *is_reachable_from_destination = new bool[n];
    //    std::fill(is_reachable_from_source, is_reachable_from_source + n, false);
    //    std::fill(is_reachable_from_destination, is_reachable_from_destination + n, false);
    //
    //    bool *visited_neurons = new bool[n];
    //    std::fill(visited_neurons, visited_neurons + n, false);
    //
    //    size_t active_set_size[2];
    //    active_set_size[0] = 0;
    //    active_set_size[1] = 0;
    //    size_t * active_neuron_set = new size_t[2 * n];
    //    size_t idx1 = 0, idx2 = 1;
    //
    //    /* MAPPING BETWEEN NEURONS AND THEIR INDICES */
    //    size_t idx = 0, idx_target;
    //    for(Neuron *v: *this->neurons){
    //        v->set_idx( idx );
    //        idx++;
    //    }
    //
    //    /* INITIAL STATE FOR THE FORWARD PASS */
    //    for(size_t i: input_neuron_indices ){
    //
    //        if( i < 0 || i >= n){
    //            //invalid index
    //            continue;
    //        }
    //        active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
    //        active_set_size[idx1]++;
    //
    //        visited_neurons[i] = true;
    //    }
    //
    //    /* FORWARD PASS */
    //    while(active_set_size[idx1] > 0){
    //
    //        //we iterate through the active neurons and propagate the signal
    //        for(int i = 0; i < active_set_size[idx1]; ++i){
    //            idx = active_neuron_set[i];
    //
    //            is_reachable_from_source[ idx ] = true;
    //
    //            active_neuron = this->neurons->at( idx );
    //
    //            for(Connection* connection: *(active_neuron->get_connections_out())){
    //
    //                target_neuron = connection->get_neuron_out( );
    //                idx_target = target_neuron->get_idx( );
    //
    //                if( visited_neurons[idx_target] ){
    //                    //this neuron was already analyzed
    //                    continue;
    //                }
    //
    //                visited_neurons[idx_target] = true;
    //                active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
    //                active_set_size[idx2]++;
    //            }
    //        }
    //        idx1 = idx2;
    //        idx2 = (idx1 + 1) % 2;
    //        active_set_size[idx2] = 0;
    //    }
    //
    //
    //    /* INITIAL STATE FOR THE FORWARD PASS */
    //    active_set_size[0] = active_set_size[1] = 0;
    //    std::fill(visited_neurons, visited_neurons + n, false);
    //
    //    for(size_t i: output_neuron_indices ){
    //
    //        if( i < 0 || i >= n){
    //            //invalid index
    //            continue;
    //        }
    //        active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
    //        active_set_size[idx1]++;
    //
    //        visited_neurons[i] = true;
    //    }
    //
    //    /* BACKWARD PASS */
    //    size_t n_new_neurons = 0;
    //    while(active_set_size[idx1] > 0){
    //
    //        //we iterate through the active neurons and propagate the signal
    //        for(int i = 0; i < active_set_size[idx1]; ++i){
    //            idx = active_neuron_set[i];
    //
    //            is_reachable_from_destination[ idx ] = true;
    //
    //            active_neuron = this->neurons->at( idx );
    //
    //            if(is_reachable_from_source[ idx ]){
    //                n_new_neurons++;
    //            }
    //
    //            for(Connection* connection: *(active_neuron->get_connections_in())){
    //
    //                target_neuron = connection->get_neuron_in( );
    //                idx_target = target_neuron->get_idx( );
    //
    //                if( visited_neurons[idx_target] ){
    //                    //this neuron was already analyzed
    //                    continue;
    //                }
    //
    //                visited_neurons[idx_target] = true;
    //                active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
    //                active_set_size[idx2]++;
    //            }
    //        }
    //        idx1 = idx2;
    //        idx2 = (idx1 + 1) % 2;
    //        active_set_size[idx2] = 0;
    //    }
    //
    //    /* FOR CONSISTENCY REASONS */
    //    for(size_t in: input_neuron_indices){
    //        if( !is_reachable_from_destination[in] ){
    //            n_new_neurons++;
    //        }
    //        is_reachable_from_destination[in] = true;
    //    }
    //    /* FOR CONSISTENCY REASONS */
    //    for(size_t in: output_neuron_indices){
    //        if( !is_reachable_from_source[in] ){
    //            n_new_neurons++;
    //        }
    //        is_reachable_from_source[in] = true;
    //    }
    //
    //    /* WE FORM THE SET OF NEURONS IN THE OUTPUT NETWORK  */
    //    if(n_new_neurons > 0){
    ////        printf("Number of new neurons: %d\n", n_new_neurons);
    //        output_net = new NeuralNetwork();
    //        output_net->set_weight_array( this->connection_weights );
    //
    //        std::vector<size_t > local_inputs(0), local_outputs(0);
    //        local_inputs.reserve(input_neuron_indices.size());
    //        local_outputs.reserve(output_neuron_indices.size());
    //
    //        std::vector<Neuron*> local_n_arr(0);
    //        local_n_arr.reserve( n_new_neurons );
    //
    //        std::vector<Neuron*> local_local_n_arr(0);
    //        local_local_n_arr.reserve( n_new_neurons );
    //
    //        int * neuron_local_mapping = new int[ n ];
    //        std::fill(neuron_local_mapping, neuron_local_mapping + n, -1);
    //        idx = 0;
    //        for(size_t i = 0; i < n; ++i){
    //            if(is_reachable_from_source[i] && is_reachable_from_destination[i]){
    //                neuron_local_mapping[i] = (int)idx;
    //                idx++;
    //
    //                Neuron *new_neuron = this->neurons->at(i)->get_copy( );
    //
    //                output_net->add_neuron( new_neuron );
    //                local_local_n_arr.push_back( new_neuron );
    //                local_n_arr.push_back( this->neurons->at(i) );
    //            }
    //        }
    //        for(size_t in: input_neuron_indices){
    //            local_inputs.push_back(neuron_local_mapping[in]);
    //        }
    //        for(size_t in: output_neuron_indices){
    //            local_outputs.push_back(neuron_local_mapping[in]);
    //        }
    //
    ////        printf("%d\n", local_n_arr.size());
    ////        printf("inputs: %d, outputs: %d\n", local_inputs.size(), local_outputs.size());
    //        int local_idx_1, local_idx_2;
    //        for(Neuron* source_neuron: local_n_arr){
    //            //we also add the relevant edges
    //            local_idx_1 = neuron_local_mapping[source_neuron->get_idx()];
    //
    //            for(Connection* connection: *(source_neuron->get_connections_out( ))){
    //                target_neuron = connection->get_neuron_out();
    //
    //                local_idx_2 = neuron_local_mapping[target_neuron->get_idx()];
    //                if(local_idx_2 >= 0){
    //                    //this edge is part of the subnetwork
    //                    Connection* new_connection = connection->get_copy( local_local_n_arr[local_idx_1], local_local_n_arr[local_idx_2] );
    //
    //                    local_local_n_arr[local_idx_1]->add_connection_out(new_connection);
    //                    local_local_n_arr[local_idx_2]->add_connection_in(new_connection);
    //
    ////                    printf("adding a connection between neurons %d, %d\n", local_idx_1, local_idx_2);
    //                }
    //
    //            }
    //
    //        }
    //        output_net->specify_input_neurons(local_inputs);
    //        output_net->specify_output_neurons(local_outputs);
    //
    //
    //        delete [] neuron_local_mapping;
    //    }
    //
    //    delete [] is_reachable_from_source;
    //    delete [] is_reachable_from_destination;
    //    delete [] part_of_subnetwork;
    //    delete [] visited_neurons;
    //    delete [] active_neuron_set;
    //
    //
        return output_net;
    }
    
    size_t NeuralNetwork::add_neuron(Neuron* n, BIAS_TYPE bt, size_t bias_idx) {
    
        if( bt == BIAS_TYPE::NO_BIAS ){
            this->neuron_bias_indices->push_back(-1);
    
        else if( bt == BIAS_TYPE::NEXT_BIAS ){
            this->neuron_bias_indices->push_back((int)this->neuron_biases->size());
            this->neuron_biases->resize(this->neuron_biases->size() + 1);
    
        else if( bt == BIAS_TYPE::EXISTING_BIAS ){
            if( bias_idx >= this->neuron_biases->size()){
                std::cerr << "The supplied bias index is too large!\n" << std::endl;
            }
            this->neuron_bias_indices->push_back((int)bias_idx);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->outward_adjacency->push_back(new std::vector<std::pair<size_t, size_t>>(0));
        this->inward_adjacency->push_back(new std::vector<std::pair<size_t, size_t>>(0));
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    
        this->layers_analyzed = false;
    
    size_t NeuralNetwork::add_connection_simple( size_t n1_idx, size_t n2_idx, SIMPLE_CONNECTION_TYPE sct, size_t weight_idx ) {
    
        ConnectionFunctionIdentity *con_weight_u1u2;
        if( sct == SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT ){
            con_weight_u1u2 = new ConnectionFunctionIdentity( );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        }
        else{
    
            if( sct == SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT ){
                weight_idx = this->connection_weights->size();
                this->connection_weights->resize(weight_idx + 1);
            }
            else if( sct == SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT ){
                if( weight_idx >= this->connection_weights->size()){
                    std::cerr << "The supplied connection weight index is too large!\n" << std::endl;
                }
            }
    
            con_weight_u1u2 = new ConnectionFunctionIdentity( weight_idx );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        size_t conn_idx = this->add_new_connection_to_list(con_weight_u1u2);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->add_outward_connection(n1_idx, n2_idx, conn_idx);
        this->add_inward_connection(n2_idx, n1_idx, conn_idx);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->layers_analyzed = false;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        return this->connection_list->size() - 1;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    void NeuralNetwork::add_existing_connection(size_t n1_idx, size_t n2_idx, size_t connection_idx,
                                                NeuralNetwork &parent_network) {
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        size_t conn_idx = this->add_new_connection_to_list(parent_network.connection_list->at( connection_idx ));
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->add_outward_connection(n1_idx, n2_idx, conn_idx);
        this->add_inward_connection(n2_idx, n1_idx, conn_idx);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->layers_analyzed = false;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    void NeuralNetwork::copy_parameter_space(std::vector<double> *parameters) {
        if(parameters != nullptr){
            for(unsigned int i = 0; i < this->connection_weights->size(); ++i){
                (*this->connection_weights)[i] = (*parameters)[i];
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            for(unsigned int i = 0; i < this->neuron_biases->size(); ++i){
                (*this->neuron_biases)[i] = (*parameters)[i + this->connection_weights->size()];
            }
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    void NeuralNetwork::set_parameter_space_pointers(NeuralNetwork &parent_network) {
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->connection_weights){
            delete connection_weights;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if(this->neuron_biases){
            delete this->neuron_biases;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->connection_weights = parent_network.connection_weights;
        this->neuron_biases = parent_network.neuron_biases;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->delete_biases = false;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> &output, std::vector<double> * custom_weights_and_biases) {
    
        if((this->input_neuron_indices->size() * this->output_neuron_indices->size()) <= 0){
    
            std::cerr << "Input and output neurons have not been specified\n" << std::endl;
    
    Martin Beseda's avatar
    Martin Beseda committed
            exit(-1);
    
        if(this->input_neuron_indices->size() != input.size()){
    
            std::cerr << "Error, input size != Network input size\n" << std::endl;
            exit(-1);
    
        if(this->output_neuron_indices->size() != output.size()){
    
            std::cerr << "Error, output size != Network output size\n" << std::endl;
            exit(-1);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->copy_parameter_space( custom_weights_and_biases );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        this->analyze_layer_structure();
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /* reset of the output and the neuron potentials */
    
        std::fill(output.begin(), output.end(), 0.0);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        std::fill(this->neuron_potentials->begin(), this->neuron_potentials->end(), 0.0);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /* set the potentials of the input neurons */
    
        for(size_t i = 0; i < this->input_neuron_indices->size(); ++i){
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            this->neuron_potentials->at( this->input_neuron_indices->at(i) ) = input[ i ];
    
        /* we iterate through all the feed-forward layers and transfer the signals */
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        for( auto layer: *this->neuron_layers_feedforward){
            /* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            for( auto si: *layer ){
    
                bias = 0.0;
                bias_idx = this->neuron_bias_indices->at( si );
                if( bias_idx >= 0 ){
                    bias = this->neuron_biases->at( bias_idx );
                }
                potential = this->neurons->at(si)->activate(this->neuron_potentials->at( si ), bias);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
                for(auto c: *this->outward_adjacency->at( si )){
                    size_t ti = c.first;
                    size_t ci = c.second;
    
                    this->neuron_potentials->at( ti ) += this->connection_list->at( ci )->eval( *this->connection_weights ) * potential;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        unsigned int i = 0;
        for(auto oi: *this->output_neuron_indices){
    
            bias = 0.0;
            bias_idx = this->neuron_bias_indices->at( oi );
            if( bias_idx >= 0 ){
                bias = this->neuron_biases->at( bias_idx );
            }
            output[i] = this->neurons->at( oi )->activate( this->neuron_potentials->at( oi ), bias );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    void NeuralNetwork::randomize_weights( ) {
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        boost::random::mt19937 gen;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        // Init weight guess ("optimal" for logistic activation functions)
    
        double r = 4 * sqrt(6./(this->connection_weights->size()));
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        boost::random::uniform_real_distribution<> dist(-r, r);
    
        for(size_t i = 0; i < this->connection_weights->size(); i++) {
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            this->connection_weights->at(i) = dist(gen);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    void NeuralNetwork::randomize_biases( ) {
    
        boost::random::mt19937 gen;
    
        // Init weight guess ("optimal" for logistic activation functions)
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        boost::random::uniform_real_distribution<> dist(-1, 1);
    
        for(size_t i = 0; i < this->neuron_biases->size(); i++) {
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            this->neuron_biases->at(i) = dist(gen);
    
        }
    }
    
    size_t NeuralNetwork::get_n_inputs() {
    
    }
    
    size_t  NeuralNetwork::get_n_outputs() {
    
    }
    
    size_t NeuralNetwork::get_n_weights() {
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        return this->connection_weights->size();
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    size_t NeuralNetwork::get_n_biases() {
        return this->neuron_biases->size();
    }
    
    int NeuralNetwork::get_neuron_bias_index(size_t neuron_idx) {
        return this->neuron_bias_indices->at( neuron_idx );
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    size_t NeuralNetwork::get_n_neurons() {
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    }
    
    void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) {
        if( !this->input_neuron_indices ){
            this->input_neuron_indices = new std::vector<size_t>(input_neurons_indices);
        }
        else{
            delete this->input_neuron_indices;
            this->input_neuron_indices = new std::vector<size_t>(input_neurons_indices);
    
        }
    }
    
    void NeuralNetwork::specify_output_neurons(std::vector<size_t> &output_neurons_indices) {
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        if( !this->output_neuron_indices ){
            this->output_neuron_indices = new std::vector<size_t>(output_neurons_indices);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        else{
            delete this->output_neuron_indices;
            this->output_neuron_indices = new std::vector<size_t>(output_neurons_indices);
    
    void NeuralNetwork::print_weights() {
        printf("Connection weights: ");
        if(this->connection_weights){
            for( size_t i = 0; i < this->connection_weights->size() - 1; ++i){
                printf("%f, ", this->connection_weights->at(i));
            }
            printf("%f", this->connection_weights->at(this->connection_weights->size() - 1));
        }
    
        printf("\n");
    }
    
    void NeuralNetwork::print_stats(){
    
        std::cout << "Number of neurons: " << this->neurons->size() << std::endl
                  << "Number of connections: " << this->connection_list->size() << std::endl
                  << "Number of active weights: " << this->connection_weights->size() << std::endl
                  << "Number of active biases: " << this->neuron_biases->size() << std::endl;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    }
    
    std::vector<double>* NeuralNetwork::get_parameter_ptr_biases() {
        return this->neuron_biases;
    }
    
    std::vector<double>* NeuralNetwork::get_parameter_ptr_weights() {
        return this->connection_weights;
    }
    
    size_t NeuralNetwork::add_new_connection_to_list(ConnectionFunctionGeneral *con) {
        this->connection_list->push_back(con);
        return this->connection_list->size() - 1;
    }
    
    void NeuralNetwork::add_inward_connection(size_t s, size_t t, size_t con_idx) {
        if(!this->inward_adjacency->at(s)){
            this->inward_adjacency->at(s) = new std::vector<std::pair<size_t, size_t>>(0);
        }
    
        this->inward_adjacency->at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    }
    
    void NeuralNetwork::add_outward_connection(size_t s, size_t t, size_t con_idx) {
        if(!this->outward_adjacency->at(s)){
            this->outward_adjacency->at(s) = new std::vector<std::pair<size_t, size_t>>(0);
        }
    
        this->outward_adjacency->at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    }
    
    void NeuralNetwork::analyze_layer_structure() {
    
        if(this->layers_analyzed){
            //nothing to do
            return;
        }
    
    
        /* buffer preparation */
        this->neuron_potentials->resize(this->get_n_neurons());
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        /* space allocation */
        if(this->neuron_layers_feedforward){
            for(auto e: *this->neuron_layers_feedforward){
                delete e;
                e = nullptr;
            }
            delete this->neuron_layers_feedforward;
            this->neuron_layers_feedforward = nullptr;
        }
    
        if(this->neuron_layers_feedbackward){
            for(auto e: *this->neuron_layers_feedbackward){
                delete e;
                e = nullptr;
            }
            delete this->neuron_layers_feedbackward;
            this->neuron_layers_feedbackward = nullptr;
        }
    
        this->neuron_layers_feedforward = new std::vector<std::vector<size_t>*>(0);
        this->neuron_layers_feedbackward = new std::vector<std::vector<size_t>*>(0);
    
    
        auto n = this->neurons->size();
    
        /* helpful counters */
        std::vector<size_t> inward_saturation(n);
        std::vector<size_t> outward_saturation(n);
        std::fill(inward_saturation.begin(), inward_saturation.end(), 0);
        std::fill(outward_saturation.begin(), outward_saturation.end(), 0);
        for(unsigned int i = 0; i < n; ++i){
            if(this->inward_adjacency->at(i)){
                inward_saturation[i] = this->inward_adjacency->at(i)->size();
            }
    
            if(this->outward_adjacency->at(i)){
                outward_saturation[i] = this->outward_adjacency->at(i)->size();
            }
        }
    
    
        std::vector<size_t> active_eval_set(2 * n);
        size_t active_set_size[2];
    
        /* feedforward analysis */
        active_set_size[0] = 0;
        active_set_size[1] = 0;
    
        size_t idx1 = 0, idx2 = 1;
    
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
        size_t i = 0;
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            active_eval_set[i] = this->input_neuron_indices->at(i);
        }
    
        size_t active_ni;
        while(active_set_size[idx1] > 0){
    
            /* we add the current active set as the new outward layer */
            std::vector<size_t> *new_feedforward_layer = new std::vector<size_t>(active_set_size[idx1]);
            this->neuron_layers_feedforward->push_back( new_feedforward_layer );
    
            //we iterate through the active neurons and propagate the signal
            for(i = 0; i < active_set_size[idx1]; ++i){
                active_ni = active_eval_set[i + n * idx1];
                new_feedforward_layer->at( i ) = active_ni;
    
                if(!this->outward_adjacency->at(active_ni)){
                    continue;
                }
    
                for(auto ni: *(this->outward_adjacency->at(active_ni))){
                    inward_saturation[ni.first]--;
    
                    if(inward_saturation[ni.first] == 0){
                        active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
                        active_set_size[idx2]++;
                    }
                }
            }
    
            idx1 = idx2;
            idx2 = (idx1 + 1) % 2;
    
            active_set_size[idx2] = 0;
        }
    
    
        /* feed backward analysis */
        active_set_size[0] = 0;
        active_set_size[1] = 0;
    
        idx1 = 0;
        idx2 = 1;
    
    
        active_set_size[0] = this->get_n_outputs();
        for(i = 0; i < this->get_n_outputs(); ++i){
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            active_eval_set[i] = this->output_neuron_indices->at(i);
        }
    
        while(active_set_size[idx1] > 0){
    
            /* we add the current active set as the new outward layer */
            std::vector<size_t> *new_feedbackward_layer = new std::vector<size_t>(active_set_size[idx1]);
            this->neuron_layers_feedbackward->push_back( new_feedbackward_layer );
    
            //we iterate through the active neurons and propagate the signal backward
            for(i = 0; i < active_set_size[idx1]; ++i){
                active_ni = active_eval_set[i + n * idx1];
                new_feedbackward_layer->at( i ) = active_ni;
    
                if(!this->inward_adjacency->at(active_ni)){
                    continue;
                }
    
                for(auto ni: *(this->inward_adjacency->at(active_ni))){
                    outward_saturation[ni.first]--;
    
                    if(outward_saturation[ni.first] == 0){
                        active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
                        active_set_size[idx2]++;
                    }
                }
            }
    
            idx1 = idx2;
            idx2 = (idx1 + 1) % 2;
    
            active_set_size[idx2] = 0;
        }
    
        this->layers_analyzed = true;
    
    }
    
    void NeuralNetwork::save_text(std::string filepath) {
        std::ofstream ofs(filepath);
        {
            boost::archive::text_oarchive oa(ofs);
            oa << *this;
            ofs.close();
        }