Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
Campbell Barton
committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import bpy
def vis_curve_object():
scene = bpy.data.scenes[0] # weak!
cu = bpy.data.curves.new(name="Line", type='CURVE')
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
return ob
def vis_curve_spline(p1, h1, p2, h2):
ob = vis_curve_object()
spline = ob.data.splines.new(type='BEZIER')
spline.bezier_points.add(1)
spline.bezier_points[0].co = p1.to_3d()
spline.bezier_points[1].co = p2.to_3d()
spline.bezier_points[0].handle_right = h1.to_3d()
spline.bezier_points[1].handle_left = h2.to_3d()
def vis_circle_object(co, rad=1.0):
import math
scene = bpy.data.scenes[0] # weak!
ob = bpy.data.objects.new(name="Circle", object_data=None)
ob.rotation_euler.x = math.pi / 2
ob.location = co.to_3d()
ob.empty_draw_size = rad
ob.layers = [True] * 20
base = scene.objects.link(ob)
return ob
def visualize_line(p1, p2, p3=None, rad=None):
pair = p1.to_3d(), p2.to_3d()
ob = vis_curve_object()
spline = ob.data.splines.new(type='POLY')
spline.points.add(1)
for co, v in zip((pair), spline.points):
v.co.xyz = co
if p3:
spline = ob.data.splines.new(type='POLY')
spline.points[0].co.xyz = p3.to_3d()
if rad is not None:
vis_circle_object(p3, rad)
def treat_points(points,
double_limit=0.0001,
):
# first remove doubles
tot_len = 0.0
if double_limit != 0.0:
i = len(points) - 1
while i > 0:
length = (points[i] - points[i - 1]).length
if length < double_limit:
del points[i]
if i >= len(points):
i -= 1
else:
tot_len += length
i -= 1
return tot_len
def solve_curvature(p1, p2, n1, n2, fac, fallback):
Campbell Barton
committed
""" Add a nice circular curvature on
"""
from mathutils import Vector
from mathutils.geometry import (barycentric_transform,
intersect_line_line,
intersect_point_line,
)
p1_a = p1 + n1
p2_a = p2 - n2
isect = intersect_line_line(p1,
p1_a,
p2,
p2_a,
Campbell Barton
committed
)
if isect:
Campbell Barton
committed
else:
corner = None
if corner:
p1_first_order = p1.lerp(corner, fac)
p2_first_order = corner.lerp(p2, fac)
co = p1_first_order.lerp(p2_first_order, fac)
Campbell Barton
committed
else:
# cant interpolate. just return interpolated value
return fallback.copy() # p1.lerp(p2, fac)
def points_to_bezier(points_orig,
double_limit=0.0001,
kink_tolerance=0.25,
bezier_tolerance=0.02, # error distance, scale dependant
Campbell Barton
committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
subdiv=8,
angle_span=0.95, # 1.0 tries to evaluate splines of 180d
):
import math
from mathutils import Vector
class Point(object):
__slots__ = ("co",
"angle",
"no",
"is_joint",
"next",
"prev",
)
def __init__(self, co):
self.co = co
self.is_joint = False
def calc_angle(self):
if self.prev is None or self.next is None:
self.angle = 0.0
else:
va = self.co - self.prev.co
vb = self.next.co - self.co
self.angle = va.angle(vb, 0.0)
def angle_diff(self):
""" use for detecting joints, detect difference in angle from
surrounding points.
"""
if self.prev is None or self.next is None:
return 0.0
else:
if (self.angle > self.prev.angle and
self.angle > self.next.angle):
return abs(self.angle - self.prev.angle) / math.pi
else:
return 0.0
Campbell Barton
committed
def calc_normal(self):
v1 = v2 = None
if self.prev and not self.prev.is_joint:
v1 = (self.co - self.prev.co).normalized()
if self.next and not self.next.is_joint:
v2 = (self.next.co - self.co).normalized()
if v1 and v2:
self.no = (v1 + v2).normalized()
elif v1:
self.no = v1
elif v2:
self.no = v2
else:
print("Warning, assigning dummy normal")
Campbell Barton
committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
class Spline(object):
__slots__ = ("points",
"handle_left",
"handle_right",
"next",
"prev",
)
def __init__(self, points):
self.points = points
def link_points(self):
if hasattr(self.points[0], "prev"):
raise Exception("already linked")
p_prev = None
for p in self.points:
p.prev = p_prev
p_prev = p
p_prev = None
for p in reversed(self.points):
p.next = p_prev
p_prev = p
def split(self, i, is_joint=False):
prev = self.prev
next = self.next
if is_joint:
self.points[i].is_joint = True
# share a point
spline_a = Spline(self.points[:i + 1])
spline_b = Spline(self.points[i:])
# invalidate self, dont reuse!
self.points = None
spline_a.next = spline_b
spline_b.prev = spline_a
spline_a.prev = prev
spline_b.next = next
if prev:
prev.next = spline_a
if next:
next.prev = spline_b
return spline_a, spline_b
def calc_angle(self):
for p in self.points:
p.calc_angle()
def calc_normal(self):
for p in self.points:
p.calc_normal()
def calc_all(self):
self.link_points()
self.calc_angle()
self.calc_normal()
#~ def total_angle(self):
#~ return abs(sum((p.angle for p in self.points)))
Campbell Barton
committed
def redistribute(self, segment_length, smooth=False):
if len(self.points) == 1:
return
from mathutils.geometry import intersect_line_sphere
Campbell Barton
committed
p_line = p = self.points[0]
points = [(p.co.copy(), p.co.copy())]
p = p.next
def point_add(co, p=None):
co = co.copy()
co_smooth = co.copy()
if smooth:
if p is None:
pass # works ok but no smoothing
elif (p.prev.no - p.no).length < 0.001:
pass # normals are too similar, paralelle
elif (p.angle > 0.0) != (p.prev.angle > 0.0):
pass
else:
# visualize_line(p.co, p.co + p.no)
# this assumes co is on the line
fac = ((p.prev.co - co).length /
(p.prev.co - p.co).length)
assert(fac >= 0.0 and fac <= 1.0)
co_smooth = solve_curvature(p.prev.co,
p.co,
p.prev.no,
p.no,
fac,
co,
)
Campbell Barton
committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
points.append((co, co_smooth))
def point_step(p):
if p.is_joint or p.next is None:
point_add(p.co)
return None
else:
return p.next
print("START")
while p:
# we want the first pont past the segment size
#if p.is_joint:
# vis_circle_object(p.co)
length = (points[-1][0] - p.co).length
if abs(length - segment_length) < 0.00001:
# close enough to be considered on the circle bounds
point_add(p.co)
p_line = p
p = point_step(p)
elif length < segment_length:
p = point_step(p)
else:
# the point is further then the segment width
p_start = points[-1][0] if p.prev is p_line else p.prev.co
if (p_start - points[-1][0]).length > segment_length:
raise Exception("eek2")
if (p.co - points[-1][0]).length < segment_length:
raise Exception("eek3")
# print(p_start, p.co, points[-1][0], segment_length)
i1, i2 = intersect_line_sphere(p_start,
p.co,
points[-1][0],
segment_length,
)
Campbell Barton
committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# print()
# print(i1, i2)
# assert(i1 is not None)
if i1 is not None:
point_add(i1, p)
p_line = p.prev
elif i2:
raise Exception("err")
elif i1 is None and i2 is None:
visualize_line(p_start,
p.co,
points[-1][0],
segment_length,
)
# XXX FIXME
# raise Exception("BAD!s")
point_add(p.co)
p_line = p
p = point_step(p)
joint = self.points[0].is_joint, self.points[-1].is_joint
self.points = [Point(p[1]) for p in points]
self.points[0].is_joint, self.points[-1].is_joint = joint
self.calc_all()
# raise Exception("END")
def intersect_line(self, l1, l2, reverse=False):
""" Spectial kind of intersection, works in 3d on the plane
defimed by the points normal and the line.
"""
from mathutils.geometry import (intersect_point_line,
)
if reverse:
p_first = self.points[-1]
no = -self.points[-1].no
point_iter = reversed(self.points[:-1])
else:
p_first = self.points[0]
no = self.points[0].no
point_iter = self.points[1:]
# calculate the line right angles to the line
bi_no = (no - no.project(l2 - l1)).normalized()
bi_l1 = p_first.co
bi_l2 = p_first.co + bi_no
ix, fac = intersect_point_line(p_apex.co, bi_l1, bi_l2)
if fac < 0.0001:
if reverse:
p_apex_other = p_apex.next
else:
p_apex_other = p_apex.prev
# find the exact point on the line between the apex and
# the middle
p_test_1 = intersect_point_line(p_apex.co,
l1,
p_test_2 = intersect_point_line(p_apex_other.co,
l1,
w1 = (p_test_1 - p_apex.co).length
w2 = (p_test_2 - p_apex_other.co).length
Campbell Barton
committed
#assert(w1 + w2 != 0)
try:
fac = w1 / (w1 + w2)
except ZeroDivisionError:
fac = 0.5
Campbell Barton
committed
assert(fac >= 0.0 and fac <= 1.0)
p_apex_co = p_apex.co.lerp(p_apex_other.co, fac)
p_apex_no = p_apex.no.lerp(p_apex_other.no, fac)
p_apex_no.normalize()
# visualize_line(p_mid.to_3d(), corner.to_3d())
# visualize_line(p_apex.co.to_3d(), p_apex_co.to_3d())
Campbell Barton
committed
return p_apex_co, p_apex_no, p_apex
Campbell Barton
committed
# intersection not found
return None, None, None
Campbell Barton
committed
def bezier_solve(self):
""" Calculate bezier handles,
assume the splines have been broken up.
"""
from mathutils.geometry import (intersect_point_line,
intersect_line_line,
)
# get a line
p1 = self.points[0]
p2 = self.points[-1]
Campbell Barton
committed
# ------
# take 2
p_vec = (p2.co - p1.co).normalized()
Campbell Barton
committed
Campbell Barton
committed
# vector between line and point directions
l1_no = (p1.no + p_vec).normalized()
l2_no = ((-p2.no) - p_vec).normalized()
Campbell Barton
committed
Campbell Barton
committed
l1_co = p1.co + l1_no
l2_co = p2.co + l2_no
Campbell Barton
committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
# visualize_line(p1.co, l1_co)
# visualize_line(p2.co, l2_co)
line_ix_p1_co, line_ix_p1_no, line_ix_p1 = \
self.intersect_line(p1.co,
l1_co,
)
line_ix_p2_co, line_ix_p2_no, line_ix_p2 = \
self.intersect_line(p2.co,
l2_co,
reverse=True,
)
if line_ix_p1_co is None:
line_ix_p1_co, line_ix_p1_no, line_ix_p1 = \
p1.next.co, p1.next.no, p1.next
if line_ix_p2_co is None:
line_ix_p2_co, line_ix_p2_no, line_ix_p2 = \
p2.prev.co, p2.prev.no, p2.prev
# vis_circle_object(line_ix_p1_co)
# vis_circle_object(line_ix_p2_co)
l1_max = 0.0
p1_apex_co = None
p = self.points[1]
while p and (not p.is_joint) and p != line_ix_p1:
ix = intersect_point_line(p.co, p1.co, l1_co)[0]
Campbell Barton
committed
length = (ix - p.co).length
if length > l1_max:
l1_max = length
p1_apex_co = p.co
p = p.next
l2_max = 0.0
p2_apex_co = None
p = self.points[-2]
while p and (not p.is_joint) and p != line_ix_p2:
ix = intersect_point_line(p.co, p2.co, l2_co)[0]
Campbell Barton
committed
length = (ix - p.co).length
if length > l2_max:
l2_max = length
p2_apex_co = p.co
p = p.prev
Campbell Barton
committed
Campbell Barton
committed
if p1_apex_co is None:
p1_apex_co = p1.next.co
if p2_apex_co is None:
p2_apex_co = p2.prev.co
Campbell Barton
committed
Campbell Barton
committed
l1_tan = (p1.no - p1.no.project(l1_no)).normalized()
l2_tan = -(p2.no - p2.no.project(l2_no)).normalized()
# values are good!
#~ visualize_line(p1.co, p1.co + l1_tan)
#~ visualize_line(p2.co, p2.co + l2_tan)
Campbell Barton
committed
Campbell Barton
committed
#~ visualize_line(p1.co, p1.co + l1_no)
#~ visualize_line(p2.co, p2.co + l2_no)
Campbell Barton
committed
Campbell Barton
committed
# calculate bias based on the position of the other point allong
# the tangent.
# first need to reflect the second normal for angle comparison
# first fist need the reflection normal
no_ref = p_vec.cross(p2.no).cross(p_vec).normalized()
Campbell Barton
committed
l2_no_ref = p2.no.reflect(no_ref).normalized()
del no_ref
Campbell Barton
committed
from math import pi
Campbell Barton
committed
# This could be tweaked but seems to work well
fac_fac = (p1.co - p2.co).length * (0.5 / 0.75) * p1.no.angle(l2_no_ref) / pi
Campbell Barton
committed
Campbell Barton
committed
fac_1 = intersect_point_line(p2_apex_co, p1.co, p1.co + l1_tan)[1] * fac_fac
fac_2 = intersect_point_line(p1_apex_co, p2.co, p2.co + l2_tan)[1] * fac_fac
Campbell Barton
committed
Campbell Barton
committed
h1_fac = ((p1.co - p1_apex_co).length / 0.75) - fac_1
h2_fac = ((p2.co - p2_apex_co).length / 0.75) - fac_2
Campbell Barton
committed
Campbell Barton
committed
h1 = p1.co + (p1.no * h1_fac)
h2 = p2.co - (p2.no * h2_fac)
Campbell Barton
committed
self.handle_left = h1
self.handle_right = h2
Campbell Barton
committed
'''
visualize_line(p1.co, p1_apex_co)
visualize_line(p1_apex_co, p2_apex_co)
visualize_line(p2.co, p2_apex_co)
visualize_line(p1.co, p2.co)
'''
Campbell Barton
committed
def bezier_error(self, error_max=-1.0, test_count=8):
Campbell Barton
committed
from mathutils.geometry import interpolate_bezier
test_points = interpolate_bezier(self.points[0].co,
Campbell Barton
committed
self.handle_left,
self.handle_right,
Campbell Barton
committed
)
from mathutils.geometry import intersect_point_line
error = 0.0
# this is a rough method measuring the error but should be good enough
# TODO. dont test against every single point.
for co in test_points:
Campbell Barton
committed
# initial values
co_best = self.points[0].co
length_best = (co - co_best).length
for p in self.points[1:]:
# dist to point
length = (co - p.co).length
if length < length_best:
length_best = length
co_best = p.co
p_ix, fac = intersect_point_line(co, p.co, p.prev.co)
Campbell Barton
committed
if fac >= 0.0 and fac <= 1.0:
length = (co - p_ix).length
if length < length_best:
length_best = length
co_best = p_ix
error += length_best / test_count
if error_max != -1.0 and error > error_max:
return True
Campbell Barton
committed
if error_max != -1.0:
return False
else:
return error
Campbell Barton
committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
class Curve(object):
__slots__ = ("splines",
)
def __init__(self, splines):
self.splines = splines
def link_splines(self):
s_prev = None
for s in self.splines:
s.prev = s_prev
s_perv = s
s_prev = None
for s in reversed(self.splines):
s.next = s_prev
s_perv = s
def calc_data(self):
for s in self.splines:
s.calc_all()
self.link_splines()
def split_func_map_point(self, func, is_joint=False):
""" func takes a point and returns true on split
return True if any splits are made.
"""
s_index = 0
s = self.splines[s_index]
while s:
assert(self.splines[s_index] == s)
for i, p in enumerate(s.points):
if i == 0 or i >= len(s.points) - 1:
continue
if func(p):
split_pair = s.split(i, is_joint=is_joint)
# keep list in sync
self.splines[s_index:s_index + 1] = split_pair
# advance on main while loop
s = split_pair[0]
assert(self.splines[s_index] == s)
break
s = s.next
s_index += 1
def split_func_spline(self, func, is_joint=False, recursive=False):
""" func takes a spline and returns the point index on split or -1
return True if any splits are made.
"""
s_index = 0
s = self.splines[s_index]
while s:
assert(self.splines[s_index] == s)
i = func(s)
if i != -1:
split_pair = s.split(i, is_joint=is_joint)
# keep list in sync
self.splines[s_index:s_index + 1] = split_pair
# advance on main while loop
s = split_pair[0]
assert(self.splines[s_index] == s)
if recursive:
continue
s = s.next
s_index += 1
def validate(self):
s_prev = None
iii = 0
for s in self.splines:
assert(s.prev == s_prev)
if s_prev:
assert(s_prev.next == s)
s_prev = s
iii += 1
def redistribute(self, segment_length, smooth=False):
for s in self.splines:
s.redistribute(segment_length, smooth)
def to_blend_data(self):
""" Points to blender data, debugging only
"""
scene = bpy.data.scenes[0] # weak!
for base in scene.object_bases:
base.select = False
cu = bpy.data.curves.new(name="Test", type='CURVE')
for s in self.splines:
spline = cu.splines.new(type='POLY')
spline.points.add(len(s.points) - 1)
for p, v in zip(s.points, spline.points):
Campbell Barton
committed
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
scene.objects.active = ob
base.select = True
# base.layers = [True] * 20
print(ob, "Done")
Campbell Barton
committed
def to_blend_curve(self, cu=None, cu_matrix=None):
""" return new bezier spline datablock or add to an existing
"""
if not cu:
cu = bpy.data.curves.new(name="Curve", type='CURVE')
spline = cu.splines.new(type='BEZIER')
spline.bezier_points.add(len(self.splines))
s_prev = None
for i, bp in enumerate(spline.bezier_points):
if i < len(self.splines):
s = self.splines[i]
else:
s = None
if s_prev and s:
pt = s.points[0]
hl = s_prev.handle_right
hr = s.handle_left
elif s:
pt = s.points[0]
hr = s.handle_left
Campbell Barton
committed
elif s_prev:
pt = s_prev.points[-1]
hl = s_prev.handle_right
Campbell Barton
committed
else:
assert(0)
bp.co.xyz = pt.co
bp.handle_left.xyz = hl
bp.handle_right.xyz = hr
Campbell Barton
committed
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
handle_type = 'FREE'
if pt.is_joint == False or (s_prev and s) == False:
# XXX, this should not happen, but since it can
# at least dont allow allignment to break the curve output
if (pt.co - hl).angle(hr - pt.co, 0.0) < 0.1:
handle_type = 'ALIGNED'
bp.handle_left_type = bp.handle_right_type = handle_type
s_prev = s
scene = bpy.data.scenes[0] # weak!
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
scene.objects.active = ob
base.select = True
return cu
points = list(points_orig)
# remove doubles
tot_length = treat_points(points)
# calculate segment spacing
segment_length = (tot_length / len(points)) / subdiv
curve = Curve([Spline([Point(p) for p in points])])
curve.calc_data()
if kink_tolerance != 0.0:
pass
curve.split_func_map_point(lambda p: p.angle_diff() > kink_tolerance,
is_joint=True,
)
# return
# curve.validate()
# higher quality but not really needed
'''
Campbell Barton
committed
curve.redistribute(segment_length / 4.0, smooth=True)
curve.redistribute(segment_length, smooth=False)
'''
curve.redistribute(segment_length, smooth=True)
Campbell Barton
committed
Campbell Barton
committed
# debug only!
# to test how good the bezier spline fitting is without corrections
'''
for s in curve.splines:
s.bezier_solve()
'''
# or recursively subdivide...
Campbell Barton
committed
curve.split_func_spline(lambda s:
len(s.points) // 2
if ((s.bezier_solve(),
s.bezier_error(bezier_tolerance))[1]
and (len(s.points)))
Campbell Barton
committed
else -1,
recursive=True,
)
'''
for s in curve.splines:
s.bezier_solve()
print(s.bezier_error())
'''
# VISUALIZE
# curve.to_blend_data()
curve.to_blend_curve()
if __name__ == "__main__":
bpy.ops.wm.open_mainfile(filepath="/root/curve_test2.blend")
Campbell Barton
committed
ob = bpy.data.objects["Curve"]
points = [p.co.xyz for s in ob.data.splines for p in s.points]
Campbell Barton
committed
print("points_to_bezier 1")
points_to_bezier(points)
print("points_to_bezier 2")
bpy.ops.wm.save_as_mainfile(filepath="/root/curve_test_edit.blend",
copy=True)
print("done!")