Newer
Older
#file.write(',\n')
#controlPointCounter += 1
#totalNumberOfHairs += len(pSys.particles)# len(particle.hair_keys)
# Each control point is written out, along with the radius of the
# hair at that point.
file.write('<%.6g,%.6g,%.6g>,%.7g' % (co[0], co[1], co[2], abs(hDiameter)))
# All coordinates except the last need a following comma.
if step != steps - 1:
file.write(',\n')
else:
if texturedHair:
# Write pigment and alpha (between Pov and Blender alpha 0 and 1 are reversed)
file.write('\npigment{ color rgbf < %.3g, %.3g, %.3g, %.3g> }\n' %(initColor[0], initColor[1], initColor[2], 1.0-initColor[3]))
# End the sphere_sweep declaration for this hair
file.write('}\n')
# All but the final sphere_sweep (each array element) needs a terminating comma.
if pindex != totalNumberOfHairs:
file.write(',\n')
else:
file.write('\n')
# End the array declaration.
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
if not texturedHair:
# Pick up the hair material diffuse color and create a default POV-Ray hair texture.
file.write('#ifndef (HairTexture)\n')
file.write(' #declare HairTexture = texture {\n')
file.write(' pigment {rgbt <%s,%s,%s,%s>}\n' % (pmaterial.diffuse_color[0], pmaterial.diffuse_color[1], pmaterial.diffuse_color[2], (pmaterial.strand.width_fade + 0.05)))
file.write(' }\n')
file.write('#end\n')
file.write('\n')
# Dynamically create a union of the hairstrands (or a subset of them).
# By default use every hairstrand, commented line is for hand tweaking test renders.
file.write('//Increasing HairStep divides the amount of hair for test renders.\n')
file.write('#ifndef(HairStep) #declare HairStep = 1; #end\n')
file.write('union{\n')
file.write(' #local I = 0;\n')
file.write(' #while (I < %i)\n' % totalNumberOfHairs)
file.write(' object {HairArray[I]')
if not texturedHair:
file.write(' texture{HairTexture}\n')
else:
file.write('\n')
# Translucency of the hair:
file.write(' hollow\n')
file.write(' double_illuminate\n')
file.write(' interior {\n')
file.write(' ior 1.45\n')
file.write(' media {\n')
file.write(' scattering { 1, 10*<0.73, 0.35, 0.15> /*extinction 0*/ }\n')
file.write(' absorption 10/<0.83, 0.75, 0.15>\n')
file.write(' samples 1\n')
file.write(' method 2\n')
file.write(' density {\n')
file.write(' color_map {\n')
file.write(' [0.0 rgb <0.83, 0.45, 0.35>]\n')
file.write(' [0.5 rgb <0.8, 0.8, 0.4>]\n')
file.write(' [1.0 rgb <1,1,1>]\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' #local I = I + HairStep;\n')
file.write(' #end\n')
writeMatrix(global_matrix * ob.matrix_world)
Bastien Montagne
committed
file.write('}')
print('Totals hairstrands written: %i' % totalNumberOfHairs)
print('Number of tufts (particle systems)', len(ob.particle_systems))
# Set back the displayed number of particles to preview count
pSys.set_resolution(scene, ob, 'PREVIEW')
if renderEmitter == False:
continue #don't render mesh, skip to next object.
#############################################
# Generating a name for object just like materials to be able to use it
# (baking for now or anything else).
# XXX I don't understand that if we are here, sel if a non-empty iterable,
# so this condition is always True, IMO -- mont29
if sel:
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.data.name
name_orig = DEF_OBJ_NAME
dataname_orig = DEF_OBJ_NAME
name = string_strip_hyphen(bpy.path.clean_name(name_orig))
dataname = string_strip_hyphen(bpy.path.clean_name(dataname_orig))
## for slot in ob.material_slots:
## if slot.material is not None and slot.link == 'OBJECT':
## obmaterial = slot.material
#############################################
if info_callback:
info_callback("Object %2.d of %2.d (%s)" % (ob_num, len(sel), ob.name))
#if ob.type != 'MESH':
# continue
# me = ob.data
matrix = global_matrix * ob.matrix_world
povdataname = store(scene, ob, name, dataname, matrix)
if povdataname is None:
print("This is an instance of " + name)
print("Writing Down First Occurence of " + name)
############################################Povray Primitives
# special exportCurves() function takes care of writing
# lathe, sphere_sweep, birail, and loft except with modifiers
# converted to mesh
if not ob.is_modified(scene, 'RENDER'):
if ob.type == 'CURVE' and (ob.pov.curveshape in
{'lathe', 'sphere_sweep', 'loft'}):
continue #Don't render proxy mesh, skip to next object
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
if ob.pov.object_as == 'ISOSURFACE':
tabWrite("#declare %s = isosurface{ \n"% povdataname)
tabWrite("function{ \n")
textName = ob.pov.iso_function_text
if textName:
node_tree = bpy.context.scene.node_tree
for node in node_tree.nodes:
if node.bl_idname == "IsoPropsNode" and node.label == ob.name:
for inp in node.inputs:
if inp:
tabWrite("#declare %s = %.6g;\n"%(inp.name,inp.default_value))
text = bpy.data.texts[textName]
for line in text.lines:
split = line.body.split()
if split[0] != "#declare":
tabWrite("%s\n"%line.body)
else:
tabWrite("abs(x) - 2 + y")
tabWrite("}\n")
tabWrite("threshold %.6g\n"%ob.pov.threshold)
tabWrite("max_gradient %.6g\n"%ob.pov.max_gradient)
tabWrite("accuracy %.6g\n"%ob.pov.accuracy)
tabWrite("contained_by { ")
if ob.pov.contained_by == "sphere":
tabWrite("sphere {0,%.6g}}\n"%ob.pov.container_scale)
else:
tabWrite("box {-%.6g,%.6g}}\n"%(ob.pov.container_scale,ob.pov.container_scale))
if ob.pov.all_intersections:
tabWrite("all_intersections\n")
else:
if ob.pov.max_trace > 1:
tabWrite("max_trace %.6g\n"%ob.pov.max_trace)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
tabWrite("scale %.6g\n"%(1/ob.pov.container_scale))
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
if ob.pov.object_as == 'SUPERELLIPSOID':
tabWrite("#declare %s = superellipsoid{ <%.4f,%.4f>\n"%(povdataname,ob.pov.se_n2,ob.pov.se_n1))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SUPERTORUS':
rMajor = ob.pov.st_major_radius
rMinor = ob.pov.st_minor_radius
ring = ob.pov.st_ring
cross = ob.pov.st_cross
accuracy=ob.pov.st_accuracy
gradient=ob.pov.st_max_gradient
############Inline Supertorus macro
file.write("#macro Supertorus(RMj, RMn, MajorControl, MinorControl, Accuracy, MaxGradient)\n")
file.write(" #local CP = 2/MinorControl;\n")
file.write(" #local RP = 2/MajorControl;\n")
file.write(" isosurface {\n")
file.write(" function { pow( pow(abs(pow(pow(abs(x),RP) + pow(abs(z),RP), 1/RP) - RMj),CP) + pow(abs(y),CP) ,1/CP) - RMn }\n")
file.write(" threshold 0\n")
file.write(" contained_by {box {<-RMj-RMn,-RMn,-RMj-RMn>, < RMj+RMn, RMn, RMj+RMn>}}\n")
file.write(" #if(MaxGradient >= 1)\n")
file.write(" max_gradient MaxGradient\n")
file.write(" #else\n")
file.write(" evaluate 1, 10, 0.1\n")
file.write(" #end\n")
file.write(" accuracy Accuracy\n")
file.write(" }\n")
file.write("#end\n")
############
tabWrite("#declare %s = object{ Supertorus( %.4g,%.4g,%.4g,%.4g,%.4g,%.4g)\n"%(povdataname,rMajor,rMinor,ring,cross,accuracy,gradient))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PLANE':
tabWrite("#declare %s = plane{ <0,0,1>,1\n"%povdataname)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
if ob.pov.object_as == 'BOX':
tabWrite("#declare %s = box { -1,1\n"%povdataname)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CONE':
br = ob.pov.cone_base_radius
cr = ob.pov.cone_cap_radius
bz = ob.pov.cone_base_z
cz = ob.pov.cone_cap_z
tabWrite("#declare %s = cone { <0,0,%.4f>,%.4f,<0,0,%.4f>,%.4f\n"%(povdataname,bz,br,cz,cr))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CYLINDER':
Maurice Raybaud
committed
r = ob.pov.cylinder_radius
x2 = ob.pov.cylinder_location_cap[0]
y2 = ob.pov.cylinder_location_cap[1]
z2 = ob.pov.cylinder_location_cap[2]
tabWrite("#declare %s = cylinder { <0,0,0>,<%6f,%6f,%6f>,%6f\n"%(
povdataname,
x2,
y2,
z2,
r))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
Maurice Raybaud
committed
#cylinders written at origin, translated below
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'HEIGHT_FIELD':
data = ""
filename = ob.pov.hf_filename
data += '"%s"'%filename
gamma = ' gamma %.4f'%ob.pov.hf_gamma
data += gamma
if ob.pov.hf_premultiplied:
data += ' premultiplied on'
if ob.pov.hf_smooth:
data += ' smooth'
if ob.pov.hf_water > 0:
data += ' water_level %.4f'%ob.pov.hf_water
#hierarchy = ob.pov.hf_hierarchy
tabWrite('#declare %s = height_field { %s\n'%(povdataname,data))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("translate <-0.5,0.5,0>\n")
tabWrite("scale <0,-1,0>\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
if ob.pov.object_as == 'SPHERE':
tabWrite("#declare %s = sphere { 0,%6f\n"%(povdataname,ob.pov.sphere_radius))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'TORUS':
tabWrite("#declare %s = torus { %.4f,%.4f\n"%(povdataname,ob.pov.torus_major_radius,ob.pov.torus_minor_radius))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PARAMETRIC':
tabWrite("#declare %s = parametric {\n"%povdataname)
tabWrite("function { %s }\n"%ob.pov.x_eq)
tabWrite("function { %s }\n"%ob.pov.y_eq)
tabWrite("function { %s }\n"%ob.pov.z_eq)
tabWrite("<%.4f,%.4f>, <%.4f,%.4f>\n"%(ob.pov.u_min,ob.pov.v_min,ob.pov.u_max,ob.pov.v_max))
if ob.pov.contained_by == "sphere":
tabWrite("contained_by { sphere{0, 2} }\n")
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
tabWrite("contained_by { box{-2, 2} }\n")
tabWrite("max_gradient %.6f\n"%ob.pov.max_gradient)
tabWrite("accuracy %.6f\n"%ob.pov.accuracy)
tabWrite("precompute 10 x,y,z\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'POLYCIRCLE':
#TODO write below macro Once:
#if write_polytocircle_macro_once == 0:
file.write("/****************************\n")
file.write("This macro was written by 'And'.\n")
file.write("Link:(http://news.povray.org/povray.binaries.scene-files/)\n")
file.write("****************************/\n")
file.write("//from math.inc:\n")
file.write("#macro VPerp_Adjust(V, Axis)\n")
file.write(" vnormalize(vcross(vcross(Axis, V), Axis))\n")
file.write("#end\n")
file.write("//Then for the actual macro\n")
file.write("#macro Shape_Slice_Plane_2P_1V(point1, point2, clip_direct)\n")
file.write("#local p1 = point1 + <0,0,0>;\n")
file.write("#local p2 = point2 + <0,0,0>;\n")
file.write("#local clip_v = vnormalize(clip_direct + <0,0,0>);\n")
file.write("#local direct_v1 = vnormalize(p2 - p1);\n")
file.write("#if(vdot(direct_v1, clip_v) = 1)\n")
file.write(' #error "Shape_Slice_Plane_2P_1V error: Can\'t decide plane"\n')
file.write("#end\n\n")
file.write("#local norm = -vnormalize(clip_v - direct_v1*vdot(direct_v1,clip_v));\n")
file.write("#local d = vdot(norm, p1);\n")
file.write("plane{\n")
file.write("norm, d\n")
file.write("}\n")
file.write("#end\n\n")
file.write("//polygon to circle\n")
file.write("#macro Shape_Polygon_To_Circle_Blending(_polygon_n, _side_face, _polygon_circumscribed_radius, _circle_radius, _height)\n")
file.write("#local n = int(_polygon_n);\n")
file.write("#if(n < 3)\n")
file.write(" #error ""\n")
file.write("#end\n\n")
file.write("#local front_v = VPerp_Adjust(_side_face, z);\n")
file.write("#if(vdot(front_v, x) >= 0)\n")
file.write(" #local face_ang = acos(vdot(-y, front_v));\n")
file.write("#else\n")
file.write(" #local face_ang = -acos(vdot(-y, front_v));\n")
file.write("#end\n")
file.write("#local polyg_ext_ang = 2*pi/n;\n")
file.write("#local polyg_outer_r = _polygon_circumscribed_radius;\n")
file.write("#local polyg_inner_r = polyg_outer_r*cos(polyg_ext_ang/2);\n")
file.write("#local cycle_r = _circle_radius;\n")
file.write("#local h = _height;\n")
file.write("#if(polyg_outer_r < 0 | cycle_r < 0 | h <= 0)\n")
file.write(' #error "error: each side length must be positive"\n')
file.write("#end\n\n")
file.write("#local multi = 1000;\n")
file.write("#local poly_obj =\n")
file.write("polynomial{\n")
file.write("4,\n")
file.write("xyz(0,2,2): multi*1,\n")
file.write("xyz(2,0,1): multi*2*h,\n")
file.write("xyz(1,0,2): multi*2*(polyg_inner_r-cycle_r),\n")
file.write("xyz(2,0,0): multi*(-h*h),\n")
file.write("xyz(0,0,2): multi*(-pow(cycle_r - polyg_inner_r, 2)),\n")
file.write("xyz(1,0,1): multi*2*h*(-2*polyg_inner_r + cycle_r),\n")
file.write("xyz(1,0,0): multi*2*h*h*polyg_inner_r,\n")
file.write("xyz(0,0,1): multi*2*h*polyg_inner_r*(polyg_inner_r - cycle_r),\n")
file.write("xyz(0,0,0): multi*(-pow(polyg_inner_r*h, 2))\n")
file.write("sturm\n")
file.write("}\n\n")
file.write("#local mockup1 =\n")
file.write("difference{\n")
file.write(" cylinder{\n")
file.write(" <0,0,0.0>,<0,0,h>, max(polyg_outer_r, cycle_r)\n")
file.write(" }\n\n")
file.write(" #for(i, 0, n-1)\n")
file.write(" object{\n")
file.write(" poly_obj\n")
file.write(" inverse\n")
file.write(" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n")
file.write(" }\n")
file.write(" object{\n")
file.write(" Shape_Slice_Plane_2P_1V(<polyg_inner_r,0,0>,<cycle_r,0,h>,x)\n")
file.write(" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n")
file.write(" }\n")
file.write(" #end\n")
file.write("}\n\n")
file.write("object{\n")
file.write("mockup1\n")
file.write("rotate <0, 0, degrees(face_ang)>\n")
file.write("}\n")
file.write("#end\n")
#Use the macro
ngon = ob.pov.polytocircle_ngon
ngonR = ob.pov.polytocircle_ngonR
circleR = ob.pov.polytocircle_circleR
tabWrite("#declare %s = object { Shape_Polygon_To_Circle_Blending(%s, z, %.4f, %.4f, 2) rotate x*180 translate z*1\n"%(povdataname,ngon,ngonR,circleR))
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
############################################else try to export mesh
else:
try:
me = ob.to_mesh(scene, True, 'RENDER')
#XXX Here? identify the specific exception for mesh object with no data
#XXX So that we can write something for the dataname !
# also happens when curves cant be made into meshes because of no-data
continue
importance = ob.pov.importance_value
if me:
me_materials = me.materials
me_faces = me.tessfaces[:]
if len(me_faces)==0:
file.write("\n")
tabWrite("//dummy sphere to represent empty mesh location\n")
tabWrite("#declare %s =sphere {<0, 0, 0>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n" % povdataname)
if not me or not me_faces:
continue
uv_textures = me.tessface_uv_textures
if len(uv_textures) > 0:
if me.uv_textures.active and uv_textures.active.data:
uv_layer = uv_textures.active.data
uv_layer = None
try:
#vcol_layer = me.vertex_colors.active.data
vcol_layer = me.tessface_vertex_colors.active.data
except AttributeError:
vcol_layer = None
faces_verts = [f.vertices[:] for f in me_faces]
faces_normals = [f.normal[:] for f in me_faces]
verts_normals = [v.normal[:] for v in me.vertices]
# quads incur an extra face
quadCount = sum(1 for f in faces_verts if len(f) == 4)
# Use named declaration to allow reference e.g. for baking. MR
file.write("\n")
tabWrite("#declare %s =\n" % povdataname)
tabWrite("mesh2 {\n")
tabWrite("vertex_vectors {\n")
tabWrite("%d" % len(me.vertices)) # vert count
tabStr = tab * tabLevel
for v in me.vertices:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
file.write(", ")
file.write("<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
#tabWrite("<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
file.write("\n")
tabWrite("}\n")
# Build unique Normal list
uniqueNormals = {}
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
# [-1] is a dummy index, use a list so we can modify in place
if f.use_smooth: # Use vertex normals
for v in fv:
key = verts_normals[v]
uniqueNormals[key] = [-1]
else: # Use face normal
key = faces_normals[fi]
uniqueNormals[key] = [-1]
tabWrite("normal_vectors {\n")
tabWrite("%d" % len(uniqueNormals)) # vert count
idx = 0
tabStr = tab * tabLevel
for no, index in uniqueNormals.items():
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f, %.6f>" % no) # vert count
file.write("<%.6f, %.6f, %.6f>" % no) # vert count
index[0] = idx
idx += 1
file.write("\n")
tabWrite("}\n")
# Vertex colors
vertCols = {} # Use for material colors also.
if uv_layer:
# Generate unique UV's
uniqueUVs = {}
#n = 0
for fi, uv in enumerate(uv_layer):
if len(faces_verts[fi]) == 4:
uvs = uv_layer[fi].uv[0], uv_layer[fi].uv[1], uv_layer[fi].uv[2], uv_layer[fi].uv[3]
uvs = uv_layer[fi].uv[0], uv_layer[fi].uv[1], uv_layer[fi].uv[2]
for uv in uvs:
uniqueUVs[uv[:]] = [-1]
tabWrite("uv_vectors {\n")
#print unique_uvs
tabWrite("%d" % len(uniqueUVs)) # vert count
idx = 0
tabStr = tab * tabLevel
for uv, index in uniqueUVs.items():
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f>" % uv)
file.write(", ")
file.write("<%.6f, %.6f>" % uv)
index[0] = idx
idx += 1
'''
# Just add 1 dummy vector, no real UV's
tabWrite('1') # vert count
file.write(',\n\t\t<0.0, 0.0>')
'''
file.write("\n")
tabWrite("}\n")
if me.vertex_colors:
#Write down vertex colors as a texture for each vertex
tabWrite("texture_list {\n")
tabWrite("%d\n" % (((len(me_faces)-quadCount) * 3 )+ quadCount * 4)) # works only with tris and quad mesh for now
VcolIdx=0
if comments:
file.write("\n //Vertex colors: one simple pigment texture per vertex\n")
for fi, f in enumerate(me_faces):
# annoying, index may be invalid
material_index = f.material_index
try:
material = me_materials[material_index]
except:
material = None
if material: #and material.use_vertex_color_paint: #Always use vertex color when there is some for now
col = vcol_layer[fi]
if len(faces_verts[fi]) == 4:
cols = col.color1, col.color2, col.color3, col.color4
cols = col.color1, col.color2, col.color3
for col in cols:
key = col[0], col[1], col[2], material_index # Material index!
VcolIdx+=1
vertCols[key] = [VcolIdx]
if linebreaksinlists:
tabWrite("texture {pigment{ color rgb <%6f,%6f,%6f> }}\n" % (col[0], col[1], col[2]))
else:
tabWrite("texture {pigment{ color rgb <%6f,%6f,%6f> }}" % (col[0], col[1], col[2]))
tabStr = tab * tabLevel
else:
if material:
# Multiply diffuse with SSS Color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in zip(material.subsurface_scattering.color[:], material.diffuse_color[:])]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], \
material_index
vertCols[key] = [-1]
else:
diffuse_color = material.diffuse_color[:]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], \
material_index
vertCols[key] = [-1]
tabWrite("\n}\n")
# Face indices
tabWrite("\nface_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
material_index = f.material_index
if len(fv) == 4:
indices = (0, 1, 2), (0, 2, 3)
else:
indices = ((0, 1, 2),)
if vcol_layer:
col = vcol_layer[fi]
if len(fv) == 4:
cols = col.color1, col.color2, col.color3, col.color4
cols = col.color1, col.color2, col.color3
if not me_materials or me_materials[material_index] is None: # No materials
for i1, i2, i3 in indices:
if linebreaksinlists:
file.write(",\n")
# vert count
file.write(tabStr + "<%d,%d,%d>" % (fv[i1], fv[i2], fv[i3]))
else:
file.write(", ")
file.write("<%d,%d,%d>" % (fv[i1], fv[i2], fv[i3])) # vert count
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
material = me_materials[material_index]
for i1, i2, i3 in indices:
if me.vertex_colors: #and material.use_vertex_color_paint:
# Color per vertex - vertex color
col1 = cols[i1]
col2 = cols[i2]
col3 = cols[i3]
ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
else:
# Color per material - flat material color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in zip(material.subsurface_scattering.color[:], material.diffuse_color[:])]
else:
diffuse_color = material.diffuse_color[:]
ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], \
diffuse_color[2], f.material_index][0]
# ci are zero based index so we'll subtract 1 from them
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>, %d,%d,%d" % \
(fv[i1], fv[i2], fv[i3], ci1-1, ci2-1, ci3-1)) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>, %d,%d,%d" % \
(fv[i1], fv[i2], fv[i3], ci1-1, ci2-1, ci3-1)) # vert count
file.write("\n")
tabWrite("}\n")
# normal_indices indices
tabWrite("normal_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):
if len(fv) == 4:
indices = (0, 1, 2), (0, 2, 3)
else:
indices = ((0, 1, 2),)
if me_faces[fi].use_smooth:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[i1]]][0],\
uniqueNormals[verts_normals[fv[i2]]][0],\
uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[i1]]][0],\
uniqueNormals[verts_normals[fv[i2]]][0],\
uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
Maurice Raybaud
committed
else:
idx = uniqueNormals[faces_normals[fi]][0]
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" % (idx, idx, idx)) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>" % (idx, idx, idx)) # vert count
file.write("\n")
tabWrite("}\n")
if uv_layer:
tabWrite("uv_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):
if len(fv) == 4:
indices = (0, 1, 2), (0, 2, 3)
else:
indices = ((0, 1, 2),)
Maurice Raybaud
committed
uv = uv_layer[fi]
if len(faces_verts[fi]) == 4:
uvs = uv.uv[0][:], uv.uv[1][:], uv.uv[2][:], uv.uv[3][:]
Maurice Raybaud
committed
else:
uvs = uv.uv[0][:], uv.uv[1][:], uv.uv[2][:]
for i1, i2, i3 in indices:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" % (
uniqueUVs[uvs[i1]][0],\
uniqueUVs[uvs[i2]][0],\
uniqueUVs[uvs[i3]][0]))
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
file.write(", ")
file.write("<%d,%d,%d>" % (
uniqueUVs[uvs[i1]][0],\
uniqueUVs[uvs[i2]][0],\
uniqueUVs[uvs[i3]][0]))
file.write("\n")
tabWrite("}\n")
if me.materials:
try:
material = me.materials[0] # dodgy
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#Importance for radiosity sampling added here:
tabWrite("radiosity { \n")
tabWrite("importance %3g \n" % importance)
tabWrite("}\n")
tabWrite("}\n") # End of mesh block
else:
# No vertex colors, so write material colors as vertex colors
for i, material in enumerate(me_materials):
if material:
# Multiply diffuse with SSS Color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in zip(material.subsurface_scattering.color[:], material.diffuse_color[:])]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
vertCols[key] = [-1]
else:
diffuse_color = material.diffuse_color[:]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
vertCols[key] = [-1]
idx = 0
LocalMaterialNames = []
for col, index in vertCols.items():
#if me_materials:
mater = me_materials[col[3]]
if me_materials is None: #XXX working?
material_finish = DEF_MAT_NAME # not working properly,
trans = 0.0
Maurice Raybaud
committed
shading.writeTextureInfluence(mater, materialNames,
LocalMaterialNames,
path_image, lampCount,
imageFormat, imgMap,
imgMapTransforms,
tabWrite, comments,
Maurice Raybaud
committed
safety, col, os, preview_dir, unpacked_images)
###################################################################
index[0] = idx
# Vert Colors
tabWrite("texture_list {\n")
# In case there's is no material slot, give at least one texture
#(an empty one so it uses pov default)
if len(vertCols)==0:
file.write(tabStr + "1")
file.write(tabStr + "%s" % (len(vertCols))) # vert count
# below "material" alias, added check ob.active_material
# to avoid variable referenced before assignment error
try:
material = ob.active_material
except IndexError:
#when no material slot exists,
material=None
if material and ob.active_material is not None:
if material.pov.replacement_text != "":
file.write("\n")
file.write(" texture{%s}\n" % material.pov.replacement_text)
Maurice Raybaud
committed
else:
# Loop through declared materials list
for cMN in LocalMaterialNames:
if material != "Default":
file.write("\n texture{MAT_%s}\n" % cMN)
#use string_strip_hyphen(materialNames[material]))
#or Something like that to clean up the above?
file.write(" texture{}\n")
tabWrite("}\n")
# Face indices
tabWrite("face_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
material_index = f.material_index
indices = (0, 1, 2), (0, 2, 3)
Maurice Raybaud
committed
else:
indices = ((0, 1, 2),)
if vcol_layer:
col = vcol_layer[fi]
if len(fv) == 4:
cols = col.color1, col.color2, col.color3, col.color4
cols = col.color1, col.color2, col.color3
if not me_materials or me_materials[material_index] is None: # No materials
for i1, i2, i3 in indices:
if linebreaksinlists:
file.write(",\n")
# vert count
file.write(tabStr + "<%d,%d,%d>" % (fv[i1], fv[i2], fv[i3]))
file.write(", ")
file.write("<%d,%d,%d>" % (fv[i1], fv[i2], fv[i3])) # vert count
Maurice Raybaud
committed
else:
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
material = me_materials[material_index]
for i1, i2, i3 in indices:
if me.vertex_colors: #and material.use_vertex_color_paint:
# Color per vertex - vertex color
col1 = cols[i1]
col2 = cols[i2]
col3 = cols[i3]
ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
else:
# Color per material - flat material color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in
zip(material.subsurface_scattering.color[:],
material.diffuse_color[:])]
else:
diffuse_color = material.diffuse_color[:]
ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], \
diffuse_color[2], f.material_index][0]
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>, %d,%d,%d" % \
(fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>, %d,%d,%d" % \
(fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
Maurice Raybaud
committed
file.write("\n")
tabWrite("}\n")
Maurice Raybaud
committed
# normal_indices indices
tabWrite("normal_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):
Maurice Raybaud
committed
if len(fv) == 4:
indices = (0, 1, 2), (0, 2, 3)
else:
indices = ((0, 1, 2),)
for i1, i2, i3 in indices:
if me_faces[fi].use_smooth:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[i1]]][0],\
uniqueNormals[verts_normals[fv[i2]]][0],\
uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[i1]]][0],\
uniqueNormals[verts_normals[fv[i2]]][0],\
uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
idx = uniqueNormals[faces_normals[fi]][0]
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" % (idx, idx, idx)) # vertcount
else:
file.write(", ")
file.write("<%d,%d,%d>" % (idx, idx, idx)) # vert count
file.write("\n")
tabWrite("}\n")
if uv_layer:
tabWrite("uv_indices {\n")
tabWrite("%d" % (len(me_faces) + quadCount)) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):