Skip to content
Snippets Groups Projects
add_mesh_solid.py 26.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • # ***** BEGIN GPL LICENSE BLOCK *****
    #
    #
    # This program is free software; you can redistribute it and/or
    # modify it under the terms of the GNU General Public License
    # as published by the Free Software Foundation; either version 2
    # of the License, or (at your option) any later version.
    #
    # This program is distributed in the hope that it will be useful,
    # but WITHOUT ANY WARRANTY; without even the implied warranty of
    
    # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    
    # GNU General Public License for more details.
    #
    # You should have received a copy of the GNU General Public License
    # along with this program; if not, write to the Free Software Foundation,
    
    # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    
    #
    # ***** END GPL LICENCE BLOCK *****
    
    
    bl_info = {
    
    Luca Bonavita's avatar
    Luca Bonavita committed
        "name": "Regular Solids",
    
        "author": "DreamPainter",
    
        "version": (2, 0),
    
    Brendon Murphy's avatar
    Brendon Murphy committed
        "blender": (2, 5, 9),
        "api": 39685,
    
        "location": "View3D > Add > Mesh > Solids",
    
        "description": "Add a regular solid",
    
        "warning": "",
    
    Luca Bonavita's avatar
    Luca Bonavita committed
        "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\
            "Scripts/Add_Mesh/Add_Solid",
        "tracker_url": "https://projects.blender.org/tracker/index.php?"\
    
            "func=detail&aid=22405",
    
        "category": "Add Mesh"}
    
    import bpy
    from bpy.props import FloatProperty,EnumProperty,BoolProperty
    from math import sqrt
    
    Campbell Barton's avatar
    Campbell Barton committed
    from mathutils import Vector
    
    from functools import reduce
    
    from bpy_extras.object_utils import object_data_add
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    # this function creates a chain of quads and, when necessary, a remaining tri
    # for each polygon created in this script. be aware though, that this function
    # assumes each polygon is convex.
    #  poly: list of faces, or a single face, like those
    #        needed for mesh.from_pydata.
    #  returns the tesselated faces.
    def createPolys(poly):
        # check for faces
        if len(poly) == 0:
            return []
        # one or more faces
        if type(poly[0]) == type(1):
            poly = [poly] # if only one, make it a list of one face
        faces = []
        for i in poly:
    
    Brendon Murphy's avatar
    Brendon Murphy committed
            # let all faces of 3 or 4 verts be
    
    Brendon Murphy's avatar
    Brendon Murphy committed
                faces.append(i)
            # split all polygons in half and bridge the two halves
            else:
    
                f = [[i[x],i[x+1],i[L-2-x],i[L-1-x]] for x in range(L//2-1)]
    
    Brendon Murphy's avatar
    Brendon Murphy committed
                faces.extend(f)
    
                if L&1 == 1: 
                    faces.append([i[L//2-1+x] for x in [0,1,2]])
    
    Brendon Murphy's avatar
    Brendon Murphy committed
        return faces
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    # function to make the reduce function work as a workaround to sum a list of vectors 
    
    def vSum(list):
    
    Brendon Murphy's avatar
    Brendon Murphy committed
        return reduce(lambda a,b: a+b, list)
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    # creates the 5 platonic solids as a base for the rest
    #  plato: should be one of {"4","6","8","12","20"}. decides what solid the
    #         outcome will be.
    
    #  returns a list of vertices and faces
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    def source(plato):
        verts = []
        faces = []
    
        # Tetrahedron
        if plato == "4":
            # Calculate the necessary constants
            s = sqrt(2)/3.0
            t = -1/3
            u = sqrt(6)/3
    
            # create the vertices and faces
            v = [(0,0,1),(2*s,0,t),(-s,u,t),(-s,-u,t)]
            faces = [[0,1,2],[0,2,3],[0,3,1],[1,3,2]]
    
        # Hexahedron (cube)
        elif plato == "6":
            # Calculate the necessary constants
            s = 1/sqrt(3)
        
            # create the vertices and faces
            v = [(-s,-s,-s),(s,-s,-s),(s,s,-s),(-s,s,-s),(-s,-s,s),(s,-s,s),(s,s,s),(-s,s,s)]
            faces = [[0,3,2,1],[0,1,5,4],[0,4,7,3],[6,5,1,2],[6,2,3,7],[6,7,4,5]]
    
        # Octahedron
        elif plato == "8":
            # create the vertices and faces
            v = [(1,0,0),(-1,0,0),(0,1,0),(0,-1,0),(0,0,1),(0,0,-1)]
            faces = [[4,0,2],[4,2,1],[4,1,3],[4,3,0],[5,2,0],[5,1,2],[5,3,1],[5,0,3]]
    
        # Dodecahedron
        elif plato == "12":
            # Calculate the necessary constants
            s = 1/sqrt(3)
            t = sqrt((3-sqrt(5))/6)
            u = sqrt((3+sqrt(5))/6)
    
            # create the vertices and faces
            v = [(s,s,s),(s,s,-s),(s,-s,s),(s,-s,-s),(-s,s,s),(-s,s,-s),(-s,-s,s),(-s,-s,-s),
                 (t,u,0),(-t,u,0),(t,-u,0),(-t,-u,0),(u,0,t),(u,0,-t),(-u,0,t),(-u,0,-t),(0,t,u),
                 (0,-t,u),(0,t,-u),(0,-t,-u)]
            faces = [[0,8,9,4,16],[0,12,13,1,8],[0,16,17,2,12],[8,1,18,5,9],[12,2,10,3,13],
                     [16,4,14,6,17],[9,5,15,14,4],[6,11,10,2,17],[3,19,18,1,13],[7,15,5,18,19],
                     [7,11,6,14,15],[7,19,3,10,11]]
    
        # Icosahedron
        elif plato == "20":
            # Calculate the necessary constants
            s = (1+sqrt(5))/2
            t = sqrt(1+s*s)
            s = s/t
            t = 1/t
    
            # create the vertices and faces
            v = [(s,t,0),(-s,t,0),(s,-t,0),(-s,-t,0),(t,0,s),(t,0,-s),(-t,0,s),(-t,0,-s),
                 (0,s,t),(0,-s,t),(0,s,-t),(0,-s,-t)]
            faces = [[0,8,4],[0,5,10],[2,4,9],[2,11,5],[1,6,8],[1,10,7],[3,9,6],[3,7,11],
                     [0,10,8],[1,8,10],[2,9,11],[3,11,9],[4,2,0],[5,0,2],[6,1,3],[7,3,1],
                     [8,6,4],[9,4,6],[10,5,7],[11,7,5]]
    
        # convert the tuples to Vectors
        verts = [Vector(i) for i in v]
    
        return verts,faces
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    # processes the raw data from source
    def createSolid(plato,vtrunc,etrunc,dual,snub):
        # the duals from each platonic solid
        dualSource = {"4":"4",
                      "6":"8",
                      "8":"6",
                      "12":"20",
                      "20":"12"}
    
        # constants saving space and readability
        vtrunc *= 0.5
        etrunc *= 0.5
    
        supposedSize = 0
        noSnub = (snub == "None") or (etrunc == 0.5) or (etrunc == 0)
        lSnub = (snub == "Left") and (0 < etrunc < 0.5)
        rSnub = (snub == "Right") and (0 < etrunc < 0.5)
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    
        # no truncation
        if vtrunc == 0:
            if dual: # dual is as simple as another, but mirrored platonic solid
    
                vInput, fInput = source(dualSource[plato])
                supposedSize = vSum(vInput[i] for i in fInput[0]).length/len(fInput[0])
                vInput = [-i*supposedSize for i in vInput]            # mirror it
                return vInput, fInput
    
    Brendon Murphy's avatar
    Brendon Murphy committed
            return source(plato)
    
        elif 0 < vtrunc <= 0.5: # simple truncation of the source
            vInput, fInput = source(plato)
        else:
            # truncation is now equal to simple truncation of the dual of the source
            vInput, fInput = source(dualSource[plato])
            supposedSize = vSum(vInput[i] for i in fInput[0]).length / len(fInput[0])
            vtrunc = 1-vtrunc # account for the source being a dual
            if vtrunc == 0: # no truncation needed
    
    Brendon Murphy's avatar
    Brendon Murphy committed
                if dual:
    
                    vInput, fInput = source(plato)
                    vInput = [i*supposedSize for i in vInput]
                    return vInput, fInput
                vInput = [-i*supposedSize for i in vInput]
                return vInput, fInput
        
        # generate connection database
        vDict = [{} for i in vInput]
        # for every face, store what vertex comes after and before the current vertex    
    
    Brendon Murphy's avatar
    Brendon Murphy committed
        for x in range(len(fInput)):
            i = fInput[x]
    
            for j in range(len(i)):
                vDict[i[j-1]][i[j]] = [i[j-2],x]
                if len(vDict[i[j-1]]) == 1: vDict[i[j-1]][-1] = i[j] 
        
        # the actual connection database: exists out of:
        # [vtrunc pos, etrunc pos, connected vert IDs, connected face IDs]
        vData = [[[],[],[],[]] for i in vInput]
        fvOutput = [] # faces created from truncated vertices
        feOutput = [] # faces created from truncated edges
        vOutput = [] # newly created vertices
        for x in range(len(vInput)):
            i = vDict[x] # lookup the current vertex
            current = i[-1]
            while True: # follow the chain to get a ccw order of connected verts and faces
                vData[x][2].append(i[current][0])
                vData[x][3].append(i[current][1])
                # create truncated vertices
                vData[x][0].append((1-vtrunc)*vInput[x] + vtrunc*vInput[vData[x][2][-1]])
                current = i[current][0]
                if current == i[-1]: break # if we're back at the first: stop the loop
            fvOutput.append([]) # new face from truncated vert
            fOffset = x*(len(i)-1) # where to start off counting faceVerts
            # only create one vert where one is needed (v1 todo: done) 
            if etrunc == 0.5: 
                for j in range(len(i)-1):
                    vOutput.append((vData[x][0][j]+vData[x][0][j-1])*etrunc) # create vert
                    fvOutput[x].append(fOffset+j) # add to face
                fvOutput[x] = fvOutput[x][1:]+[fvOutput[x][0]] # rotate face for ease later on
                # create faces from truncated edges.
                for j in range(len(i)-1):
                    if x > vData[x][2][j]: #only create when other vertex has been added
                        index = vData[vData[x][2][j]][2].index(x)
                        feOutput.append([fvOutput[x][j],fvOutput[x][j-1],
                                         fvOutput[vData[x][2][j]][index],
                                         fvOutput[vData[x][2][j]][index-1]])
            # edge truncation between none and full
            elif etrunc > 0:
                for j in range(len(i)-1):
                    # create snubs from selecting verts from rectified meshes
                    if rSnub:
                        vOutput.append(etrunc*vData[x][0][j]+(1-etrunc)*vData[x][0][j-1])
                        fvOutput[x].append(fOffset+j)
                    elif lSnub:
                        vOutput.append((1-etrunc)*vData[x][0][j]+etrunc*vData[x][0][j-1])
                        fvOutput[x].append(fOffset+j)
                    else: #noSnub, select both verts from rectified mesh
                        vOutput.append(etrunc*vData[x][0][j]+(1-etrunc)*vData[x][0][j-1])
                        vOutput.append((1-etrunc)*vData[x][0][j]+etrunc*vData[x][0][j-1])
                        fvOutput[x].append(2*fOffset+2*j)
                        fvOutput[x].append(2*fOffset+2*j+1)
                # rotate face for ease later on
                if noSnub: fvOutput[x] = fvOutput[x][2:]+fvOutput[x][:2]
                else: fvOutput[x] = fvOutput[x][1:]+[fvOutput[x][0]]
                # create single face for each edge
                if noSnub:
                    for j in range(len(i)-1):
                        if x > vData[x][2][j]:
                            index = vData[vData[x][2][j]][2].index(x)
                            feOutput.append([fvOutput[x][j*2],fvOutput[x][2*j-1],
                                             fvOutput[vData[x][2][j]][2*index],
                                             fvOutput[vData[x][2][j]][2*index-1]])
                # create 2 tri's for each edge for the snubs
                elif rSnub:
                    for j in range(len(i)-1):
                        if x > vData[x][2][j]:
                            index = vData[vData[x][2][j]][2].index(x)
                            feOutput.append([fvOutput[x][j],fvOutput[x][j-1],
                                             fvOutput[vData[x][2][j]][index]])
                            feOutput.append([fvOutput[x][j],fvOutput[vData[x][2][j]][index],
                                             fvOutput[vData[x][2][j]][index-1]])
                elif lSnub:
                    for j in range(len(i)-1):
                        if x > vData[x][2][j]:
                            index = vData[vData[x][2][j]][2].index(x)
                            feOutput.append([fvOutput[x][j],fvOutput[x][j-1],
                                             fvOutput[vData[x][2][j]][index-1]])
                            feOutput.append([fvOutput[x][j-1],fvOutput[vData[x][2][j]][index],
                                             fvOutput[vData[x][2][j]][index-1]])
            # special rules fro birectified mesh (v1 todo: done)
            elif vtrunc == 0.5:
                for j in range(len(i)-1):
                    if x < vData[x][2][j]: # use current vert, since other one has not passed yet
                        vOutput.append(vData[x][0][j])
                        fvOutput[x].append(len(vOutput)-1)
    
    Brendon Murphy's avatar
    Brendon Murphy committed
                    else:
    
                        # search for other edge to avoid duplicity
                        connectee = vData[x][2][j]
                        fvOutput[x].append(fvOutput[connectee][vData[connectee][2].index(x)])
            else: # vert truncation only
                vOutput.extend(vData[x][0]) # use generated verts from way above
                for j in range(len(i)-1):   # create face from them
                    fvOutput[x].append(fOffset+j)
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    
        # calculate supposed vertex length to ensure continuity
    
        if supposedSize and not dual:                    # this to make the vtrunc > 1 work
            supposedSize *= len(fvOutput[0])/vSum(vOutput[i] for i in fvOutput[0]).length
            vOutput = [-i*supposedSize for i in vOutput]
        
        # create new faces by replacing old vert IDs by newly generated verts
        ffOutput = [[] for i in fInput]
    
    Brendon Murphy's avatar
    Brendon Murphy committed
        for x in range(len(fInput)):
    
            # only one generated vert per vertex, so choose accordingly
            if etrunc == 0.5 or (etrunc == 0 and vtrunc == 0.5) or lSnub or rSnub:
                ffOutput[x] = [fvOutput[i][vData[i][3].index(x)-1] for i in fInput[x]]
            # two generated verts per vertex
            elif etrunc > 0:
                for i in fInput[x]:
                    ffOutput[x].append(fvOutput[i][2*vData[i][3].index(x)-1])
                    ffOutput[x].append(fvOutput[i][2*vData[i][3].index(x)-2])
            else: # cutting off corners also makes 2 verts
                for i in fInput[x]:
                    ffOutput[x].append(fvOutput[i][vData[i][3].index(x)])
                    ffOutput[x].append(fvOutput[i][vData[i][3].index(x)-1])
    
        if not dual:
            return vOutput,fvOutput + feOutput + ffOutput
        else: 
            # do the same procedure as above, only now on the generated mesh
            # generate connection database
            vDict = [{} for i in vOutput]
            dvOutput = [0 for i in fvOutput + feOutput + ffOutput]
            dfOutput = []
    
            for x in range(len(dvOutput)): # for every face
                i = (fvOutput + feOutput + ffOutput)[x] # choose face to work with
                # find vertex from face
                normal = (vOutput[i[0]]-vOutput[i[1]]).cross(vOutput[i[2]]-vOutput[i[1]]).normalized()
                dvOutput[x] = normal/(normal.dot(vOutput[i[0]]))
                for j in range(len(i)): # create vert chain
                    vDict[i[j-1]][i[j]] = [i[j-2],x]
                    if len(vDict[i[j-1]]) == 1: vDict[i[j-1]][-1] = i[j]
            
            # calculate supposed size for continuity
            supposedSize = vSum([vInput[i] for i in fInput[0]]).length/len(fInput[0])
            supposedSize /= dvOutput[-1].length
            dvOutput = [i*supposedSize for i in dvOutput]
    
            # use chains to create faces
            for x in range(len(vOutput)):
                i = vDict[x]
                current = i[-1]
                face = []
                while True:
                    face.append(i[current][1])
                    current = i[current][0]
                    if current == i[-1]: break
                dfOutput.append(face)
            
            return dvOutput,dfOutput
    
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    class Solids(bpy.types.Operator):
        """Add one of the (regular) solids (mesh)"""
        bl_idname = "mesh.primitive_solid_add"
        bl_label = "(Regular) solids"
    
        bl_description = "Add one of the Platonic, Archimedean or Catalan solids"
    
    Brendon Murphy's avatar
    Brendon Murphy committed
        bl_options = {'REGISTER', 'UNDO'}
    
        source = EnumProperty(items = (("4","Tetrahedron",""),
                                       ("6","Hexahedron",""),
                                       ("8","Octahedron",""),
                                       ("12","Dodecahedron",""),
                                       ("20","Icosahedron","")),
                              name = "Source",
                              description = "Starting point of your solid")
        size = FloatProperty(name = "Size",
                             description = "Radius of the sphere through the vertices",
                             min = 0.01,
                             soft_min = 0.01,
                             max = 100,
                             soft_max = 100,
                             default = 1.0)
        vTrunc = FloatProperty(name = "Vertex Truncation",
                               description = "Ammount of vertex truncation",
    
    Brendon Murphy's avatar
    Brendon Murphy committed
                               soft_min = 0.0,
                               max = 2.0,
                               soft_max = 2.0,
                               default = 0.0,
                               precision = 3,
                               step = 0.5)
        eTrunc = FloatProperty(name = "Edge Truncation",
                               description = "Ammount of edge truncation",
                               min = 0.0,
                               soft_min = 0.0,
                               max = 1.0,
                               soft_max = 1.0,
                               default = 0.0,
                               precision = 3,
                               step = 0.2)
    
        snub = EnumProperty(items = (("None","No Snub",""),
                                     ("Left","Left Snub",""),
                                     ("Right","Right Snub","")),
    
    Brendon Murphy's avatar
    Brendon Murphy committed
                            name = "Snub",
                            description = "Create the snub version")
        dual = BoolProperty(name="Dual",
                            description="Create the dual of the current solid",
                            default=False)
        keepSize = BoolProperty(name="Keep Size",
                            description="Keep the whole solid at a constant size",
                            default=False)
        preset = EnumProperty(items = (("0","Custom",""),
                                       ("t4","Truncated Tetrahedron",""),
                                       ("r4","Cuboctahedron",""),
                                       ("t6","Truncated Cube",""),
                                       ("t8","Truncated Octahedron",""),
                                       ("b6","Rhombicuboctahedron",""),
                                       ("c6","Truncated Cuboctahedron",""),
                                       ("s6","Snub Cube",""),
                                       ("r12","Icosidodecahedron",""),
                                       ("t12","Truncated Dodecahedron",""),
                                       ("t20","Truncated Icosahedron",""),
                                       ("b12","Rhombicosidodecahedron",""),
                                       ("c12","Truncated Icosidodecahedron",""),
                                       ("s12","Snub Dodecahedron",""),
                                       ("dt4","Triakis Tetrahedron",""),
                                       ("dr4","Rhombic Dodecahedron",""),
                                       ("dt6","Triakis Octahedron",""),
    
                                       ("dt8","Tetrakis Hexahedron",""),
    
    Brendon Murphy's avatar
    Brendon Murphy committed
                                       ("db6","Deltoidal Icositetrahedron",""),
                                       ("dc6","Disdyakis Dodecahedron",""),
                                       ("ds6","Pentagonal Icositetrahedron",""),
                                       ("dr12","Rhombic Triacontahedron",""),
                                       ("dt12","Triakis Icosahedron",""),
                                       ("dt20","Pentakis Dodecahedron",""),
                                       ("db12","Deltoidal Hexecontahedron",""),
                                       ("dc12","Disdyakis Triacontahedron",""),
    
                                       ("ds12","Pentagonal Hexecontahedron","")),
    
    Brendon Murphy's avatar
    Brendon Murphy committed
                                name = "Presets",
                                description = "Parameters for some hard names")
        
        # actual preset values
    
        p = {"t4":["4",2/3,0,0,"None"],
             "r4":["4",1,1,0,"None"],
             "t6":["6",2/3,0,0,"None"],
             "t8":["8",2/3,0,0,"None"],
             "b6":["6",1.0938,1,0,"None"],
             "c6":["6",1.0572,0.585786,0,"None"],
             "s6":["6",1.0875,0.704,0,"Left"],
             "r12":["12",1,0,0,"None"],
             "t12":["12",2/3,0,0,"None"],
             "t20":["20",2/3,0,0,"None"],
             "b12":["12",1.1338,1,0,"None"],
             "c12":["20",0.921,0.553,0,"None"],
             "s12":["12",1.1235,0.68,0,"Left"],
             "dt4":["4",2/3,0,1,"None"],
             "dr4":["4",1,1,1,"None"],
             "dt6":["6",2/3,0,1,"None"],
             "dt8":["8",2/3,0,1,"None"],
             "db6":["6",1.0938,1,1,"None"],
             "dc6":["6",1.0572,0.585786,1,"None"],
             "ds6":["6",1.0875,0.704,1,"Left"],
             "dr12":["12",1,0,1,"None"],
             "dt12":["12",2/3,0,1,"None"],
             "dt20":["20",2/3,0,1,"None"],
             "db12":["12",1.1338,1,1,"None"],
             "dc12":["20",0.921,0.553,1,"None"],
             "ds12":["12",1.1235,0.68,1,"Left"]}
        
        #previous preset, for User-friendly reasons
        previousSetting = ""
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    
        def execute(self,context):
    
            # turn off undo for better performance (3-5x faster), also makes sure
    
    Brendon Murphy's avatar
    Brendon Murphy committed
            #  that mesh ops are undoable and entire script acts as one operator
    
    Campbell Barton's avatar
    Campbell Barton committed
            bpy.context.user_preferences.edit.use_global_undo = False
    
            # piece of code to make presets remain until parameters are changed
    
                #if preset, set preset
                if self.previousSetting != self.preset:
                    using = self.p[self.preset]
                    self.source = using[0]
                    self.vTrunc = using[1]
                    self.eTrunc = using[2]
                    self.dual = using[3]
                    self.snub = using[4]
                else: 
                    using = self.p[self.preset]
                    result0 = self.source == using[0]
                    result1 = abs(self.vTrunc - using[1]) < 0.004
                    result2 = abs(self.eTrunc - using[2]) < 0.0015
                    result4 = using[4] == self.snub or ((using[4] == "Left") and 
                                                    self.snub in ["Left","Right"])
                    if (result0 and result1 and result2 and result4): 
                        if self.p[self.previousSetting][3] != self.dual:
                            if self.preset[0] == "d": 
                                self.preset = self.preset[1:]
                            else:
                                self.preset = "d" + self.preset
                    else:   
                        self.preset = "0"
    
            self.previousSetting = self.preset
            
    
    Brendon Murphy's avatar
    Brendon Murphy committed
            # generate mesh    
    
            verts,faces  = createSolid(self.source,
                                       self.vTrunc,
                                       self.eTrunc,
                                       self.dual,
                                       self.snub)
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    
            # turn n-gons in quads and tri's
            faces = createPolys(faces)
            
            # resize to normal size, or if keepSize, make sure all verts are of length 'size'
    
    Campbell Barton's avatar
    Campbell Barton committed
                rad = self.size/verts[-1 if self.dual else 0].length
    
    Brendon Murphy's avatar
    Brendon Murphy committed
            verts = [i*rad for i in verts]
    
            # generate object
    
            # Create new mesh
            mesh = bpy.data.meshes.new("Solid")
    
            # Make a mesh from a list of verts/edges/faces.
            mesh.from_pydata(verts, [], faces)
    
            # Update mesh geometry after adding stuff.
            mesh.update()
            
            object_data_add(context, mesh, operator=None)
            # object generation done
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    
            # turn undo back on
    
    Campbell Barton's avatar
    Campbell Barton committed
            bpy.context.user_preferences.edit.use_global_undo = True 
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    
            return {'FINISHED'}
    
    class Solids_add_menu(bpy.types.Menu):
        """Define the menu with presets"""
        bl_idname = "Solids_add_menu"
        bl_label = "Solids"
    
        def draw(self,context):
            layout = self.layout
            layout.operator_context = 'INVOKE_REGION_WIN'
            layout.operator(Solids.bl_idname, text = "Solid")
            layout.menu(PlatonicMenu.bl_idname, text = "Platonic")
            layout.menu(ArchiMenu.bl_idname, text = "Archimeadean")
            layout.menu(CatalanMenu.bl_idname, text = "Catalan")
    
    class PlatonicMenu(bpy.types.Menu):
        """Define Platonic menu"""
        bl_idname = "Platonic_calls"
        bl_label = "Platonic"
    
        def draw(self,context):
            layout = self.layout
            layout.operator_context = 'INVOKE_REGION_WIN'
            layout.operator(Solids.bl_idname, text = "Tetrahedron").source = "4"
            layout.operator(Solids.bl_idname, text = "Hexahedron").source = "6"
            layout.operator(Solids.bl_idname, text = "Octahedron").source = "8"
            layout.operator(Solids.bl_idname, text = "Dodecahedron").source = "12"
            layout.operator(Solids.bl_idname, text = "Icosahedron").source = "20"
    
    class ArchiMenu(bpy.types.Menu):
        """Defines Achimedean preset menu"""
        bl_idname = "Achimedean_calls"
        bl_label = "Archimedean"
    
        def draw(self,context):
            layout = self.layout
            layout.operator_context = 'INVOKE_REGION_WIN'
            layout.operator(Solids.bl_idname, text = "Truncated Tetrahedron").preset = "t4"
            layout.operator(Solids.bl_idname, text = "Cuboctahedron").preset = "r4"
            layout.operator(Solids.bl_idname, text = "Truncated Cube").preset = "t6"
            layout.operator(Solids.bl_idname, text = "Truncated Octahedron").preset = "t8"
            layout.operator(Solids.bl_idname, text = "Rhombicuboctahedron").preset = "b6"
            layout.operator(Solids.bl_idname, text = "Truncated Cuboctahedron").preset = "c6"
            layout.operator(Solids.bl_idname, text = "Snub Cube").preset = "s6"
            layout.operator(Solids.bl_idname, text = "Icosidodecahedron").preset = "r12"
            layout.operator(Solids.bl_idname, text = "Truncated Dodecahedron").preset = "t12"
            layout.operator(Solids.bl_idname, text = "Truncated Icosahedron").preset = "t20"
            layout.operator(Solids.bl_idname, text = "Rhombicosidodecahedron").preset = "b12"
            layout.operator(Solids.bl_idname, text = "Truncated Icosidodecahedron").preset = "c12"
            layout.operator(Solids.bl_idname, text = "Snub Dodecahedron").preset = "s12"
    
    class CatalanMenu(bpy.types.Menu):
        """Defines Catalan preset menu"""
        bl_idname = "Catalan_calls"
        bl_label = "Catalan"
        
        def draw(self, context):
            layout = self.layout
            layout.operator_context = 'INVOKE_REGION_WIN'
            layout.operator(Solids.bl_idname, text = "Triakis Tetrahedron").preset = "dt4"
            layout.operator(Solids.bl_idname, text = "Rhombic Dodecahedron").preset = "dr4"
            layout.operator(Solids.bl_idname, text = "Triakis Octahedron").preset = "dt6"
            layout.operator(Solids.bl_idname, text = "Triakis Hexahedron").preset = "dt8"
            layout.operator(Solids.bl_idname, text = "Deltoidal Icositetrahedron").preset = "db6"
            layout.operator(Solids.bl_idname, text = "Disdyakis Dodecahedron").preset = "dc6"
            layout.operator(Solids.bl_idname, text = "Pentagonal Icositetrahedron").preset = "ds6"
            layout.operator(Solids.bl_idname, text = "Rhombic Triacontahedron").preset = "dr12"
            layout.operator(Solids.bl_idname, text = "Triakis Icosahedron").preset = "dt12"
            layout.operator(Solids.bl_idname, text = "Pentakis Dodecahedron").preset = "dt20"
    
            layout.operator(Solids.bl_idname, text = "Deltoidal Hexecontahedron").preset = "db12"
            layout.operator(Solids.bl_idname, text = "Disdyakis Triacontahedron").preset = "dc12"
    
    Brendon Murphy's avatar
    Brendon Murphy committed
            layout.operator(Solids.bl_idname, text = "Pentagonal Hexecontahedron").preset = "ds12"
    
    def menu_func(self, context):
        self.layout.menu(Solids_add_menu.bl_idname, icon="PLUGIN")
    
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    
    def register():
    
        bpy.types.INFO_MT_mesh_add.append(menu_func)
    
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    
    def unregister():
    
        bpy.types.INFO_MT_mesh_add.remove(menu_func)
    
    
    
    Brendon Murphy's avatar
    Brendon Murphy committed
    if __name__ == "__main__":
    
    Guillermo S. Romero's avatar
    Guillermo S. Romero committed
        register()