Skip to content
Snippets Groups Projects
mesh_discombobulator.py 30.4 KiB
Newer Older
# SPDX-License-Identifier: GPL-2.0-or-later

# Original Authors: Evan J. Rosky (syrux), Chichiri, Jace Priester

import bpy
import random
import math
from bpy.types import (
                Operator,
                Menu,
                )
from mathutils import (
                Vector,
                Quaternion,
                )
from bpy.props import (
                BoolProperty,
                IntProperty,
                FloatProperty,
                StringProperty,
                )

# ################### Globals #################### #

doprots = True

# Datas in which we will build the new discombobulated mesh
nPolygons = []
nVerts = []
Verts = []
Polygons = []
dVerts = []
dPolygons = []
i_prots = []        # index of the top polygons on which we"ll generate the doodads
i_dood_type = []    # type of doodad (given by index of the doodad obj)

# ############### Utility Functions ############### #

def randnum(a, b):
    return random.random() * (b - a) + a


def randVertex(a, b, c, d, Verts):
    """Return a vector of a random vertex on a quad-polygon"""
    i = random.randint(1, 2)
    A, B, C, D = 0, 0, 0, 0
        A, B, C, D = a, b, c, d
    else:
        A, B, C, D = a, d, c, b

    i = randnum(0.1, 0.9)

    vecAB = Verts[B] - Verts[A]
    E = Verts[A] + vecAB * i
    vecDC = Verts[C] - Verts[D]
    F = Verts[D] + vecDC * i

    i = randnum(0.1, 0.9)
    vecEF = F - E
    O = E + vecEF * i

# ################## Protusions #################### #

def fill_older_datas(verts, polygon):
    """ Specifically coded to be called by the function addProtusionToPolygon,
        its sets up a tuple which contains the vertices from the base and the top of the protusions.
    """
    temp_vertices = []
    temp_vertices.append(verts[polygon[0]].copy())
    temp_vertices.append(verts[polygon[1]].copy())
    temp_vertices.append(verts[polygon[2]].copy())
    temp_vertices.append(verts[polygon[3]].copy())
    temp_vertices.append(verts[polygon[0]].copy())
    temp_vertices.append(verts[polygon[1]].copy())
    temp_vertices.append(verts[polygon[2]].copy())
    temp_vertices.append(verts[polygon[3]].copy())
    return temp_vertices

def extrude_top(temp_vertices, normal, height):
    """ This function extrude the polygon composed of the four first members of the tuple
        temp_vertices along the normal multiplied by the height of the extrusion.
    """
    j = 0
    while j < 3:
        temp_vertices[0][j] += normal[j] * height
        temp_vertices[1][j] += normal[j] * height
        temp_vertices[2][j] += normal[j] * height
        temp_vertices[3][j] += normal[j] * height
        j += 1


def scale_top(temp_vertices, center, normal, height, scale_ratio):
    """ This function scale the polygon composed of the four first members of the tuple temp_vertices. """
    vec1 = [0, 0, 0]
    vec2 = [0, 0, 0]
    vec3 = [0, 0, 0]
    vec4 = [0, 0, 0]

    j = 0
    while j < 3:
        center[j] += normal[j] * height
        vec1[j] = temp_vertices[0][j] - center[j]
        vec2[j] = temp_vertices[1][j] - center[j]
        vec3[j] = temp_vertices[2][j] - center[j]
        vec4[j] = temp_vertices[3][j] - center[j]
        temp_vertices[0][j] = center[j] + vec1[j] * (1 - scale_ratio)
        temp_vertices[1][j] = center[j] + vec2[j] * (1 - scale_ratio)
        temp_vertices[2][j] = center[j] + vec3[j] * (1 - scale_ratio)
        temp_vertices[3][j] = center[j] + vec4[j] * (1 - scale_ratio)
        j += 1


def add_prot_polygons(temp_vertices):
    """ Specifically coded to be called by addProtusionToPolygon, this function
        put the data from the generated protusion at the end the tuples Verts and Polygons,
        which will later used to generate the final mesh.
    """
    global Verts
    global Polygons
    global i_prots

    findex = len(Verts)
    Verts += temp_vertices
    polygontop = [findex + 0, findex + 1, findex + 2, findex + 3]
    polygon1 = [findex + 0, findex + 1, findex + 5, findex + 4]
    polygon2 = [findex + 1, findex + 2, findex + 6, findex + 5]
    polygon3 = [findex + 2, findex + 3, findex + 7, findex + 6]
    polygon4 = [findex + 3, findex + 0, findex + 4, findex + 7]

    Polygons.append(polygontop)
    i_prots.append(len(Polygons) - 1)
    Polygons.append(polygon1)
    Polygons.append(polygon2)
    Polygons.append(polygon3)
    Polygons.append(polygon4)

def addProtusionToPolygon(obpolygon, verts, minHeight, maxHeight, minTaper, maxTaper):
    """Create a protusion from the polygon "obpolygon" of the original object and use
       several values sent by the user. It calls in this order the following functions:
       - fill_older_data;
       - extrude_top;
       - scale_top;
       - add_prot_polygons;
   """
    # some useful variables
    polygon = obpolygon.vertices

    tVerts = list(fill_older_datas(verts, polygon))     # list of temp vertices
    height = randnum(minHeight, maxHeight)              # height of generated protusion
    scale_ratio = randnum(minTaper, maxTaper)

    # extrude the top polygon
    extrude_top(tVerts, obpolygon.normal, height)
    # Now, we scale, the top polygon along its normal
    scale_top(tVerts, GetPolyCentroid(obpolygon, verts), obpolygon.normal, height, scale_ratio)
    # Finally, we add the protusions to the list of polygons
    add_prot_polygons(tVerts)


# ################# Divide a polygon ############### #

def divide_one(list_polygons, list_vertices, verts, polygon, findex):
    """ called by divide_polygon, to generate a polygon from one polygon, maybe I could simplify this process """
    temp_vertices = []
    temp_vertices.append(verts[polygon[0]].copy())
    temp_vertices.append(verts[polygon[1]].copy())
    temp_vertices.append(verts[polygon[2]].copy())
    temp_vertices.append(verts[polygon[3]].copy())

    list_vertices += temp_vertices

    list_polygons.append([findex + 0, findex + 1, findex + 2, findex + 3])


def divide_two(list_polygons, list_vertices, verts, polygon, findex):
    """ called by divide_polygon, to generate two polygons from one polygon and
        add them to the list of polygons and vertices which form the discombobulated mesh
    """
    temp_vertices = []
    temp_vertices.append(verts[polygon[0]].copy())
    temp_vertices.append(verts[polygon[1]].copy())
    temp_vertices.append(verts[polygon[2]].copy())
    temp_vertices.append(verts[polygon[3]].copy())
    temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2)
    temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2)
    list_vertices += temp_vertices

    list_polygons.append([findex + 0, findex + 4, findex + 5, findex + 3])
    list_polygons.append([findex + 1, findex + 2, findex + 5, findex + 4])


def divide_three(list_polygons, list_vertices, verts, polygon, findex, center):
    """ called by divide_polygon, to generate three polygons from one polygon and
        add them to the list of polygons and vertices which form the discombobulated mesh
    """
    temp_vertices = []
    temp_vertices.append(verts[polygon[0]].copy())
    temp_vertices.append(verts[polygon[1]].copy())
    temp_vertices.append(verts[polygon[2]].copy())
    temp_vertices.append(verts[polygon[3]].copy())
    temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2)
    temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2)
    temp_vertices.append((verts[polygon[1]] + verts[polygon[2]]) / 2)
    temp_vertices.append(center.copy())

    list_vertices += temp_vertices

    list_polygons.append([findex + 0, findex + 4, findex + 5, findex + 3])
    list_polygons.append([findex + 1, findex + 6, findex + 7, findex + 4])
    list_polygons.append([findex + 6, findex + 2, findex + 5, findex + 7])


def divide_four(list_polygons, list_vertices, verts, polygon, findex, center):
    """ called by divide_polygon, to generate four polygons from one polygon and
        add them to the list of polygons and vertices which form the discombobulated mesh
    """
    temp_vertices = []
    temp_vertices.append(verts[polygon[0]].copy())
    temp_vertices.append(verts[polygon[1]].copy())
    temp_vertices.append(verts[polygon[2]].copy())
    temp_vertices.append(verts[polygon[3]].copy())
    temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2)
    temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2)
    temp_vertices.append((verts[polygon[1]] + verts[polygon[2]]) / 2)
    temp_vertices.append(center.copy())
    temp_vertices.append((verts[polygon[0]] + verts[polygon[3]]) / 2)
    temp_vertices.append(center.copy())

    list_vertices += temp_vertices

    list_polygons.append([findex + 0, findex + 4, findex + 7, findex + 8])
    list_polygons.append([findex + 1, findex + 6, findex + 7, findex + 4])
    list_polygons.append([findex + 6, findex + 2, findex + 5, findex + 7])
    list_polygons.append([findex + 8, findex + 7, findex + 5, findex + 3])


def dividepolygon(obpolygon, verts, number):
    """Divide the poly into the wanted number of polygons"""
    global nPolygons
    global nVerts

    poly = obpolygon.vertices

    if(number == 1):
        divide_one(nPolygons, nVerts, verts, poly, len(nVerts))
    elif(number == 2):
        divide_two(nPolygons, nVerts, verts, poly, len(nVerts))
    elif(number == 3):
        divide_three(nPolygons, nVerts, verts, poly, len(nVerts), GetPolyCentroid(obpolygon, verts))
    elif(number == 4):
        divide_four(nPolygons, nVerts, verts, poly, len(nVerts), GetPolyCentroid(obpolygon, verts))

# ################## Discombobulate ################ #
def GetPolyCentroid(obpolygon, allvertcoords):
    centroid = Vector((0, 0, 0))
    for vindex in obpolygon.vertices:
        centroid += Vector(allvertcoords[vindex])
    centroid /= len(obpolygon.vertices)
    return centroid

def division(obpolygons, verts, sf1, sf2, sf3, sf4):
    """Function to divide each of the selected polygons"""
    divide = []
    if (sf1):
        divide.append(1)
    if (sf2):
        divide.append(2)
    if (sf3):
        divide.append(3)
    if (sf4):
        divide.append(4)

    for poly in obpolygons:
        if(poly.select is True and len(poly.vertices) == 4):
            a = random.randint(0, len(divide) - 1)
            dividepolygon(poly, verts, divide[a])

def protusion(obverts, obpolygons, minHeight, maxHeight, minTaper, maxTaper):
    """function to generate the protusions"""
    verts = []
    for vertex in obverts:
        verts.append(vertex.co)

    for polygon in obpolygons:
        if(polygon.select is True):
            if(len(polygon.vertices) == 4):
                addProtusionToPolygon(polygon, verts, minHeight, maxHeight, minTaper, maxTaper)

def test_v2_near_v1(v1, v2):
    if (v1.x - 0.1 <= v2.x <= v1.x + 0.1 and
       v1.y - 0.1 <= v2.y <= v1.y + 0.1 and
       v1.z - 0.1 <= v2.z <= v1.z + 0.1):
        return True

    return False

def angle_between_nor(nor_orig, nor_result):
    angle = math.acos(nor_orig.dot(nor_result))
    axis = nor_orig.cross(nor_result).normalized()

    q = Quaternion()
    q.x = axis.x * math.sin(angle / 2)
    q.y = axis.y * math.sin(angle / 2)
    q.z = axis.z * math.sin(angle / 2)
    q.w = math.cos(angle / 2)
def doodads(self, object1, mesh1, dmin, dmax):
    """function to generate the doodads"""
    global dVerts
    global dPolygons
    i = 0
    # on parcoure cette boucle pour ajouter des doodads a toutes les polygons
    # english translation: this loops adds doodads to all polygons
    while(i < len(object1.data.polygons)):
        if object1.data.polygons[i].select is False:
        doods_nbr = random.randint(dmin, dmax)
        j = 0

        while(j <= doods_nbr):
            origin_dood = randVertex(object1.data.polygons[i].vertices[0], object1.data.polygons[i].vertices[1],
                                     object1.data.polygons[i].vertices[2], object1.data.polygons[i].vertices[3], Verts)
            type_dood = random.randint(0, len(self.DISC_doodads) - 1)
            polygons_add = []
            verts_add = []

            # First we have to apply scaling and rotation to the mesh
            bpy.ops.object.select_pattern(pattern=self.DISC_doodads[type_dood], extend=False)
            bpy.context.view_layer.objects.active = bpy.data.objects[self.DISC_doodads[type_dood]]
            bpy.ops.object.transform_apply(location=False, rotation=True, scale=True)
            for polygon in bpy.data.objects[self.DISC_doodads[type_dood]].data.polygons:
                polygons_add.append(polygon.vertices)
            for vertex in bpy.data.objects[self.DISC_doodads[type_dood]].data.vertices:
                verts_add.append(vertex.co.copy())
            normal_original_polygon = object1.data.polygons[i].normal

            nor_def = Vector((0.0, 0.0, 1.0))
            qr = nor_def.rotation_difference(normal_original_polygon.normalized())

            if(test_v2_near_v1(nor_def, -normal_original_polygon)):
                qr = Quaternion((0.0, 0.0, 0.0, 0.0))

            # qr = angle_between_nor(nor_def, normal_original_polygon)
            for vertex in verts_add:
                vertex.rotate(qr)
                vertex += origin_dood
            findex = len(dVerts)
            for polygon in polygons_add:
                dPolygons.append([polygon[0] + findex, polygon[1] + findex, polygon[2] + findex, polygon[3] + findex])
                i_dood_type.append(bpy.data.objects[self.DISC_doodads[type_dood]].name)
            for vertex in verts_add:
                dVerts.append(vertex)

def protusions_repeat(object1, mesh1, r_prot):

        for j in i_prots:
            if j < len(object1.data.polygons):
                object1.data.polygons[j].select = True
            else:
                print("Warning: hit end of polygons in object1")

# add material to discombobulated mesh
def setMatProt(discObj, origObj, sideProtMat, topProtMat):
    # First we put the materials in their slots
    bpy.ops.object.select_pattern(pattern=discObj.name, extend=False)
    bpy.context.view_layer.objects.active = bpy.data.objects[discObj.name]
    try:
        origObj.material_slots[topProtMat]
        origObj.material_slots[sideProtMat]
    except:
        return

    bpy.ops.object.material_slot_add()
    bpy.ops.object.material_slot_add()
    discObj.material_slots[0].material = origObj.material_slots[topProtMat].material
    discObj.material_slots[1].material = origObj.material_slots[sideProtMat].material

    # Then we assign materials to protusions
    for polygon in discObj.data.polygons:
        if polygon.index in i_prots:
            polygon.material_index = 0
        else:
            polygon.material_index = 1

def setMatDood(self, doodObj):
    # First we add the materials slots
    bpy.ops.object.select_pattern(pattern=doodObj.name, extend=False)
    bpy.context.view_layer.objects.active = doodObj
    for name in self.DISC_doodads:
        try:
            bpy.ops.object.material_slot_add()
            doodObj.material_slots[-1].material = bpy.data.objects[name].material_slots[0].material
            for polygon in doodObj.data.polygons:
                if i_dood_type[polygon.index] == name:
                    polygon.material_index = len(doodObj.material_slots) - 1
def clean_doodads(self):
    current_doodads = list(self.DISC_doodads)

    for name in current_doodads:
        if name not in bpy.data.objects:
            self.DISC_doodads.remove(name)
def discombobulate(self, minHeight, maxHeight, minTaper, maxTaper, sf1, sf2, sf3, sf4,
                   dmin, dmax, r_prot, sideProtMat, topProtMat, isLast):
    global doprots
    global nVerts
    global nPolygons
    global Verts
    global Polygons
    global dVerts
    global dPolygons
    global i_prots

    bpy.ops.object.mode_set(mode="OBJECT")

    # start by cleaning up doodads that don"t exist anymore
    clean_doodads(self)

    # Create the discombobulated mesh
    mesh = bpy.data.meshes.new("tmp")
    object = bpy.data.objects.new("tmp", mesh)
    bpy.context.collection.objects.link(object)

    # init final verts and polygons tuple
    nPolygons = []
    nVerts = []
    Polygons = []
    Verts = []
    dPolygons = []
    dVerts = []

    origObj = bpy.context.active_object

    # There we collect the rotation, translation and scaling datas from the original mesh
    to_translate = bpy.context.active_object.location
    to_scale = bpy.context.active_object.scale
    to_rotate = bpy.context.active_object.rotation_euler
    # First, we collect all the information we will need from the previous mesh
    obverts = bpy.context.active_object.data.vertices
    obpolygons = bpy.context.active_object.data.polygons
    verts = []
    for vertex in obverts:
        verts.append(vertex.co)

    division(obpolygons, verts, sf1, sf2, sf3, sf4)

    # Fill in the discombobulated mesh with the new polygons
    mesh.from_pydata(nVerts, [], nPolygons)
    mesh.update(calc_edges=True)

    # Reload the datas
    bpy.ops.object.select_all(action="DESELECT")
    bpy.ops.object.select_pattern(pattern=object.name, extend=False)
    bpy.context.view_layer.objects.active = bpy.data.objects[object.name]
    obverts = bpy.context.active_object.data.vertices
    obpolygons = bpy.context.active_object.data.polygons

    protusion(obverts, obpolygons, minHeight, maxHeight, minTaper, maxTaper)

    # Fill in the discombobulated mesh with the new polygons
    mesh1 = bpy.data.meshes.new("discombobulated_object")
    object1 = bpy.data.objects.new("discombobulated_mesh", mesh1)
    bpy.context.collection.objects.link(object1)
    mesh1.from_pydata(Verts, [], Polygons)
    mesh1.update(calc_edges=True)
    # Set the material"s of discombobulated object
    setMatProt(object1, origObj, sideProtMat, topProtMat)

    bpy.ops.object.select_pattern(pattern=object1.name, extend=False)
    bpy.context.view_layer.objects.active = bpy.data.objects[object1.name]
    bpy.ops.object.mode_set(mode="EDIT")
    bpy.ops.mesh.normals_make_consistent(inside=False)
    bpy.ops.mesh.select_all(action="DESELECT")
    bpy.ops.object.mode_set(mode="OBJECT")
    # if(bpy.context.scene.repeatprot):
    protusions_repeat(object1, mesh1, r_prot)

    if(len(self.DISC_doodads) != 0 and self.dodoodads and isLast):
        doodads(self, object1, mesh1, dmin, dmax)
        mesh2 = bpy.data.meshes.new("dood_mesh")
        object2 = bpy.data.objects.new("dood_obj", mesh2)
        bpy.context.collection.objects.link(object2)
        mesh2.from_pydata(dVerts, [], dPolygons)
        mesh2.update(calc_edges=True)
        setMatDood(self, object2)
        object2.location = to_translate
        object2.rotation_euler = to_rotate
        object2.scale = to_scale
    bpy.ops.object.select_pattern(pattern=object.name, extend=False)
    bpy.context.view_layer.objects.active = bpy.data.objects[object.name]
    bpy.ops.object.delete()

    bpy.ops.object.select_pattern(pattern=object1.name, extend=False)
    bpy.context.view_layer.objects.active = bpy.data.objects[object1.name]
    bpy.context.view_layer.update()

    # translate, scale and rotate discombobulated results
    object1.location = to_translate
    object1.rotation_euler = to_rotate
    object1.scale = to_scale
    # set all polys to selected. this allows recursive discombobulating.
    for poly in mesh1.polygons:
        poly.select = True

# ### Operators for selecting and deselecting an object as a doodad ### #
class chooseDoodad(Operator):
    bl_idname = "object.discombobulate_set_doodad"
    bl_label = "Discombobulate set doodad object"
    bl_description = ("Save the Active Object as Doodad \n"
                      "Object has to be quads only")
    bl_options = {"REGISTER"}

    @classmethod
    def poll(cls, context):
        obj = bpy.context.active_object
        if (obj is not None and obj.type == "MESH"):
            mesh = obj.data

            for polygon in mesh.polygons:
                is_ok = len(polygon.vertices)
                if is_ok != 4:
                    return False
            return True

        return False

    def execute(self, context):
        obj_name = bpy.context.active_object.name
        msg = "Object with this name already saved"

        DISC_doodads = context.scene.discombobulator.DISC_doodads
        if obj_name not in DISC_doodads:
            DISC_doodads.append(obj_name)
            msg = "Saved Doodad object: {}".format(obj_name)

        self.report({"INFO"}, message=msg)

    def invoke(self, context, event):
        self.execute(context)
        return {"FINISHED"}

class unchooseDoodad(Operator):
    bl_idname = "object.discombobulate_unset_doodad"
    bl_label = "Discombobulate unset doodad object"
    bl_description = "Remove the saved Doodad Object(s)"
    bl_options = {"REGISTER"}
    remove_all: bpy.props.BoolProperty(
                        name="Remove all Doodads",
                        default=False,
                        )

    def execute(self, context):
        msg = ("No doodads to remove")
        DISC_doodads = context.scene.discombobulator.DISC_doodads
        if len(DISC_doodads) > 0:
            if not self.remove_all:
                name = bpy.context.active_object.name
                if name in DISC_doodads:
                    DISC_doodads.remove(name)
                    msg = ("Removed Doodad object: {}".format(name))
            else:
                msg = "Removed all Doodads"
        else:
            msg = "No Doodads to Remove"

        self.report({"INFO"}, message=msg)

    def invoke(self, context, event):
        self.execute(context)
        return {"FINISHED"}
# ################## Interpolygon ################## #

class discombobulator(Operator):
    bl_idname = "object.discombobulate"
    bl_label = "Discombobulate"
    bl_description = "Apply"
    bl_options = {"REGISTER", "UNDO"}

    def execute(self, context):
        while i < self.repeatprot:
            isLast = False
            if i == self.repeatprot - 1:
                isLast = True
            discombobulate(self.minHeight, self.maxHeight, self.minTaper, self.maxTaper, self.subpolygon1,
                           self.subpolygon2, self.subpolygon3, self.subpolygon4, self.mindoodads, self.maxdoodads,
                           self.repeatprot, self.sideProtMat, self.topProtMat, isLast)
        return {"FINISHED"}

class discombobulator_dodads_list(Menu):
    bl_idname = "OBJECT_MT_discombobulator_dodad_list"
    bl_label = "List of saved Doodads"
    bl_description = "List of the saved Doodad Object Names"
    bl_options = {"REGISTER"}
    def draw(self, context):
        layout = self.layout
        DISC_doodads = context.scene.discombobulator.DISC_doodads
        layout.label(text="Saved doodads : {}".format(doodle))
        layout.separator()
        if doodle > 0:
                layout.label(text=name)
class discombob_help(Menu):
    bl_idname = "HELP_MT_discombobulator"
    bl_label = "Usage Information"
    bl_description = "Help"
    bl_options = {"REGISTER"}
    def draw(self, context):
        layout = self.layout
        layout.label(text="Usage Information:", icon="INFO")
        layout.separator()
        layout.label(text="Quads only, not Triangles or Ngons", icon="ERROR")
        layout.label(text="Works only with Mesh object that have faces")
        layout.separator()
        layout.label(text="Select a face or faces")
        layout.label(text="Press Discombobulate to create greebles")
        layout.label(text="In object mode, still needs a selection in Edit Mode")
        layout.separator()
        layout.label(text="Doodads - additional objects layered on the mesh surface")
        layout.label(text="(Similar to dupliverts - but as one separate object)")
        layout.separator()
        layout.label(text="Limitations:", icon="MOD_EXPLODE")
        layout.label(text="Be careful with the repeat protusions setting")
        layout.label(text="If possible, avoid using on a high polycount base mesh")
        layout.label(text="(It can run out of memory and take a long time to compute)")

class VIEW3D_OT_tools_discombobulate(Operator):
    bl_idname = "discombobulate.ops"
    bl_label = "Discombobulator"
    bl_description = ("Easily add sci-fi details to a surface \n"
                      "Needs an existing active Mesh with Faces")
    bl_options = {"REGISTER", "UNDO"}

    executing = False
    # Protusions Buttons:
    repeatprot: IntProperty(
            name="Repeat protusions",
            description=("Make several layers of protusion \n"
                         "Use carefully, runs recursively the discombulator"),
            default=1, min=1, max=4  # set to 4 because it's 2**n reqursive
            )
    doprots: BoolProperty(
            name="Make protusions",
            description="Check if we want to add protusions to the mesh",
            default=True
            )
    subpolygon1: BoolProperty(
            name="1",
            default=True
            )
    subpolygon2: BoolProperty(
            name="2",
            default=True
            )
    subpolygon3: BoolProperty(
            name="3",
            default=True
            )
    subpolygon4: BoolProperty(
            name="4",
            default=True
            )
    polygonschangedpercent: FloatProperty(
            name="Polygon %",
            description="Percentage of changed polygons",
            default=1.0
            )
    minHeight: FloatProperty(
            name="Min height",
            description="Minimal height of the protusions",
            default=0.2
            )
    maxHeight: FloatProperty(
            name="Max height",
            description="Maximal height of the protusions",
            default=0.4
            )
    minTaper: FloatProperty(
            name="Min taper",
            description="Minimal height of the protusions",
            default=0.15, min=0.0, max=1.0,
            subtype='PERCENTAGE'
            )
    maxTaper: FloatProperty(
            name="Max taper",
            description="Maximal height of the protusions",
            default=0.35, min=0.0, max=1.0,
            subtype='PERCENTAGE'
            )
    # Doodads buttons:
    dodoodads: BoolProperty(
            name="Make doodads",
            description="Check if we want to generate doodads",
            default=False
            )
    mindoodads: IntProperty(
            name="Minimum doodads number",
            description="Ask for the minimum number of doodads to generate per polygon",
            default=1, min=0, max=50
            )
    maxdoodads: IntProperty(
            name="Maximum doodads number",
            description="Ask for the maximum number of doodads to generate per polygon",
            default=6, min=1, max=50
            )
    doodMinScale: FloatProperty(
            name="Scale min", description="Minimum scaling of doodad",
            default=0.5, min=0.0, max=1.0,
            subtype='PERCENTAGE'
            )
    doodMaxScale: FloatProperty(
            name="Scale max",
            description="Maximum scaling of doodad",
            default=1.0, min=0.0, max=1.0,
            subtype='PERCENTAGE'
            )
    # Materials buttons:
    sideProtMat: IntProperty(
            name="Side's prot mat",
            description="Material of protusion's sides",
            default=0, min=0
            )
    topProtMat: IntProperty(
            name="Prot's top mat",
            description="Material of protusion's top",
            default=0, min=0
            )

    @classmethod
    def poll(cls, context):
        return (context.active_object is not None and
                context.active_object.type == "MESH")

    def draw(self, context):
        layout = self.layout
        self.DISC_doodads = bpy.context.scene.discombobulator.DISC_doodads
        row = layout.row()
        row.menu("HELP_MT_discombobulator", icon="INFO")
        box = layout.box()
        box.label(text="Protusions settings")
        row = box.row()
        row.prop(self, "doprots")
        row = box.row()
        row.prop(self, "minHeight")
        row = box.row()
        row.prop(self, "maxHeight")
        row = box.row()
        row.prop(self, "minTaper")
        row = box.row()
        row.prop(self, "maxTaper")
        row = box.row()
        col1 = row.column(align=True)
        col1.prop(self, "subpolygon1")
        col2 = row.column(align=True)
        col2.prop(self, "subpolygon2")
        col3 = row.column(align=True)
        col3.prop(self, "subpolygon3")
        col4 = row.column(align=True)
        col4.prop(self, "subpolygon4")
        row = box.row()
        row.prop(self, "repeatprot")
        box = layout.box()
        box.label(text="Doodads settings")
        row = box.row()
        is_doodad = self.dodoodads
        row.prop(self, "dodoodads")
        row = box.row()
        row.enabled = is_doodad
        row.prop(self, "mindoodads")
        row = box.row()
        row.enabled = is_doodad
        row.prop(self, "maxdoodads")
        row = box.row()
        row.enabled = is_doodad
        oper = row.operator("object.discombobulate_set_doodad", text="Pick doodad")
        row = box.row()
        splits = row.split(factor = 0.5)
        splits.enabled = is_doodad
        splits.operator("object.discombobulate_unset_doodad",
                        text="Remove active doodad").remove_all = False
        splits.operator("object.discombobulate_unset_doodad",
                        text="Remove all doodads").remove_all = True

        col = box.column(align=True)
        doodle = len(self.DISC_doodads)

        col.enabled = (True if doodle > 0 else False)
        col.menu("OBJECT_MT_discombobulator_dodad_list",
                     text="List of saved Doodads ({})".format(doodle))

        box = layout.box()
        box.label(text="Materials settings")
        row = box.row()
        row.prop(self, "topProtMat")
        row = box.row()
        row.prop(self, "sideProtMat")
    def invoke(self, context, event):
        return context.window_manager.invoke_props_dialog(self, width=300)

    def check(self, context):
        return not self.executing

    def execute(self, context):
        self.executing = True
        i = 0
        while i < self.repeatprot:
            isLast = False
            if i == self.repeatprot - 1:
                isLast = True
            discombobulate(self, self.minHeight, self.maxHeight, self.minTaper, self.maxTaper, self.subpolygon1,
                           self.subpolygon2, self.subpolygon3, self.subpolygon4, self.mindoodads, self.maxdoodads,
                           self.repeatprot, self.sideProtMat, self.topProtMat, isLast)
            i += 1
        return {"FINISHED"}
        #bpy.ops.object.discombobulate("INVOKE_DEFAULT")