Newer
Older
Bart Crouch
committed
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
"version": (1, 0),
"blender": (2, 77, 0),
"location": "Tool Shelf > Create Tab",
"description": "Creates Volumetric Clouds",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Object/Cloud_Gen",
"tracker_url" : "https://developer.blender.org/maniphest/project/3/type/Bug/",
"category": "Object",
}
from bpy.props import BoolProperty, EnumProperty
from bpy.types import Operator, Panel
# For Cycles Render we create node groups or if it already exists we return it.
def CreateNodeGroup(Type):
# Look for NodeTree if it already exists return it
CreateGroup = True
for Group in bpy.data.node_groups:
if Group.name == Type:
CreateGroup = False
NodeGroup = Group
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
if CreateGroup == True:
NodeGroup = bpy.data.node_groups.new(name=Type,type="ShaderNodeTree")
NodeGroup.name = Type
NodeGroup.bl_label = Type
NodeGroup.nodes.clear()
# Create a bunch of nodes and group them based on input to the def
# Function type
if Type == 'CloudGen_VolumeProperties':
AddAddAndEmission = NodeGroup.nodes.new('ShaderNodeAddShader')
AddAddAndEmission.location = [300,395]
AddAbsorptionAndScatter = NodeGroup.nodes.new('ShaderNodeAddShader')
AddAbsorptionAndScatter.location = [0,395]
VolumeAbsorption = NodeGroup.nodes.new('ShaderNodeVolumeAbsorption')
VolumeAbsorption.location = [-300,395]
VolumeScatter = NodeGroup.nodes.new('ShaderNodeVolumeScatter')
VolumeScatter.location = [-300,0]
VolumeEmission = NodeGroup.nodes.new('ShaderNodeEmission')
VolumeEmission.location = [-300,-300]
MathAbsorptionMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathAbsorptionMultiply.location = [-750,395]
MathAbsorptionMultiply.operation = 'MULTIPLY'
MathScatterMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathScatterMultiply.location = [-750,0]
MathScatterMultiply.operation = 'MULTIPLY'
MathEmissionMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathEmissionMultiply.location = [-750,-300]
MathEmissionMultiply.operation = 'MULTIPLY'
MathBrightnessMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathBrightnessMultiply.location = [-1200,0]
MathBrightnessMultiply.operation = 'MULTIPLY'
MathGreaterThan = NodeGroup.nodes.new('ShaderNodeMath')
MathGreaterThan.location = [-1200,600]
MathGreaterThan.operation = 'GREATER_THAN'
MathGreaterThan.inputs[1].default_value = 0
NodeGroup.links.new(AddAddAndEmission.inputs[0],AddAbsorptionAndScatter.outputs[0])
NodeGroup.links.new(AddAddAndEmission.inputs[1],VolumeEmission.outputs[0])
NodeGroup.links.new(AddAbsorptionAndScatter.inputs[0],VolumeAbsorption.outputs[0])
NodeGroup.links.new(AddAbsorptionAndScatter.inputs[1],VolumeScatter.outputs[0])
NodeGroup.links.new(VolumeAbsorption.inputs[1],MathAbsorptionMultiply.outputs[0])
NodeGroup.links.new(VolumeScatter.inputs[1],MathScatterMultiply.outputs[0])
NodeGroup.links.new(VolumeEmission.inputs[1],MathEmissionMultiply.outputs[0])
NodeGroup.links.new(MathAbsorptionMultiply.inputs[0],MathGreaterThan.outputs[0])
NodeGroup.links.new(MathScatterMultiply.inputs[0],MathGreaterThan.outputs[0])
NodeGroup.links.new(MathEmissionMultiply.inputs[0],MathGreaterThan.outputs[0])
NodeGroup.links.new(VolumeAbsorption.inputs[0],MathBrightnessMultiply.outputs[0])
# Create and Link In/Out to Group Node
# Outputs
group_outputs = NodeGroup.nodes.new('NodeGroupOutput')
group_outputs.location = (600,395)
NodeGroup.outputs.new('NodeSocketShader','shader_out')
NodeGroup.links.new(AddAddAndEmission.outputs[0],group_outputs.inputs['shader_out'])
# Inputs
group_inputs = NodeGroup.nodes.new('NodeGroupInput')
group_inputs.location = (-1500,-300)
NodeGroup.inputs.new('NodeSocketFloat','Density')
NodeGroup.inputs.new('NodeSocketFloat','Absorption Multiply')
NodeGroup.inputs.new('NodeSocketColor','Absorption Color')
NodeGroup.inputs.new('NodeSocketFloat','Scatter Multiply')
NodeGroup.inputs.new('NodeSocketColor','Scatter Color')
NodeGroup.inputs.new('NodeSocketFloat','Emission Amount')
NodeGroup.inputs.new('NodeSocketFloat','Cloud Brightness')
NodeGroup.links.new(group_inputs.outputs['Density'],MathGreaterThan.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Absorption Multiply'],MathAbsorptionMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Absorption Color'],MathBrightnessMultiply.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Scatter Multiply'],MathScatterMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Scatter Color'],VolumeScatter.inputs[0])
NodeGroup.links.new(group_inputs.outputs['Emission Amount'],MathEmissionMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Cloud Brightness'],MathBrightnessMultiply.inputs[1])
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
if Type == 'CloudGen_TextureProperties':
MathAdd = NodeGroup.nodes.new('ShaderNodeMath')
MathAdd.location = [-200,0]
MathAdd.operation = 'ADD'
MathDensityMultiply = NodeGroup.nodes.new('ShaderNodeMath')
MathDensityMultiply.location = [-390,0]
MathDensityMultiply.operation = 'MULTIPLY'
PointDensityRamp = NodeGroup.nodes.new('ShaderNodeValToRGB')
PointDensityRamp.location = [-675,-250]
PointRamp = PointDensityRamp.color_ramp
PElements = PointRamp.elements
PElements[0].position = 0.418
PElements[0].color = 0, 0, 0, 1
PElements[1].position = 0.773
PElements[1].color = 1, 1, 1, 1
CloudRamp = NodeGroup.nodes.new('ShaderNodeValToRGB')
CloudRamp.location = [-675,0]
CRamp = CloudRamp.color_ramp
CElements = CRamp.elements
CElements[0].position = 0.527
CElements[0].color = 0, 0, 0, 1
CElements[1].position = 0.759
CElements[1].color = 1, 1, 1, 1
NoiseTex = NodeGroup.nodes.new('ShaderNodeTexNoise')
NoiseTex.location = [-940,0]
NoiseTex.inputs['Detail'].default_value = 4
TexCoord = NodeGroup.nodes.new('ShaderNodeTexCoord')
TexCoord.location = [-1250,0]
NodeGroup.links.new(MathAdd.inputs[0],MathDensityMultiply.outputs[0])
NodeGroup.links.new(MathAdd.inputs[1],PointDensityRamp.outputs[0])
NodeGroup.links.new(MathDensityMultiply.inputs[0],CloudRamp.outputs[0])
NodeGroup.links.new(CloudRamp.inputs[0],NoiseTex.outputs[0])
NodeGroup.links.new(NoiseTex.inputs[0],TexCoord.outputs[3])
# Create and Link In/Out to Group Nodes
# Outputs
group_outputs = NodeGroup.nodes.new('NodeGroupOutput')
group_outputs.location = (0,0)
NodeGroup.outputs.new('NodeSocketFloat','Density W_CloudTex')
NodeGroup.links.new(MathAdd.outputs[0],group_outputs.inputs['Density W_CloudTex'])
# Inputs
group_inputs = NodeGroup.nodes.new('NodeGroupInput')
group_inputs.location = (-1250,-300)
NodeGroup.inputs.new('NodeSocketFloat','Scale')
NodeGroup.inputs.new('NodeSocketFloat','Point Density In')
NodeGroup.links.new(group_inputs.outputs['Scale'],NoiseTex.inputs['Scale'])
NodeGroup.links.new(group_inputs.outputs['Point Density In'],MathDensityMultiply.inputs[1])
NodeGroup.links.new(group_inputs.outputs['Point Density In'],PointDensityRamp.inputs[0])
return NodeGroup
# This routine takes an object and deletes all of the geometry in it
# and adds a bounding box to it.
# It will add or subtract the bound box size by the variable sizeDifference.
# Go into Object Mode
bpy.ops.object.mode_set(mode='OBJECT')
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object
# Go into Edit Mode
bpy.ops.object.mode_set(mode='EDIT')
#Set the max and min verts to the first vertex on the list
maxVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]
minVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]
#Create Max and Min Vertex array for the outer corners of the box
for vert in verts:
#Max vertex
if vert.co[0] > maxVert[0]:
maxVert[0] = vert.co[0]
if vert.co[1] > maxVert[1]:
maxVert[1] = vert.co[1]
if vert.co[2] > maxVert[2]:
maxVert[2] = vert.co[2]
#Min Vertex
if vert.co[0] < minVert[0]:
minVert[0] = vert.co[0]
if vert.co[1] < minVert[1]:
minVert[1] = vert.co[1]
if vert.co[2] < minVert[2]:
minVert[2] = vert.co[2]
def makeObjectIntoBoundBox(scene, object, sizeDifference, takeFromObject):
# Let's find the max and min of the reference object,
# it can be the same as the destination object
[maxVert, minVert] = maxAndMinVerts(scene, takeFromObject)
#get objects mesh
mesh = getMeshandPutinEditMode(scene, object)
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#Add the size difference to the max size of the box
maxVert[0] = maxVert[0] + sizeDifference
maxVert[1] = maxVert[1] + sizeDifference
maxVert[2] = maxVert[2] + sizeDifference
#subtract the size difference to the min size of the box
minVert[0] = minVert[0] - sizeDifference
minVert[1] = minVert[1] - sizeDifference
minVert[2] = minVert[2] - sizeDifference
#Create arrays of verts and faces to be added to the mesh
addVerts = []
#X high loop
addVerts.append([maxVert[0], maxVert[1], maxVert[2]])
addVerts.append([maxVert[0], maxVert[1], minVert[2]])
addVerts.append([maxVert[0], minVert[1], minVert[2]])
addVerts.append([maxVert[0], minVert[1], maxVert[2]])
#x low loop
addVerts.append([minVert[0], maxVert[1], maxVert[2]])
addVerts.append([minVert[0], maxVert[1], minVert[2]])
addVerts.append([minVert[0], minVert[1], minVert[2]])
addVerts.append([minVert[0], minVert[1], maxVert[2]])
# Make the faces of the bounding box.
addFaces = []
# Draw a box on paper and number the vertices.
# Use right hand rule to come up with number orders for faces on
# the box (with normals pointing out).
addFaces.append([0, 3, 2, 1])
addFaces.append([4, 5, 6, 7])
addFaces.append([0, 1, 5, 4])
addFaces.append([1, 2, 6, 5])
addFaces.append([2, 3, 7, 6])
addFaces.append([0, 4, 7, 3])
# Delete all geometry from the object.
bpy.ops.mesh.select_all(action='SELECT')
# Must be in object mode for from_pydata to work
bpy.ops.object.mode_set(mode='OBJECT')
# Add the mesh data.
mesh.from_pydata(addVerts, [], addFaces)
# Update the mesh
mesh.update()
def applyScaleRotLoc(scene, obj):
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object
bpy.ops.object.transform_apply(location=True, rotation=True, scale=True)
scene.objects.unlink(obj)
bpy.data.objects.remove(obj)
def makeParent(parentobj, childobj, scene):
applyScaleRotLoc(scene, parentobj)
applyScaleRotLoc(scene, childobj)
childobj.parent = parentobj
def addNewObject(scene, name, copyobj):
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Create a new object.
ob_new = bpy.data.objects.new(name, mesh)
tempme = copyobj.data
ob_new.data = tempme.copy()
ob_new.scale = copyobj.scale
ob_new.location = copyobj.location
# Link new object to the given scene and select it.
scene.objects.link(ob_new)
for mslot in object.material_slots:
mat = mslot.material
for tslot in mat.texture_slots:
if tslot != 'NoneType':
tex = tslot.texture
if tex.type == 'POINT_DENSITY':
if tex.point_density.point_source == 'PARTICLE_SYSTEM':
return tex
def removeParticleSystemFromObj(scene, object):
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object.
object.select = True
scene.objects.active = object
bpy.ops.object.particle_system_remove()
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
def convertParticlesToMesh(scene, particlesobj, destobj, replacemesh):
# Select the Destination object.
destobj.select = True
scene.objects.active = destobj
bpy.ops.object.mode_set(mode='EDIT', toggle=False)
#Delete everything in mesh if replace true
if replacemesh:
bpy.ops.mesh.select_all(action='SELECT')
meshPnts = destobj.data
listCloudParticles = particlesobj.particles
listMeshPnts = []
for pTicle in listCloudParticles:
listMeshPnts.append(pTicle.location)
# Must be in object mode for from_pydata to work.
bpy.ops.object.mode_set(mode='OBJECT')
# Add in the mesh data.
meshPnts.from_pydata(listMeshPnts, [], [])
# Update the mesh.
meshPnts.update()
def combineObjects(scene, combined, listobjs):
# scene is the current scene
# combined is the object we want to combine everything into
# listobjs is the list of objects to stick into combined
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the new object.
scene.objects.active = combined
# Add data
Campbell Barton
committed
if len(listobjs) > 0:
for i in listobjs:
# Add a modifier
bpy.ops.object.modifier_add(type='BOOLEAN')
Campbell Barton
committed
union = combined.modifiers
union[0].name = "AddEmUp"
union[0].object = i
union[0].operation = 'UNION'
Campbell Barton
committed
# Apply modifier
bpy.ops.object.modifier_apply(apply_as='DATA', modifier=union[0].name)
# Returns the action we want to take
def getActionToDo(obj):
if not obj or obj.type != 'MESH':
return 'NOT_OBJ_DO_NOTHING'
elif obj is None:
return 'NO_SELECTION_DO_NOTHING'
elif "CloudMember" in obj:
if obj["CloudMember"] is not None:
return 'DEGENERATE'
elif obj["CloudMember"] == "CreatedObj" and len(obj.particle_systems) > 0:
return 'CLOUD_CONVERT_TO_MESH'
return 'CLOUD_DO_NOTHING'
elif obj.type == 'MESH':
return 'GENERATE'
else:
return 'DO_NOTHING'
class VIEW3D_PT_tools_cloud(Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_label = "Cloud Generator"
bl_context = "objectmode"
active_obj = context.active_object
layout = self.layout
col = layout.column(align=True)
WhatToDo = getActionToDo(active_obj)
if WhatToDo == 'DEGENERATE':
col.operator("cloud.generate_cloud", text="DeGenerate")
elif WhatToDo == 'CLOUD_CONVERT_TO_MESH':
col.operator("cloud.generate_cloud", text="Convert to Mesh")
elif WhatToDo == 'NO_SELECTION_DO_NOTHING':
col.label(text="Select one or more")
col.label(text="objects to generate")
col.label(text="a cloud")
elif WhatToDo == 'CLOUD_DO_NOTHING':
col.label(text="Must select")
col.label(text="bound box")
elif WhatToDo == 'GENERATE':
col.operator("cloud.generate_cloud", text="Generate Cloud")
col.prop(context.scene, "cloud_type")
col.prop(context.scene, "cloudsmoothing")
else:
col.label(text="Select one or more")
col.label(text="objects to generate")
col.label(text="a cloud")
class GenerateCloud(Operator):
"""Create a Cloud,Undo Cloud, or convert to Mesh Cloud depending on selection"""
bl_idname = "cloud.generate_cloud"
bl_label = "Generate Cloud"
bl_register = True
bl_undo = True
@classmethod
def poll(cls, context):
Bart Crouch
committed
if not context.active_object:
return False
else:
return (context.active_object.type == 'MESH')
Bart Crouch
committed
# Prevent unsupported Execution in Local View modes
space_data = bpy.context.space_data
if True in space_data.layers_local_view:
self.report({'INFO'}, 'Global Perspective modes only unable to continue.')
return {'FINISHED'}
# Make variable that is the current .blend file main data blocks
blend_data = context.blend_data
# Make variable that is the active object selected by user
active_object = context.active_object
# Make variable scene that is current scene
scene = context.scene
Bart Crouch
committed
# Parameters the user may want to change:
# Number of points this number is multiplied by the volume to get
# the number of points the scripts will put in the volume.
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
numOfPoints = 1.0
maxNumOfPoints = 100000
maxPointDensityRadius = 1.5
scattering = 2.5
pointDensityRadiusFactor = 1.0
densityScale = 1.5
elif bpy.context.scene.render.engine == 'CYCLES':
numOfPoints = .80
maxNumOfPoints = 100000
maxPointDensityRadius = 1.0
scattering = 2.5
pointDensityRadiusFactor = .37
densityScale = 1.5
noiseScale = 1
# What should we do?
WhatToDo = getActionToDo(active_object)
Bart Crouch
committed
Campbell Barton
committed
# Degenerate Cloud
mainObj = active_object
bpy.ops.object.hide_view_clear()
Campbell Barton
committed
cloudMembers = active_object.children
Campbell Barton
committed
createdObjects = []
definitionObjects = []
Campbell Barton
committed
for member in cloudMembers:
applyScaleRotLoc(scene, member)
if member["CloudMember"] == "CreatedObj":
createdObjects.append(member)
else:
definitionObjects.append(member)
Campbell Barton
committed
for defObj in definitionObjects:
# Delete cloudmember data from objects
if "CloudMember" in defObj:
del(defObj["CloudMember"])
Campbell Barton
committed
for createdObj in createdObjects:
totallyDeleteObject(scene, createdObj)
Campbell Barton
committed
# Delete the blend_data object
totallyDeleteObject(scene, mainObj)
Campbell Barton
committed
# Select all of the left over boxes so people can immediately
# press generate again if they want.
for eachMember in definitionObjects:
eachMember.draw_type = 'SOLID'
eachMember.select = True
eachMember.hide_render = False
Campbell Barton
committed
cloudParticles = active_object.particle_systems.active
Campbell Barton
committed
bounds = active_object.parent
Campbell Barton
committed
###############Create CloudPnts for putting points in#########
# Create a new object cloudPnts
cloudPnts = addNewObject(scene, "CloudPoints", bounds)
cloudPnts["CloudMember"] = "CreatedObj"
cloudPnts.draw_type = 'WIRE'
cloudPnts.hide_render = True
makeParent(bounds, cloudPnts, scene)
Campbell Barton
committed
convertParticlesToMesh(scene, cloudParticles, cloudPnts, True)
removeParticleSystemFromObj(scene, active_object)
pDensity = getpdensitytexture(bounds)
pDensity.point_density.point_source = 'OBJECT'
pDensity.point_density.object = cloudPnts
#Let's resize the bound box to be more accurate.
how_much_bigger = pDensity.point_density.radius
Campbell Barton
committed
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloudPnts)
Bart Crouch
committed
else:
# Generate Cloud
###############Create Combined Object bounds##################
# Make a list of all Selected objects.
selectedObjects = bpy.context.selected_objects
if not selectedObjects:
selectedObjects = [bpy.context.active_object]
# Create a new object bounds
bounds = addNewObject(scene,
"CloudBounds",
selectedObjects[0])
Bart Crouch
committed
# Just add a Definition Property designating this
# as the blend_data object.
Bart Crouch
committed
bounds["CloudMember"] = "MainObj"
# Since we used iteration 0 to copy with object we
# delete it off the list.
firstObject = selectedObjects[0]
del selectedObjects[0]
# Apply location Rotation and Scale to all objects involved.
applyScaleRotLoc(scene, bounds)
for each in selectedObjects:
applyScaleRotLoc(scene, each)
# Let's combine all of them together.
combineObjects(scene, bounds, selectedObjects)
# Let's add some property info to the objects.
for selObj in selectedObjects:
selObj["CloudMember"] = "DefinitioinObj"
selObj.name = "DefinitioinObj"
selObj.hide = True
Bart Crouch
committed
makeParent(bounds, selObj, scene)
# Do the same to the 1. object since it is no longer in list.
firstObject["CloudMember"] = "DefinitioinObj"
firstObject.name = "DefinitioinObj"
Bart Crouch
committed
makeParent(bounds, firstObject, scene)
###############Create Cloud for putting Cloud Mesh############
# Create a new object cloud.
cloud = addNewObject(scene, "CloudMesh", bounds)
cloud["CloudMember"] = "CreatedObj"
Bart Crouch
committed
makeParent(bounds, cloud, scene)
bpy.ops.object.editmode_toggle()
bpy.ops.mesh.select_all(action='SELECT')
#Don't subdivide object or smooth if smoothing box not checked.
if scene.cloudsmoothing:
bpy.ops.mesh.subdivide(number_cuts=2, fractal=0, smoothness=1)
# bpy.ops.object.transform_apply(location=True)
Bart Crouch
committed
bpy.ops.mesh.tris_convert_to_quads()
bpy.ops.mesh.faces_shade_smooth()
bpy.ops.object.editmode_toggle()
###############Create Particles in cloud obj##################
# Set time to 0.
scene.frame_current = 0
# Add a new particle system.
bpy.ops.object.particle_system_add()
#Particle settings setting it up!
cloudParticles = cloud.particle_systems.active
Bart Crouch
committed
cloudParticles.name = "CloudParticles"
cloudParticles.settings.frame_start = 0
cloudParticles.settings.frame_end = 0
cloudParticles.settings.emit_from = 'VOLUME'
cloudParticles.settings.draw_method = 'DOT'
cloudParticles.settings.render_type = 'NONE'
Bart Crouch
committed
cloudParticles.settings.distribution = 'RAND'
cloudParticles.settings.physics_type = 'NEWTON'
cloudParticles.settings.normal_factor = 0
Bart Crouch
committed
#Gravity does not effect the particle system
eWeights = cloudParticles.settings.effector_weights
eWeights.gravity = 0
Bart Crouch
committed
####################Create Volume Material####################
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object.
Bart Crouch
committed
scene.objects.active = bounds
# Turn bounds object into a box. Use itself as a reference.
makeObjectIntoBoundBox(scene, bounds, 1.0, bounds)
Bart Crouch
committed
# Delete all material slots in bounds object.
for i in range(len(bounds.material_slots)):
bounds.active_material_index = i - 1
bpy.ops.object.material_slot_remove()
# Add a new material.
cloudMaterial = blend_data.materials.new("CloudMaterial")
Bart Crouch
committed
bpy.ops.object.material_slot_add()
bounds.material_slots[0].material = cloudMaterial
#Set Up Material for Blender Internal
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
# Set Up the Cloud Material
cloudMaterial.name = "CloudMaterial"
cloudMaterial.type = 'VOLUME'
mVolume = cloudMaterial.volume
mVolume.scattering = scattering
mVolume.density = 0
mVolume.density_scale = densityScale
mVolume.transmission_color = 3.0, 3.0, 3.0
mVolume.step_size = 0.1
mVolume.use_light_cache = True
mVolume.cache_resolution = 45
# Add a texture
# vMaterialTextureSlots = cloudMaterial.texture_slots # UNUSED
cloudtex = blend_data.textures.new("CloudTex", type='CLOUDS')
cloudtex.noise_type = 'HARD_NOISE'
cloudtex.noise_scale = 2
mtex = cloudMaterial.texture_slots.add()
mtex.texture = cloudtex
mtex.texture_coords = 'ORCO'
mtex.use_map_color_diffuse = True
# Set time
scene.frame_current = 1
# Add a Point Density texture
pDensity = blend_data.textures.new("CloudPointDensity", 'POINT_DENSITY')
mtex = cloudMaterial.texture_slots.add()
mtex.texture = pDensity
mtex.texture_coords = 'GLOBAL'
mtex.use_map_density = True
mtex.use_rgb_to_intensity = True
mtex.texture_coords = 'GLOBAL'
pDensity.point_density.vertex_cache_space = 'WORLD_SPACE'
pDensity.point_density.use_turbulence = True
pDensity.point_density.noise_basis = 'VORONOI_F2'
pDensity.point_density.turbulence_depth = 3
pDensity.use_color_ramp = True
pRamp = pDensity.color_ramp
#pRamp.use_interpolation = 'LINEAR'
pRampElements = pRamp.elements
#pRampElements[1].position = .9
#pRampElements[1].color = 0.18, 0.18, 0.18, 0.8
bpy.ops.texture.slot_move(type='UP')
#Set Up Material for Cycles Engine
elif bpy.context.scene.render.engine == 'CYCLES':
VolumePropertiesGroup = CreateNodeGroup('CloudGen_VolumeProperties')
CloudTexPropertiesGroup = CreateNodeGroup('CloudGen_TextureProperties')
cloudMaterial.name = "CloudMaterial"
# Add a texture
# vMaterialTextureSlots = cloudMaterial.texture_slots # UNUSED
cloudtex = blend_data.textures.new("CloudTex", type='CLOUDS')
cloudtex.noise_type = 'HARD_NOISE'
cloudMaterial.use_nodes = True
cloudTree = cloudMaterial.node_tree
cloudMatNodes = cloudTree.nodes
cloudMatNodes.clear()
outputNode = cloudMatNodes.new('ShaderNodeOutputMaterial')
outputNode.location = (200,300)
tranparentNode = cloudMatNodes.new('ShaderNodeBsdfTransparent')
tranparentNode.location = (0,300)
volumeGroup = cloudMatNodes.new("ShaderNodeGroup")
volumeGroup.node_tree = VolumePropertiesGroup
volumeGroup.location = (0,150)
cloudTexGroup = cloudMatNodes.new("ShaderNodeGroup")
cloudTexGroup.node_tree = CloudTexPropertiesGroup
cloudTexGroup.location = (-200,150)
PointDensityNode = cloudMatNodes.new("ShaderNodeTexPointDensity")
PointDensityNode.location = (-400,150)
PointDensityNode.resolution = 100
PointDensityNode.space = 'OBJECT'
# PointDensityNode.color_source = 'CONSTANT'
cloudTree.links.new(outputNode.inputs[0],tranparentNode.outputs[0])
cloudTree.links.new(outputNode.inputs[1],volumeGroup.outputs[0])
cloudTree.links.new(volumeGroup.inputs[0],cloudTexGroup.outputs[0])
cloudTree.links.new(cloudTexGroup.inputs[1],PointDensityNode.outputs[1])
#PointDensityNode.point_source = 'PARTICLE_SYSTEM'
#VolumePropsNode = cloudMatNodes.new(VolumePropertiesGroup)
#VolumePropsNode.location = (-200,0)
#tree = bpy.data.materials['CloudMaterial'].node_tree
#group = bpy.data.groups.data.node_groups['CloudGen_VolumeProperties']
#newgroup = tree.nodes.new("ShaderNodeGroup")
#newgroup.node_tree = bpy.data.node_groups['CloudGen_VolumeProperties']
#cramp = ramp.color_ramp
#mport bpy
#obj = bpy.data.objects['CloudBounds']
#(obj.dimensions[0] * obj.dimensions[1] * obj.dimensions[2])
Bart Crouch
committed
# Estimate the number of particles for the size of bounds.
volumeBoundBox = (bounds.dimensions[0] * bounds.dimensions[1] * bounds.dimensions[2])
Bart Crouch
committed
numParticles = int((2.4462 * volumeBoundBox + 430.4) * numOfPoints)
if numParticles > maxNumOfPoints:
numParticles = maxNumOfPoints
if numParticles < 10000:
numParticles = int(numParticles + 15 * volumeBoundBox)
Bart Crouch
committed
print(numParticles)
Bart Crouch
committed
# Set the number of particles according to the volume
# of bounds.
cloudParticles.settings.count = numParticles
PDensityRadius = (.00013764 * volumeBoundBox + .3989) * pointDensityRadiusFactor
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
pDensity.point_density.radius = PDensityRadius
if pDensity.point_density.radius > maxPointDensityRadius:
pDensity.point_density.radius = maxPointDensityRadius
elif bpy.context.scene.render.engine == 'CYCLES':
PointDensityNode.radius = PDensityRadius
if PDensityRadius > maxPointDensityRadius:
PointDensityNode.radius = maxPointDensityRadius
Bart Crouch
committed
# Set time to 1.
scene.frame_current = 1
if not scene.cloudparticles:
###############Create CloudPnts for putting points in#########
# Create a new object cloudPnts
cloudPnts = addNewObject(scene, "CloudPoints", bounds)
cloudPnts["CloudMember"] = "CreatedObj"
convertParticlesToMesh(scene, cloudParticles, cloudPnts, True)
# Add a modifier.
bpy.ops.object.modifier_add(type='DISPLACE')
cldPntsModifiers = cloudPnts.modifiers
cldPntsModifiers[0].name = "CloudPnts"
cldPntsModifiers[0].texture = cloudtex
cldPntsModifiers[0].texture_coords = 'OBJECT'
Campbell Barton
committed
cldPntsModifiers[0].texture_coords_object = cloud
# Apply modifier
bpy.ops.object.modifier_apply(apply_as='DATA', modifier=cldPntsModifiers[0].name)
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
pDensity.point_density.point_source = 'OBJECT'
pDensity.point_density.object = cloudPnts
elif bpy.context.scene.render.engine == 'CYCLES':
PointDensityNode.point_source = 'OBJECT'
PointDensityNode.object = cloudPnts
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
pDensity.point_density.point_source = 'PARTICLE_SYSTEM'
pDensity.point_density.object = cloud
pDensity.point_density.particle_system = cloudParticles
elif bpy.context.scene.render.engine == 'CYCLES':
PointDensityNode.point_source = 'PARTICLE_SYSTEM'
PointDensityNode.particle_system = cloudPnts
if bpy.context.scene.render.engine == 'BLENDER_RENDER':
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
if scene.cloud_type == '1': # Cumulous
print("Cumulous")
mVolume.density_scale = 2.22
pDensity.point_density.turbulence_depth = 10
pDensity.point_density.turbulence_strength = 6.3
pDensity.point_density.turbulence_scale = 2.9
pRampElements[1].position = .606
pDensity.point_density.radius = pDensity.point_density.radius + 0.1
elif scene.cloud_type == '2': # Cirrus
print("Cirrus")
pDensity.point_density.turbulence_strength = 22
mVolume.transmission_color = 3.5, 3.5, 3.5
mVolume.scattering = 0.13
elif scene.cloud_type == '3': # Explosion
print("Explosion")
mVolume.emission = 1.42
mtex.use_rgb_to_intensity = False
pRampElements[0].position = 0.825
pRampElements[0].color = 0.119, 0.119, 0.119, 1
pRampElements[1].position = .049
pRampElements[1].color = 1.0, 1.0, 1.0, 0
pDensity.point_density.turbulence_strength = 1.5
pRampElement1 = pRampElements.new(.452)
pRampElement1.color = 0.814, 0.112, 0, 1
pRampElement2 = pRampElements.new(.234)
pRampElement2.color = 0.814, 0.310, 0.002, 1
pRampElement3 = pRampElements.new(0.669)
pRampElement3.color = 0.0, 0.0, 0.040, 1
elif bpy.context.scene.render.engine == 'CYCLES':
volumeGroup.inputs['Absorption Multiply'].default_value = 50
volumeGroup.inputs['Absorption Color'].default_value = (1.0, 1.0, 1.0, 1.0)
volumeGroup.inputs['Scatter Multiply'].default_value = 30
volumeGroup.inputs['Scatter Color'].default_value = (.58, .58, .58, 1.0)
volumeGroup.inputs['Emission Amount'].default_value = .1
volumeGroup.inputs['Cloud Brightness'].default_value = 1.3
noiseCloudScale = volumeBoundBox*(-.001973)+5.1216
if noiseCloudScale < .05:
cloudTexGroup.inputs['Scale'].default_value = noiseCloudScale
if scene.cloud_type == '1': # Cumulous
print("Cumulous")
elif scene.cloud_type == '2': # Cirrus
print("Cirrus")
elif scene.cloud_type == '3': # Explosion
print("Explosion")
#to cloud to view in cycles in render mode we need to hide geometry meshes...
firstObject.hide = True
cloud.hide = True
Bart Crouch
committed
# Select the object.
Bart Crouch
committed
scene.objects.active = bounds
how_much_bigger = PDensityRadius + 0.1
#If it's a particle cloud use cloud mesh if otherwise use point mesh
if not scene.cloudparticles:
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloudPnts)
else:
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloud)
Bart Crouch
committed
def register():
Campbell Barton
committed
bpy.utils.register_module(__name__)
bpy.types.Scene.cloudparticles = BoolProperty(
name="Particles",
description="Generate Cloud as Particle System",
default=False)
bpy.types.Scene.cloudsmoothing = BoolProperty(
name="Smoothing",
description="Smooth Resultant Geometry From Gen Cloud Operation",
default=True)
bpy.types.Scene.cloud_type = EnumProperty(
name="Type",
description="Select the type of cloud to create with material settings",
items=[("0", "Stratus", "Generate Stratus_foggy Cloud"),
("1", "Cumulous", "Generate Cumulous_puffy Cloud"),
("2", "Cirrus", "Generate Cirrus_wispy Cloud"),
("3", "Explosion", "Generate Explosion"),