Newer
Older

Michal Kravcenko
committed
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 13.6.18 -
*/
Martin Beseda
committed
#include <iostream>
Martin Beseda
committed
#include "message.h"

Michal Kravcenko
committed
#include "NeuralNetwork.h"
Martin Beseda
committed
#include "NeuralNetworkSerialization.h"
#include "exceptions.h"
Martin Beseda
committed
namespace lib4neuro {
NeuralNetwork::NeuralNetwork() {
this->neurons = new ::std::vector<Neuron *>(0);
this->neuron_biases = new ::std::vector<double>(0);
this->neuron_potentials = new ::std::vector<double>(0);
this->neuron_bias_indices = new ::std::vector<int>(0);
this->connection_weights = new ::std::vector<double>(0);
this->connection_list = new ::std::vector<ConnectionFunctionGeneral *>(0);
this->inward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
this->outward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
this->neuron_layers_feedforward = new ::std::vector<std::vector<size_t> *>(0);
this->neuron_layers_feedbackward = new ::std::vector<std::vector<size_t> *>(0);
this->input_neuron_indices = new ::std::vector<size_t>(0);
this->output_neuron_indices = new ::std::vector<size_t>(0);
Martin Beseda
committed
this->delete_weights = true;
this->delete_biases = true;
this->layers_analyzed = false;
}
Martin Beseda
committed
NeuralNetwork::NeuralNetwork(std::string filepath) {
Martin Beseda
committed
boost::archive::text_iarchive ia(ifs);
ia >> *this;
ifs.close();
}
Martin Beseda
committed
NeuralNetwork::~NeuralNetwork() {
Martin Beseda
committed
if (this->neurons) {
for (auto n: *(this->neurons)) {
delete n;
n = nullptr;
}
delete this->neurons;
this->neurons = nullptr;
Martin Beseda
committed
if (this->neuron_potentials) {
delete this->neuron_potentials;
this->neuron_potentials = nullptr;
}
Martin Beseda
committed
if (this->neuron_bias_indices) {
delete this->neuron_bias_indices;
this->neuron_bias_indices = nullptr;
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->output_neuron_indices) {
delete this->output_neuron_indices;
this->output_neuron_indices = nullptr;
}
Martin Beseda
committed
if (this->input_neuron_indices) {
delete this->input_neuron_indices;
this->input_neuron_indices = nullptr;
}
Martin Beseda
committed
if (this->connection_weights && this->delete_weights) {
delete this->connection_weights;
this->connection_weights = nullptr;
}
Martin Beseda
committed
if (this->neuron_biases && this->delete_biases) {
delete this->neuron_biases;
this->neuron_biases = nullptr;
}
Martin Beseda
committed
if (this->connection_list) {
Martin Beseda
committed
if (this->delete_weights) {
for (auto c: *this->connection_list) {
delete c;
c = nullptr;
}
}
delete this->connection_list;
this->connection_list = nullptr;
Martin Beseda
committed
if (this->inward_adjacency) {
for (auto e: *this->inward_adjacency) {
if (e) {
delete e;
e = nullptr;
}
Martin Beseda
committed
delete this->inward_adjacency;
this->inward_adjacency = nullptr;
}
Martin Beseda
committed
if (this->outward_adjacency) {
for (
auto e: *this->outward_adjacency) {
Martin Beseda
committed
if (e) {
delete e;
e = nullptr;
}
delete this->
outward_adjacency;
this->
outward_adjacency = nullptr;
Martin Beseda
committed
if (this->neuron_layers_feedforward) {
for (
auto e: *this->neuron_layers_feedforward) {
Martin Beseda
committed
delete e;
e = nullptr;
}
delete this->neuron_layers_feedforward;
this->neuron_layers_feedforward = nullptr;
}
Martin Beseda
committed
if (this->neuron_layers_feedbackward) {
for (
auto e: *this->neuron_layers_feedbackward) {
Martin Beseda
committed
delete e;
e = nullptr;
}
delete this->neuron_layers_feedbackward;
this->neuron_layers_feedbackward = nullptr;
}
NeuralNetwork *NeuralNetwork::get_subnet(::std::vector<size_t> &input_neuron_indices,
::std::vector<size_t> &output_neuron_indices) {
THROW_NOT_IMPLEMENTED_ERROR();
Martin Beseda
committed
NeuralNetwork *output_net = nullptr;
// TODO rework due to the changed structure of the class
// Neuron * active_neuron, * target_neuron;
//
// size_t n = this->neurons->size();
// bool *part_of_subnetwork = new bool[n];
// ::std::fill(part_of_subnetwork, part_of_subnetwork + n, false);
//
// bool *is_reachable_from_source = new bool[n];
// bool *is_reachable_from_destination = new bool[n];
// ::std::fill(is_reachable_from_source, is_reachable_from_source + n, false);
// ::std::fill(is_reachable_from_destination, is_reachable_from_destination + n, false);
// ::std::fill(visited_neurons, visited_neurons + n, false);
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
//
// size_t active_set_size[2];
// active_set_size[0] = 0;
// active_set_size[1] = 0;
// size_t * active_neuron_set = new size_t[2 * n];
// size_t idx1 = 0, idx2 = 1;
//
// /* MAPPING BETWEEN NEURONS AND THEIR INDICES */
// size_t idx = 0, idx_target;
// for(Neuron *v: *this->neurons){
// v->set_idx( idx );
// idx++;
// }
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// for(size_t i: input_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
//
// visited_neurons[i] = true;
// }
//
// /* FORWARD PASS */
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_source[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// for(Connection* connection: *(active_neuron->get_connections_out())){
//
// target_neuron = connection->get_neuron_out( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// active_set_size[0] = active_set_size[1] = 0;
// ::std::fill(visited_neurons, visited_neurons + n, false);
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
//
// for(size_t i: output_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
//
// visited_neurons[i] = true;
// }
//
// /* BACKWARD PASS */
// size_t n_new_neurons = 0;
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_destination[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// if(is_reachable_from_source[ idx ]){
// n_new_neurons++;
// }
//
// for(Connection* connection: *(active_neuron->get_connections_in())){
//
// target_neuron = connection->get_neuron_in( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
// /* FOR CONSISTENCY REASONS */
// for(size_t in: input_neuron_indices){
// if( !is_reachable_from_destination[in] ){
// n_new_neurons++;
// }
// is_reachable_from_destination[in] = true;
// }
// /* FOR CONSISTENCY REASONS */
// for(size_t in: output_neuron_indices){
// if( !is_reachable_from_source[in] ){
// n_new_neurons++;
// }
// is_reachable_from_source[in] = true;
// }
//
// /* WE FORM THE SET OF NEURONS IN THE OUTPUT NETWORK */
// if(n_new_neurons > 0){
//// printf("Number of new neurons: %d\n", n_new_neurons);
// output_net = new NeuralNetwork();
// output_net->set_weight_array( this->connection_weights );
//
// ::std::vector<size_t > local_inputs(0), local_outputs(0);
// local_inputs.reserve(input_neuron_indices.size());
// local_outputs.reserve(output_neuron_indices.size());
//
// ::std::vector<Neuron*> local_n_arr(0);
// ::std::vector<Neuron*> local_local_n_arr(0);
// local_local_n_arr.reserve( n_new_neurons );
//
// int * neuron_local_mapping = new int[ n ];
// ::std::fill(neuron_local_mapping, neuron_local_mapping + n, -1);
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// idx = 0;
// for(size_t i = 0; i < n; ++i){
// if(is_reachable_from_source[i] && is_reachable_from_destination[i]){
// neuron_local_mapping[i] = (int)idx;
// idx++;
//
// Neuron *new_neuron = this->neurons->at(i)->get_copy( );
//
// output_net->add_neuron( new_neuron );
// local_local_n_arr.push_back( new_neuron );
// local_n_arr.push_back( this->neurons->at(i) );
// }
// }
// for(size_t in: input_neuron_indices){
// local_inputs.push_back(neuron_local_mapping[in]);
// }
// for(size_t in: output_neuron_indices){
// local_outputs.push_back(neuron_local_mapping[in]);
// }
//
//// printf("%d\n", local_n_arr.size());
//// printf("inputs: %d, outputs: %d\n", local_inputs.size(), local_outputs.size());
// int local_idx_1, local_idx_2;
// for(Neuron* source_neuron: local_n_arr){
// //we also add the relevant edges
// local_idx_1 = neuron_local_mapping[source_neuron->get_idx()];
//
// for(Connection* connection: *(source_neuron->get_connections_out( ))){
// target_neuron = connection->get_neuron_out();
//
// local_idx_2 = neuron_local_mapping[target_neuron->get_idx()];
// if(local_idx_2 >= 0){
// //this edge is part of the subnetwork
// Connection* new_connection = connection->get_copy( local_local_n_arr[local_idx_1], local_local_n_arr[local_idx_2] );
//
// local_local_n_arr[local_idx_1]->add_connection_out(new_connection);
// local_local_n_arr[local_idx_2]->add_connection_in(new_connection);
//
//// printf("adding a connection between neurons %d, %d\n", local_idx_1, local_idx_2);
// }
//
// }
//
// }
// output_net->specify_input_neurons(local_inputs);
// output_net->specify_output_neurons(local_outputs);
//
//
// delete [] neuron_local_mapping;
// }
//
// delete [] is_reachable_from_source;
// delete [] is_reachable_from_destination;
// delete [] part_of_subnetwork;
// delete [] visited_neurons;
// delete [] active_neuron_set;
//
//
Martin Beseda
committed
return output_net;
}
Martin Beseda
committed
size_t NeuralNetwork::add_neuron(Neuron *n, BIAS_TYPE bt, size_t bias_idx) {
Martin Beseda
committed
if (bt == BIAS_TYPE::NO_BIAS) {
this->neuron_bias_indices->push_back(-1);
} else if (bt == BIAS_TYPE::NEXT_BIAS) {
this->neuron_bias_indices->push_back((int) this->neuron_biases->size());
this->neuron_biases->resize(this->neuron_biases->size() + 1);
} else if (bt == BIAS_TYPE::EXISTING_BIAS) {
if (bias_idx >= this->neuron_biases->size()) {
::std::cerr << "The supplied bias index is too large!\n" << ::std::endl;
Martin Beseda
committed
}
this->neuron_bias_indices->push_back((int) bias_idx);

Michal Kravcenko
committed
}
this->outward_adjacency->push_back(new ::std::vector<std::pair<size_t, size_t>>(0));
this->inward_adjacency->push_back(new ::std::vector<std::pair<size_t, size_t>>(0));
Martin Beseda
committed
this->neurons->push_back(n);
Martin Beseda
committed
this->layers_analyzed = false;
return this->neurons->size() - 1;
}
Martin Beseda
committed
size_t
NeuralNetwork::add_connection_simple(size_t n1_idx, size_t n2_idx, SIMPLE_CONNECTION_TYPE sct,
size_t weight_idx) {
Martin Beseda
committed
ConnectionFunctionIdentity *con_weight_u1u2;
if (sct == SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT) {
con_weight_u1u2 = new ConnectionFunctionIdentity();
} else {
if (sct == SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT) {
weight_idx = this->connection_weights->size();
this->connection_weights->resize(weight_idx + 1);
} else if (sct == SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT) {
if (weight_idx >= this->connection_weights->size()) {
::std::cerr << "The supplied connection weight index is too large!\n" << ::std::endl;
Martin Beseda
committed
}

Michal Kravcenko
committed
}
Martin Beseda
committed
con_weight_u1u2 = new ConnectionFunctionIdentity(weight_idx);
}
Martin Beseda
committed
size_t conn_idx = this->add_new_connection_to_list(con_weight_u1u2);
Martin Beseda
committed
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
Martin Beseda
committed
this->layers_analyzed = false;
Martin Beseda
committed
return this->connection_list->size() - 1;
}
Martin Beseda
committed
void NeuralNetwork::add_existing_connection(size_t n1_idx, size_t n2_idx, size_t connection_idx,
NeuralNetwork &parent_network) {
Martin Beseda
committed
size_t conn_idx = this->add_new_connection_to_list(parent_network.connection_list->at(connection_idx));
Martin Beseda
committed
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
Martin Beseda
committed
this->layers_analyzed = false;
}
Martin Beseda
committed
void NeuralNetwork::copy_parameter_space(std::vector<double> *parameters) {
if (parameters != nullptr) {
for (unsigned int i = 0; i < this->connection_weights->size(); ++i) {
(*this->connection_weights).at(i) = (*parameters).at(i);
Martin Beseda
committed
}
Martin Beseda
committed
for (unsigned int i = 0; i < this->neuron_biases->size(); ++i) {
(*this->neuron_biases).at(i) = (*parameters).at(i + this->connection_weights->size());
Martin Beseda
committed
}
}

Michal Kravcenko
committed
Martin Beseda
committed
void NeuralNetwork::set_parameter_space_pointers(NeuralNetwork &parent_network) {

Michal Kravcenko
committed
Martin Beseda
committed
if (this->connection_weights) {
delete connection_weights;
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->neuron_biases) {
delete this->neuron_biases;
}

Michal Kravcenko
committed
Martin Beseda
committed
this->connection_weights = parent_network.connection_weights;
this->neuron_biases = parent_network.neuron_biases;
Martin Beseda
committed
this->delete_biases = false;
this->delete_weights = false;

Michal Kravcenko
committed
}
void NeuralNetwork::eval_single(::std::vector<double> &input, ::std::vector<double> &output,
::std::vector<double> *custom_weights_and_biases) {
Martin Beseda
committed
if ((this->input_neuron_indices->size() * this->output_neuron_indices->size()) <= 0) {
THROW_INVALID_ARGUMENT_ERROR("Input and output neurons have not been specified!");
Martin Beseda
committed
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->input_neuron_indices->size() != input.size()) {
THROW_INVALID_ARGUMENT_ERROR("Data input size != Network input size");
Martin Beseda
committed
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->output_neuron_indices->size() != output.size()) {
THROW_INVALID_ARGUMENT_ERROR("Data output size != Network output size");
Martin Beseda
committed
}
Martin Beseda
committed
double potential, bias;
int bias_idx;
Martin Beseda
committed
this->copy_parameter_space(custom_weights_and_biases);
Martin Beseda
committed
this->analyze_layer_structure();

Michal Kravcenko
committed
Martin Beseda
committed
/* reset of the output and the neuron potentials */
::std::fill(output.begin(), output.end(), 0.0);
::std::fill(this->neuron_potentials->begin(), this->neuron_potentials->end(), 0.0);

Michal Kravcenko
committed
Martin Beseda
committed
/* set the potentials of the input neurons */
for (size_t i = 0; i < this->input_neuron_indices->size(); ++i) {
this->neuron_potentials->at(this->input_neuron_indices->at(i)) = input[i];
}

Michal Kravcenko
committed
Martin Beseda
committed
/* we iterate through all the feed-forward layers and transfer the signals */
for (auto layer: *this->neuron_layers_feedforward) {
/* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
for (auto si: *layer) {
bias = 0.0;
bias_idx = this->neuron_bias_indices->at(si);
if (bias_idx >= 0) {
bias = this->neuron_biases->at(bias_idx);
}
potential = this->neurons->at(si)->activate(this->neuron_potentials->at(si), bias);

Michal Kravcenko
committed
Martin Beseda
committed
for (auto c: *this->outward_adjacency->at(si)) {
size_t ti = c.first;
size_t ci = c.second;

Michal Kravcenko
committed
Martin Beseda
committed
this->neuron_potentials->at(ti) +=
this->connection_list->at(ci)->eval(*this->connection_weights) * potential;
}

Michal Kravcenko
committed
Martin Beseda
committed
unsigned int i = 0;
for (auto oi: *this->output_neuron_indices) {
bias = 0.0;
bias_idx = this->neuron_bias_indices->at(oi);
if (bias_idx >= 0) {
bias = this->neuron_biases->at(bias_idx);
}
output[i] = this->neurons->at(oi)->activate(this->neuron_potentials->at(oi), bias);
++i;

Michal Kravcenko
committed
}

Michal Kravcenko
committed
}
void NeuralNetwork::add_to_gradient_single(std::vector<double> &input, ::std::vector<double> &error_derivative,
double error_scaling, ::std::vector<double> &gradient) {

Michal Kravcenko
committed
::std::vector<double> scaling_backprog(this->get_n_neurons());
::std::fill(scaling_backprog.begin(), scaling_backprog.end(), 0.0);

Michal Kravcenko
committed
size_t bias_shift = this->get_n_weights();
size_t neuron_idx;
int bias_idx;
double neuron_potential, neuron_potential_t, neuron_bias, connection_weight;

Michal Kravcenko
committed

Michal Kravcenko
committed
/* initial error propagation */
::std::vector<size_t> *current_layer = this->neuron_layers_feedforward->at(
this->neuron_layers_feedforward->size() - 1);
//TODO might not work in the future as the output neurons could be permuted
for (size_t i = 0; i < current_layer->size(); ++i) {
neuron_idx = current_layer->at(i);
scaling_backprog[neuron_idx] = error_derivative[i] * error_scaling;
}

Michal Kravcenko
committed
/* we iterate through all the layers in reverse order and calculate partial derivatives scaled correspondingly */
for (size_t j = this->neuron_layers_feedforward->size(); j > 0; --j) {

Michal Kravcenko
committed
current_layer = this->neuron_layers_feedforward->at(j - 1);

Michal Kravcenko
committed
for (size_t i = 0; i < current_layer->size(); ++i) {

Michal Kravcenko
committed
neuron_idx = current_layer->at(i);
active_neuron = dynamic_cast<NeuronDifferentiable *> (this->neurons->at(neuron_idx));

Michal Kravcenko
committed
if (active_neuron) {
bias_idx = this->neuron_bias_indices->at(neuron_idx);
neuron_potential = this->neuron_potentials->at(neuron_idx);

Michal Kravcenko
committed
if (bias_idx >= 0) {
neuron_bias = this->neuron_biases->at(bias_idx);
gradient[bias_shift + bias_idx] += scaling_backprog[neuron_idx] *
active_neuron->activation_function_eval_derivative_bias(
neuron_potential, neuron_bias);
scaling_backprog[neuron_idx] *= active_neuron->activation_function_eval_derivative(
neuron_potential,
neuron_bias);
}

Michal Kravcenko
committed
/* connections to lower level neurons */
for (auto c: *this->inward_adjacency->at(neuron_idx)) {
size_t ti = c.first;
size_t ci = c.second;

Michal Kravcenko
committed
neuron_potential_t = this->neuron_potentials->at(ti);
connection_weight = this->connection_list->at(ci)->eval(*this->connection_weights);

Michal Kravcenko
committed
this->connection_list->at(ci)->eval_partial_derivative(*this->get_parameter_ptr_weights(),
gradient,
neuron_potential_t *
scaling_backprog[neuron_idx]);

Michal Kravcenko
committed
scaling_backprog[ti] += scaling_backprog[neuron_idx] * connection_weight;
}
} else {
THROW_INVALID_ARGUMENT_ERROR(
"Neuron used in backpropagation does not contain differentiable activation function!\n");

Michal Kravcenko
committed
}
}
}
}
Martin Beseda
committed
void NeuralNetwork::randomize_weights() {

Michal Kravcenko
committed
Martin Beseda
committed
boost::random::mt19937 gen(std::time(0));

Michal Kravcenko
committed
Martin Beseda
committed
// Init weight guess ("optimal" for logistic activation functions)
double r = 4 * sqrt(6. / (this->connection_weights->size()));

Michal Kravcenko
committed
Martin Beseda
committed
boost::random::uniform_real_distribution<> dist(-r, r);

Michal Kravcenko
committed
Martin Beseda
committed
for (size_t i = 0; i < this->connection_weights->size(); i++) {
this->connection_weights->at(i) = dist(gen);
}

Michal Kravcenko
committed
}
Martin Beseda
committed
void NeuralNetwork::randomize_biases() {
Martin Beseda
committed
boost::random::mt19937 gen(std::time(0));
Martin Beseda
committed
// Init weight guess ("optimal" for logistic activation functions)
boost::random::uniform_real_distribution<> dist(-1, 1);
for (size_t i = 0; i < this->neuron_biases->size(); i++) {
this->neuron_biases->at(i) = dist(gen);
}
void NeuralNetwork::randomize_parameters() {
this->randomize_biases();
this->randomize_weights();
}
void NeuralNetwork::scale_biases(double alpha) {
for(size_t i = 0; i < this->get_n_biases(); ++i){
this->neuron_biases->at( i ) *= alpha;
}
}
void NeuralNetwork::scale_weights(double alpha) {
for(size_t i = 0; i < this->get_n_weights(); ++i){
this->connection_weights->at( i ) *= alpha;
}
}
void NeuralNetwork::scale_parameters(double alpha) {
this->scale_biases( alpha );
this->scale_weights( alpha );
}
Martin Beseda
committed
size_t NeuralNetwork::get_n_inputs() {
return this->input_neuron_indices->size();
}

Michal Kravcenko
committed
Martin Beseda
committed
size_t NeuralNetwork::get_n_outputs() {
return this->output_neuron_indices->size();
}
Martin Beseda
committed
size_t NeuralNetwork::get_n_weights() {
return this->connection_weights->size();
Martin Beseda
committed
size_t NeuralNetwork::get_n_biases() {
return this->neuron_biases->size();
}
Martin Beseda
committed
int NeuralNetwork::get_neuron_bias_index(size_t neuron_idx) {
return this->neuron_bias_indices->at(neuron_idx);
Martin Beseda
committed
size_t NeuralNetwork::get_n_neurons() {
return this->neurons->size();
}
Martin Beseda
committed
void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) {
if (!this->input_neuron_indices) {
this->input_neuron_indices = new ::std::vector<size_t>(input_neurons_indices);
Martin Beseda
committed
} else {
delete this->input_neuron_indices;
this->input_neuron_indices = new ::std::vector<size_t>(input_neurons_indices);
Martin Beseda
committed
void NeuralNetwork::specify_output_neurons(std::vector<size_t> &output_neurons_indices) {
if (!this->output_neuron_indices) {
this->output_neuron_indices = new ::std::vector<size_t>(output_neurons_indices);
Martin Beseda
committed
} else {
delete this->output_neuron_indices;
this->output_neuron_indices = new ::std::vector<size_t>(output_neurons_indices);
Martin Beseda
committed
}
}
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
void NeuralNetwork::write_weights() {
std::cout << "Connection weights: ";
if (this->connection_weights) {
for (size_t i = 0; i < this->connection_weights->size() - 1; ++i) {
std::cout << this->connection_weights->at(i) << ", ";
}
std::cout << this->connection_weights->at(this->connection_weights->size() - 1) << std::endl;
}
}
void NeuralNetwork::write_weights(std::string file_path) {
std::ofstream ofs(file_path);
if(!ofs.is_open()) {
THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
}
ofs << "Connection weights: ";
if (this->connection_weights) {
for (size_t i = 0; i < this->connection_weights->size() - 1; ++i) {
ofs << this->connection_weights->at(i) << ", ";
}
ofs << this->connection_weights->at(this->connection_weights->size() - 1) << std::endl;
}
}
void NeuralNetwork::write_weights(std::ofstream* file_path) {
*file_path << "Connection weights: ";
Martin Beseda
committed
if (this->connection_weights) {
for (size_t i = 0; i < this->connection_weights->size() - 1; ++i) {
*file_path << this->connection_weights->at(i) << ", ";
Martin Beseda
committed
}
*file_path << this->connection_weights->at(this->connection_weights->size() - 1) << std::endl;
Martin Beseda
committed
}
}
void NeuralNetwork::write_biases() {
std::cout << "Network biases: ";
if(this->neuron_biases) {
for(unsigned int i = 0; i < this->neuron_biases->size() - 1; i++) {
std::cout << this->neuron_biases->at(i) << ", ";
}
std::cout << this->neuron_biases->at(this->neuron_biases->size() - 1) << std::endl;
}
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
void NeuralNetwork::write_biases(std::string file_path) {
std::ofstream ofs(file_path);
if(!ofs.is_open()) {
THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
}
ofs << "Network biases: ";
if(this->neuron_biases) {
for(unsigned int i = 0; i < this->neuron_biases->size() - 1; i++) {
ofs << this->neuron_biases->at(i) << ", ";
}
ofs << this->neuron_biases->at(this->neuron_biases->size() - 1) << std::endl;
}
}
void NeuralNetwork::write_biases(std::ofstream* file_path) {
*file_path << "Network biases: ";
if(this->neuron_biases) {
for(unsigned int i = 0; i < this->neuron_biases->size() - 1; i++) {
*file_path << this->neuron_biases->at(i) << ", ";
}
*file_path << this->neuron_biases->at(this->neuron_biases->size() - 1) << std::endl;
}
}
void NeuralNetwork::write_stats() {
Martin Beseda
committed
::std::cout << std::flush
<< "Number of neurons: " << this->neurons->size() << ::std::endl
<< "Number of connections: " << this->connection_list->size() << ::std::endl
<< "Number of active weights: " << this->connection_weights->size() << ::std::endl
<< "Number of active biases: " << this->neuron_biases->size() << ::std::endl;
if(this->normalization_strategy) {
Martin Beseda
committed
::std::cout << std::flush
<< "Normalization strategy maximum value: "
<< this->normalization_strategy->get_max_value() << std::endl
<< "Normalization strategy minimum value: "
<< this->normalization_strategy->get_min_value()
<< std::endl;
}
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
void NeuralNetwork::write_stats(std::string file_path) {
std::ofstream ofs(file_path);
if(!ofs.is_open()) {
THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
}
ofs << "Number of neurons: " << this->neurons->size() << ::std::endl
<< "Number of connections: " << this->connection_list->size() << ::std::endl
<< "Number of active weights: " << this->connection_weights->size() << ::std::endl
<< "Number of active biases: " << this->neuron_biases->size() << ::std::endl;
if(this->normalization_strategy) {
ofs << "Normalization strategy maximum value: "
<< this->normalization_strategy->get_max_value() << std::endl
<< "Normalization strategy minimum value: "
<< this->normalization_strategy->get_min_value()
<< std::endl;
}
ofs.close();
}
void NeuralNetwork::write_stats(std::ofstream* file_path) {
*file_path << "Number of neurons: " << this->neurons->size() << ::std::endl
<< "Number of connections: " << this->connection_list->size() << ::std::endl
<< "Number of active weights: " << this->connection_weights->size() << ::std::endl
<< "Number of active biases: " << this->neuron_biases->size() << ::std::endl;
if(this->normalization_strategy) {
*file_path << "Normalization strategy maximum value: "
<< this->normalization_strategy->get_max_value() << std::endl
<< "Normalization strategy minimum value: "
<< this->normalization_strategy->get_min_value()
<< std::endl;
}
}
Martin Beseda
committed
std::vector<double> *NeuralNetwork::get_parameter_ptr_biases() {
return this->neuron_biases;
}
Martin Beseda
committed
std::vector<double> *NeuralNetwork::get_parameter_ptr_weights() {
return this->connection_weights;
Martin Beseda
committed
size_t NeuralNetwork::add_new_connection_to_list(ConnectionFunctionGeneral *con) {
this->connection_list->push_back(con);
return this->connection_list->size() - 1;
}

Michal Kravcenko
committed
Martin Beseda
committed
void NeuralNetwork::add_inward_connection(size_t s, size_t t, size_t con_idx) {
if (!this->inward_adjacency->at(s)) {
this->inward_adjacency->at(s) = new ::std::vector<std::pair<size_t, size_t>>(0);
Martin Beseda
committed
this->inward_adjacency->at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
Martin Beseda
committed
void NeuralNetwork::add_outward_connection(size_t s, size_t t, size_t con_idx) {
if (!this->outward_adjacency->at(s)) {
this->outward_adjacency->at(s) = new ::std::vector<std::pair<size_t, size_t>>(0);
Martin Beseda
committed
this->outward_adjacency->at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
Martin Beseda
committed
void NeuralNetwork::analyze_layer_structure() {
Martin Beseda
committed
if (this->layers_analyzed) {
//nothing to do
return;
}
Martin Beseda
committed
/* buffer preparation */
this->neuron_potentials->resize(this->get_n_neurons());
Martin Beseda
committed
/* space allocation */
if (this->neuron_layers_feedforward) {
for (auto e: *this->neuron_layers_feedforward) {
delete e;
e = nullptr;
}
delete this->neuron_layers_feedforward;
this->neuron_layers_feedforward = nullptr;

Michal Kravcenko
committed
// if(this->neuron_layers_feedbackward){
// for(auto e: *this->neuron_layers_feedbackward){
// delete e;
// e = nullptr;
// }
// delete this->neuron_layers_feedbackward;
// this->neuron_layers_feedbackward = nullptr;
// }
this->neuron_layers_feedforward = new ::std::vector<std::vector<size_t> *>(0);
// this->neuron_layers_feedbackward = new ::std::vector<std::vector<size_t>*>(0);
Martin Beseda
committed
auto n = this->neurons->size();
Martin Beseda
committed
/* helpful counters */
::std::vector<size_t> inward_saturation(n);
::std::vector<size_t> outward_saturation(n);
::std::fill(inward_saturation.begin(), inward_saturation.end(), 0);
::std::fill(outward_saturation.begin(), outward_saturation.end(), 0);
Martin Beseda
committed
for (unsigned int i = 0; i < n; ++i) {
if (this->inward_adjacency->at(i)) {
inward_saturation[i] = this->inward_adjacency->at(i)->size();
}
Martin Beseda
committed
if (this->outward_adjacency->at(i)) {
outward_saturation[i] = this->outward_adjacency->at(i)->size();
}
}
::std::vector<size_t> active_eval_set(2 * n);
Martin Beseda
committed
size_t active_set_size[2];
Martin Beseda
committed
/* feedforward analysis */
active_set_size[0] = 0;
active_set_size[1] = 0;
Martin Beseda
committed
size_t idx1 = 0, idx2 = 1;
active_set_size[0] = this->get_n_inputs();
size_t i = 0;
for (i = 0; i < this->get_n_inputs(); ++i) {
active_eval_set[i] = this->input_neuron_indices->at(i);
}
size_t active_ni;
while (active_set_size[idx1] > 0) {
/* we add the current active set as the new outward layer */
::std::vector<size_t> *new_feedforward_layer = new ::std::vector<size_t>(active_set_size[idx1]);
Martin Beseda
committed
this->neuron_layers_feedforward->push_back(new_feedforward_layer);
//we iterate through the active neurons and propagate the signal
for (i = 0; i < active_set_size[idx1]; ++i) {
active_ni = active_eval_set[i + n * idx1];
new_feedforward_layer->at(i) = active_ni;
Martin Beseda
committed
if (!this->outward_adjacency->at(active_ni)) {
continue;
}
for (auto ni: *(this->outward_adjacency->at(active_ni))) {
inward_saturation[ni.first]--;
Martin Beseda
committed
if (inward_saturation[ni.first] == 0) {
active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
active_set_size[idx2]++;
}
Martin Beseda
committed
idx1 = idx2;
idx2 = (idx1 + 1) % 2;
Martin Beseda
committed
active_set_size[idx2] = 0;
}

Michal Kravcenko
committed
// /* feed backward analysis */
// active_set_size[0] = 0;
// active_set_size[1] = 0;
//
// idx1 = 0;
// idx2 = 1;
//
// active_set_size[0] = this->get_n_outputs();
// for(i = 0; i < this->get_n_outputs(); ++i){
// active_eval_set[i] = this->output_neuron_indices->at(i);
// }
//
// while(active_set_size[idx1] > 0){
//
// /* we add the current active set as the new outward layer */
// ::std::vector<size_t> *new_feedbackward_layer = new ::std::vector<size_t>(active_set_size[idx1]);

Michal Kravcenko
committed
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
// this->neuron_layers_feedbackward->push_back( new_feedbackward_layer );
//
// //we iterate through the active neurons and propagate the signal backward
// for(i = 0; i < active_set_size[idx1]; ++i){
// active_ni = active_eval_set[i + n * idx1];
// new_feedbackward_layer->at( i ) = active_ni;
//
// if(!this->inward_adjacency->at(active_ni)){
// continue;
// }
//
// for(auto ni: *(this->inward_adjacency->at(active_ni))){
// outward_saturation[ni.first]--;
//
// if(outward_saturation[ni.first] == 0){
// active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
// active_set_size[idx2]++;
// }
// }
// }
//
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
//
// active_set_size[idx2] = 0;
// }
Martin Beseda
committed
this->layers_analyzed = true;
}
Martin Beseda
committed
void NeuralNetwork::save_text(std::string filepath) {
Martin Beseda
committed
{
boost::archive::text_oarchive oa(ofs);
oa << *this;
ofs.close();
}
Martin Beseda
committed
NormalizationStrategy* NeuralNetwork::get_normalization_strategy_instance() {