Newer
Older

Michal Kravcenko
committed
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 13.6.18 -
*/

Michal Kravcenko
committed
Martin Beseda
committed
#include <iostream>
#include <NetConnection/ConnectionFunctionConstant.h>
Martin Beseda
committed
#include "message.h"

Michal Kravcenko
committed
#include "NeuralNetwork.h"
Martin Beseda
committed
#include "NeuralNetworkSerialization.h"
#include "exceptions.h"
Martin Beseda
committed
namespace lib4neuro {
NeuralNetwork::NeuralNetwork() {
this->neurons = new ::std::vector<Neuron *>(0);
this->neuron_biases = new ::std::vector<double>(0);
this->neuron_potentials = new ::std::vector<double>(0);
this->neuron_bias_indices = new ::std::vector<int>(0);
this->connection_weights = new ::std::vector<double>(0);
this->connection_list = new ::std::vector<ConnectionFunctionGeneral *>(0);
this->inward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
this->outward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
this->neuron_layers_feedforward = new ::std::vector<std::vector<size_t> *>(0);
this->neuron_layers_feedbackward = new ::std::vector<std::vector<size_t> *>(0);
this->input_neuron_indices = new ::std::vector<size_t>(0);
this->output_neuron_indices = new ::std::vector<size_t>(0);
Martin Beseda
committed
this->delete_weights = true;
this->delete_biases = true;
this->layers_analyzed = false;
}
Martin Beseda
committed
NeuralNetwork::NeuralNetwork(std::string filepath) {
if(ifs.is_open()) {
try {
boost::archive::text_iarchive ia(ifs);
ia >> *this;
}catch(boost::archive::archive_exception& e) {
THROW_RUNTIME_ERROR("Serialized archive error: '" + e.what() + "'! Please, check if your file is really "
"the serialized DataSet.");
}
ifs.close();
} else {
THROW_RUNTIME_ERROR("File '" + filepath + "' couldn't be open!");
}
Martin Beseda
committed
}
Martin Beseda
committed
NeuralNetwork::~NeuralNetwork() {
Martin Beseda
committed
if (this->neurons) {
for (auto n: *(this->neurons)) {
delete n;
n = nullptr;
}
delete this->neurons;
this->neurons = nullptr;
Martin Beseda
committed
if (this->neuron_potentials) {
delete this->neuron_potentials;
this->neuron_potentials = nullptr;
}
Martin Beseda
committed
if (this->neuron_bias_indices) {
delete this->neuron_bias_indices;
this->neuron_bias_indices = nullptr;
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->output_neuron_indices) {
delete this->output_neuron_indices;
this->output_neuron_indices = nullptr;
}
Martin Beseda
committed
if (this->input_neuron_indices) {
delete this->input_neuron_indices;
this->input_neuron_indices = nullptr;
}
Martin Beseda
committed
if (this->connection_weights && this->delete_weights) {
delete this->connection_weights;
this->connection_weights = nullptr;
}
Martin Beseda
committed
if (this->neuron_biases && this->delete_biases) {
delete this->neuron_biases;
this->neuron_biases = nullptr;
}
Martin Beseda
committed
if (this->connection_list) {
Martin Beseda
committed
if (this->delete_weights) {
for (auto c: *this->connection_list) {
delete c;
c = nullptr;
}
}
delete this->connection_list;
this->connection_list = nullptr;
Martin Beseda
committed
if (this->inward_adjacency) {
for (auto e: *this->inward_adjacency) {
if (e) {
delete e;
e = nullptr;
}
Martin Beseda
committed
delete this->inward_adjacency;
this->inward_adjacency = nullptr;
}
Martin Beseda
committed
if (this->outward_adjacency) {
for (
auto e: *this->outward_adjacency) {
Martin Beseda
committed
if (e) {
delete e;
e = nullptr;
}
delete this->
outward_adjacency;
this->
outward_adjacency = nullptr;
Martin Beseda
committed
if (this->neuron_layers_feedforward) {
for (
auto e: *this->neuron_layers_feedforward) {
Martin Beseda
committed
delete e;
e = nullptr;
}
delete this->neuron_layers_feedforward;
this->neuron_layers_feedforward = nullptr;
}
Martin Beseda
committed
if (this->neuron_layers_feedbackward) {
for (
auto e: *this->neuron_layers_feedbackward) {
Martin Beseda
committed
delete e;
e = nullptr;
}
delete this->neuron_layers_feedbackward;
this->neuron_layers_feedbackward = nullptr;
}
NeuralNetwork *NeuralNetwork::get_subnet(::std::vector<size_t> &input_neuron_indices,
::std::vector<size_t> &output_neuron_indices) {
THROW_NOT_IMPLEMENTED_ERROR();
Martin Beseda
committed
NeuralNetwork *output_net = nullptr;
// TODO rework due to the changed structure of the class
// Neuron * active_neuron, * target_neuron;
//
// size_t n = this->neurons->size();
// bool *part_of_subnetwork = new bool[n];
// ::std::fill(part_of_subnetwork, part_of_subnetwork + n, false);
//
// bool *is_reachable_from_source = new bool[n];
// bool *is_reachable_from_destination = new bool[n];
// ::std::fill(is_reachable_from_source, is_reachable_from_source + n, false);
// ::std::fill(is_reachable_from_destination, is_reachable_from_destination + n, false);
// ::std::fill(visited_neurons, visited_neurons + n, false);
//
// size_t active_set_size[2];
// active_set_size[0] = 0;
// active_set_size[1] = 0;
// size_t * active_neuron_set = new size_t[2 * n];
// size_t idx1 = 0, idx2 = 1;
//
// /* MAPPING BETWEEN NEURONS AND THEIR INDICES */
// size_t idx = 0, idx_target;
// for(Neuron *v: *this->neurons){
// v->set_idx( idx );
// idx++;
// }
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// for(size_t i: input_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
//
// visited_neurons[i] = true;
// }
//
// /* FORWARD PASS */
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_source[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// for(Connection* connection: *(active_neuron->get_connections_out())){
//
// target_neuron = connection->get_neuron_out( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// active_set_size[0] = active_set_size[1] = 0;
// ::std::fill(visited_neurons, visited_neurons + n, false);
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
//
// for(size_t i: output_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
//
// visited_neurons[i] = true;
// }
//
// /* BACKWARD PASS */
// size_t n_new_neurons = 0;
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_destination[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// if(is_reachable_from_source[ idx ]){
// n_new_neurons++;
// }
//
// for(Connection* connection: *(active_neuron->get_connections_in())){
//
// target_neuron = connection->get_neuron_in( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
// /* FOR CONSISTENCY REASONS */
// for(size_t in: input_neuron_indices){
// if( !is_reachable_from_destination[in] ){
// n_new_neurons++;
// }
// is_reachable_from_destination[in] = true;
// }
// /* FOR CONSISTENCY REASONS */
// for(size_t in: output_neuron_indices){
// if( !is_reachable_from_source[in] ){
// n_new_neurons++;
// }
// is_reachable_from_source[in] = true;
// }
//
// /* WE FORM THE SET OF NEURONS IN THE OUTPUT NETWORK */
// if(n_new_neurons > 0){
//// printf("Number of new neurons: %d\n", n_new_neurons);
// output_net = new NeuralNetwork();
// output_net->set_weight_array( this->connection_weights );
//
// ::std::vector<size_t > local_inputs(0), local_outputs(0);
// local_inputs.reserve(input_neuron_indices.size());
// local_outputs.reserve(output_neuron_indices.size());
//
// ::std::vector<Neuron*> local_n_arr(0);
// ::std::vector<Neuron*> local_local_n_arr(0);
// local_local_n_arr.reserve( n_new_neurons );
//
// int * neuron_local_mapping = new int[ n ];
// ::std::fill(neuron_local_mapping, neuron_local_mapping + n, -1);
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// idx = 0;
// for(size_t i = 0; i < n; ++i){
// if(is_reachable_from_source[i] && is_reachable_from_destination[i]){
// neuron_local_mapping[i] = (int)idx;
// idx++;
//
// Neuron *new_neuron = this->neurons->at(i)->get_copy( );
//
// output_net->add_neuron( new_neuron );
// local_local_n_arr.push_back( new_neuron );
// local_n_arr.push_back( this->neurons->at(i) );
// }
// }
// for(size_t in: input_neuron_indices){
// local_inputs.push_back(neuron_local_mapping[in]);
// }
// for(size_t in: output_neuron_indices){
// local_outputs.push_back(neuron_local_mapping[in]);
// }
//
//// printf("%d\n", local_n_arr.size());
//// printf("inputs: %d, outputs: %d\n", local_inputs.size(), local_outputs.size());
// int local_idx_1, local_idx_2;
// for(Neuron* source_neuron: local_n_arr){
// //we also add the relevant edges
// local_idx_1 = neuron_local_mapping[source_neuron->get_idx()];
//
// for(Connection* connection: *(source_neuron->get_connections_out( ))){
// target_neuron = connection->get_neuron_out();
//
// local_idx_2 = neuron_local_mapping[target_neuron->get_idx()];
// if(local_idx_2 >= 0){
// //this edge is part of the subnetwork
// Connection* new_connection = connection->get_copy( local_local_n_arr[local_idx_1], local_local_n_arr[local_idx_2] );
//
// local_local_n_arr[local_idx_1]->add_connection_out(new_connection);
// local_local_n_arr[local_idx_2]->add_connection_in(new_connection);
//
//// printf("adding a connection between neurons %d, %d\n", local_idx_1, local_idx_2);
// }
//
// }
//
// }
// output_net->specify_input_neurons(local_inputs);
// output_net->specify_output_neurons(local_outputs);
//
//
// delete [] neuron_local_mapping;
// }
//
// delete [] is_reachable_from_source;
// delete [] is_reachable_from_destination;
// delete [] part_of_subnetwork;
// delete [] visited_neurons;
// delete [] active_neuron_set;
//
//
Martin Beseda
committed
return output_net;
}
Martin Beseda
committed
size_t NeuralNetwork::add_neuron(Neuron *n, BIAS_TYPE bt, size_t bias_idx) {
Martin Beseda
committed
if (bt == BIAS_TYPE::NO_BIAS) {
this->neuron_bias_indices->push_back(-1);
} else if (bt == BIAS_TYPE::NEXT_BIAS) {
this->neuron_bias_indices->push_back((int) this->neuron_biases->size());
this->neuron_biases->resize(this->neuron_biases->size() + 1);
} else if (bt == BIAS_TYPE::EXISTING_BIAS) {
if (bias_idx >= this->neuron_biases->size()) {
::std::cerr << "The supplied bias index is too large!\n" << ::std::endl;
Martin Beseda
committed
}
this->neuron_bias_indices->push_back((int) bias_idx);

Michal Kravcenko
committed
}
this->outward_adjacency->push_back(new ::std::vector<std::pair<size_t, size_t>>(0));
this->inward_adjacency->push_back(new ::std::vector<std::pair<size_t, size_t>>(0));
Martin Beseda
committed
this->neurons->push_back(n);
Martin Beseda
committed
this->layers_analyzed = false;
return this->neurons->size() - 1;
}
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
void NeuralNetwork::eval_single_debug(::std::vector<double> &input, ::std::vector<double> &output,
::std::vector<double> *custom_weights_and_biases) {
if ((this->input_neuron_indices->size() * this->output_neuron_indices->size()) <= 0) {
THROW_INVALID_ARGUMENT_ERROR("Input and output neurons have not been specified!");
}
if (this->input_neuron_indices->size() != input.size()) {
THROW_INVALID_ARGUMENT_ERROR("Data input size != Network input size");
}
if (this->output_neuron_indices->size() != output.size()) {
THROW_INVALID_ARGUMENT_ERROR("Data output size != Network output size");
}
double potential, bias;
int bias_idx;
this->copy_parameter_space(custom_weights_and_biases);
this->analyze_layer_structure();
/* reset of the output and the neuron potentials */
::std::fill(output.begin(), output.end(), 0.0);
::std::fill(this->neuron_potentials->begin(), this->neuron_potentials->end(), 0.0);
/* set the potentials of the input neurons */
for (size_t i = 0; i < this->input_neuron_indices->size(); ++i) {
this->neuron_potentials->at(this->input_neuron_indices->at(i)) = input[i];
std::cout << this->neuron_potentials->at(this->input_neuron_indices->at(i)) << ", ";
}
std::cout << std::endl;
/* we iterate through all the feed-forward layers and transfer the signals */
for (auto layer: *this->neuron_layers_feedforward) {
/* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
for (auto si: *layer) {
bias = 0.0;
bias_idx = this->neuron_bias_indices->at(si);
if (bias_idx >= 0) {
bias = this->neuron_biases->at(bias_idx);
}
potential = this->neurons->at(si)->activate(this->neuron_potentials->at(si), bias);
std::cout << " applying bias: " << bias << " to neuron potential: " << this->neuron_potentials->at(si) << " -> " << potential << std::endl;
for (auto c: *this->outward_adjacency->at(si)) {
size_t ti = c.first;
size_t ci = c.second;
this->neuron_potentials->at(ti) +=
this->connection_list->at(ci)->eval(*this->connection_weights) * potential;
std::cout << " adding input to neuron " << ti << " += " << this->connection_list->at(ci)->eval(*this->connection_weights) << "*" << potential << std::endl;
}
}
}
unsigned int i = 0;
for (auto oi: *this->output_neuron_indices) {
bias = 0.0;
bias_idx = this->neuron_bias_indices->at(oi);
if (bias_idx >= 0) {
bias = this->neuron_biases->at(bias_idx);
}
output[i] = this->neurons->at(oi)->activate(this->neuron_potentials->at(oi), bias);
std::cout << "setting the output[" << i << "] = " << output[i] << "(bias = " << bias << ")" << std::endl;
++i;
}
}
Martin Beseda
committed
size_t
NeuralNetwork::add_connection_simple(size_t n1_idx, size_t n2_idx, SIMPLE_CONNECTION_TYPE sct,
size_t weight_idx) {
Martin Beseda
committed
ConnectionFunctionIdentity *con_weight_u1u2;
if (sct == SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT) {
con_weight_u1u2 = new ConnectionFunctionIdentity();
} else {
if (sct == SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT) {
weight_idx = this->connection_weights->size();
this->connection_weights->resize(weight_idx + 1);
} else if (sct == SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT) {
if (weight_idx >= this->connection_weights->size()) {
::std::cerr << "The supplied connection weight index is too large!\n" << ::std::endl;
Martin Beseda
committed
}

Michal Kravcenko
committed
}
Martin Beseda
committed
con_weight_u1u2 = new ConnectionFunctionIdentity(weight_idx);
}
Martin Beseda
committed
size_t conn_idx = this->add_new_connection_to_list(con_weight_u1u2);
Martin Beseda
committed
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
Martin Beseda
committed
this->layers_analyzed = false;
Martin Beseda
committed
return this->connection_list->size() - 1;
}
NeuralNetwork::add_connection_constant(size_t n1_idx, size_t n2_idx, double weight) {
ConnectionFunctionConstant *con_weight_u1u2 = new ConnectionFunctionConstant( weight );
size_t conn_idx = this->add_new_connection_to_list(con_weight_u1u2);
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
this->layers_analyzed = false;
return conn_idx;
Martin Beseda
committed
void NeuralNetwork::add_existing_connection(size_t n1_idx, size_t n2_idx, size_t connection_idx,
NeuralNetwork &parent_network) {
Martin Beseda
committed
size_t conn_idx = this->add_new_connection_to_list(parent_network.connection_list->at(connection_idx));
Martin Beseda
committed
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
Martin Beseda
committed
this->layers_analyzed = false;
}
Martin Beseda
committed
void NeuralNetwork::copy_parameter_space(std::vector<double> *parameters) {
if (parameters != nullptr) {
for (unsigned int i = 0; i < this->connection_weights->size(); ++i) {
(*this->connection_weights).at(i) = (*parameters).at(i);
Martin Beseda
committed
}
Martin Beseda
committed
for (unsigned int i = 0; i < this->neuron_biases->size(); ++i) {
(*this->neuron_biases).at(i) = (*parameters).at(i + this->connection_weights->size());
Martin Beseda
committed
}
}

Michal Kravcenko
committed
Martin Beseda
committed
void NeuralNetwork::set_parameter_space_pointers(NeuralNetwork &parent_network) {

Michal Kravcenko
committed
Martin Beseda
committed
if (this->connection_weights) {
delete connection_weights;
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->neuron_biases) {
delete this->neuron_biases;
}

Michal Kravcenko
committed
Martin Beseda
committed
this->connection_weights = parent_network.connection_weights;
this->neuron_biases = parent_network.neuron_biases;
Martin Beseda
committed
this->delete_biases = false;
this->delete_weights = false;

Michal Kravcenko
committed
}
void NeuralNetwork::eval_single(::std::vector<double>& input,
::std::vector<double>& output,
::std::vector<double>* custom_weights_and_biases) {
Martin Beseda
committed
if ((this->input_neuron_indices->size() * this->output_neuron_indices->size()) <= 0) {
THROW_INVALID_ARGUMENT_ERROR("Input and output neurons have not been specified!");
Martin Beseda
committed
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->input_neuron_indices->size() != input.size()) {
THROW_INVALID_ARGUMENT_ERROR("Data input size != Network input size");
Martin Beseda
committed
}

Michal Kravcenko
committed
Martin Beseda
committed
if (this->output_neuron_indices->size() != output.size()) {
THROW_INVALID_ARGUMENT_ERROR("Data output size != Network output size");
Martin Beseda
committed
}
Martin Beseda
committed
double potential, bias;
int bias_idx;
Martin Beseda
committed
this->copy_parameter_space(custom_weights_and_biases);
Martin Beseda
committed
this->analyze_layer_structure();

Michal Kravcenko
committed
Martin Beseda
committed
/* reset of the output and the neuron potentials */
::std::fill(output.begin(), output.end(), 0.0);
::std::fill(this->neuron_potentials->begin(), this->neuron_potentials->end(), 0.0);

Michal Kravcenko
committed
Martin Beseda
committed
/* set the potentials of the input neurons */
for (size_t i = 0; i < this->input_neuron_indices->size(); ++i) {
this->neuron_potentials->at(this->input_neuron_indices->at(i)) = input[i];
}

Michal Kravcenko
committed
Martin Beseda
committed
/* we iterate through all the feed-forward layers and transfer the signals */
for (auto layer: *this->neuron_layers_feedforward) {
/* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
for (auto si: *layer) {
bias = 0.0;
bias_idx = this->neuron_bias_indices->at(si);
if (bias_idx >= 0) {
bias = this->neuron_biases->at(bias_idx);
}
potential = this->neurons->at(si)->activate(this->neuron_potentials->at(si), bias);

Michal Kravcenko
committed
Martin Beseda
committed
for (auto c: *this->outward_adjacency->at(si)) {
size_t ti = c.first;
size_t ci = c.second;

Michal Kravcenko
committed
Martin Beseda
committed
this->neuron_potentials->at(ti) +=
this->connection_list->at(ci)->eval(*this->connection_weights) * potential;
}

Michal Kravcenko
committed
Martin Beseda
committed
unsigned int i = 0;
for (auto oi: *this->output_neuron_indices) {
bias = 0.0;
bias_idx = this->neuron_bias_indices->at(oi);
if (bias_idx >= 0) {
bias = this->neuron_biases->at(bias_idx);
}
output[i] = this->neurons->at(oi)->activate(this->neuron_potentials->at(oi), bias);
++i;

Michal Kravcenko
committed
}

Michal Kravcenko
committed
}
void NeuralNetwork::add_to_gradient_single(std::vector<double> &input, ::std::vector<double> &error_derivative,
double error_scaling, ::std::vector<double> &gradient) {

Michal Kravcenko
committed
::std::vector<double> scaling_backprog(this->get_n_neurons());
::std::fill(scaling_backprog.begin(), scaling_backprog.end(), 0.0);

Michal Kravcenko
committed
size_t bias_shift = this->get_n_weights();
size_t neuron_idx;
int bias_idx;
double neuron_potential, neuron_potential_t, neuron_bias, connection_weight;

Michal Kravcenko
committed

Michal Kravcenko
committed
/* initial error propagation */
::std::vector<size_t> *current_layer = this->neuron_layers_feedforward->at(
this->neuron_layers_feedforward->size() - 1);
//TODO might not work in the future as the output neurons could be permuted
for (size_t i = 0; i < current_layer->size(); ++i) {
neuron_idx = current_layer->at(i);
scaling_backprog[neuron_idx] = error_derivative[i] * error_scaling;
}

Michal Kravcenko
committed
/* we iterate through all the layers in reverse order and calculate partial derivatives scaled correspondingly */
for (size_t j = this->neuron_layers_feedforward->size(); j > 0; --j) {

Michal Kravcenko
committed
current_layer = this->neuron_layers_feedforward->at(j - 1);

Michal Kravcenko
committed
for (size_t i = 0; i < current_layer->size(); ++i) {

Michal Kravcenko
committed
neuron_idx = current_layer->at(i);
active_neuron = dynamic_cast<NeuronDifferentiable *> (this->neurons->at(neuron_idx));

Michal Kravcenko
committed
if (active_neuron) {
bias_idx = this->neuron_bias_indices->at(neuron_idx);
neuron_potential = this->neuron_potentials->at(neuron_idx);

Michal Kravcenko
committed
if (bias_idx >= 0) {
neuron_bias = this->neuron_biases->at(bias_idx);
gradient[bias_shift + bias_idx] += scaling_backprog[neuron_idx] *
active_neuron->activation_function_eval_derivative_bias(
neuron_potential, neuron_bias);
scaling_backprog[neuron_idx] *= active_neuron->activation_function_eval_derivative(
neuron_potential,
neuron_bias);
}

Michal Kravcenko
committed
/* connections to lower level neurons */
for (auto c: *this->inward_adjacency->at(neuron_idx)) {
size_t ti = c.first;
size_t ci = c.second;

Michal Kravcenko
committed

Michal Kravcenko
committed
neuron_potential_t = this->neurons->at(ti)->get_last_activation_value( );
connection_weight = this->connection_list->at(ci)->eval(*this->connection_weights);

Michal Kravcenko
committed
this->connection_list->at(ci)->eval_partial_derivative(*this->get_parameter_ptr_weights(),
gradient,
neuron_potential_t *
scaling_backprog[neuron_idx]);

Michal Kravcenko
committed
scaling_backprog[ti] += scaling_backprog[neuron_idx] * connection_weight;
}
} else {
THROW_INVALID_ARGUMENT_ERROR(
"Neuron used in backpropagation does not contain differentiable activation function!\n");

Michal Kravcenko
committed
}
}
}
}

Michal Kravcenko
committed
void NeuralNetwork::add_to_gradient_single_debug(std::vector<double> &input, ::std::vector<double> &error_derivative,
double error_scaling, ::std::vector<double> &gradient) {

Michal Kravcenko
committed

Michal Kravcenko
committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
::std::vector<double> scaling_backprog(this->get_n_neurons());
::std::fill(scaling_backprog.begin(), scaling_backprog.end(), 0.0);
size_t bias_shift = this->get_n_weights();
size_t neuron_idx;
int bias_idx;
double neuron_potential, neuron_activation_t, neuron_bias, connection_weight;
NeuronDifferentiable *active_neuron;
/* initial error propagation */
::std::vector<size_t> *current_layer = this->neuron_layers_feedforward->at(
this->neuron_layers_feedforward->size() - 1);
//TODO might not work in the future as the output neurons could be permuted
std::cout << "Error scaling on the output layer: ";
for (size_t i = 0; i < current_layer->size(); ++i) {
neuron_idx = current_layer->at(i);
scaling_backprog[neuron_idx] = error_derivative[i] * error_scaling;
std::cout << scaling_backprog[neuron_idx] << " [neuron " << neuron_idx << "], ";
}
std::cout << std::endl;
/* we iterate through all the layers in reverse order and calculate partial derivatives scaled correspondingly */
for (size_t j = this->neuron_layers_feedforward->size(); j > 0; --j) {
current_layer = this->neuron_layers_feedforward->at(j - 1);
for (size_t i = 0; i < current_layer->size(); ++i) {
neuron_idx = current_layer->at(i);
active_neuron = dynamic_cast<NeuronDifferentiable *> (this->neurons->at(neuron_idx));
if (active_neuron) {
std::cout << " [backpropagation] active neuron: " << neuron_idx << std::endl;
bias_idx = this->neuron_bias_indices->at(neuron_idx);
neuron_potential = this->neuron_potentials->at(neuron_idx);
if (bias_idx >= 0) {
neuron_bias = this->neuron_biases->at(bias_idx);
gradient[bias_shift + bias_idx] += scaling_backprog[neuron_idx] *
active_neuron->activation_function_eval_derivative_bias(
neuron_potential, neuron_bias);
scaling_backprog[neuron_idx] *= active_neuron->activation_function_eval_derivative(
neuron_potential,
neuron_bias);
}
std::cout << " [backpropagation] scaling coefficient: " << scaling_backprog[neuron_idx] << std::endl;
/* connections to lower level neurons */
for (auto c: *this->inward_adjacency->at(neuron_idx)) {
size_t ti = c.first;
size_t ci = c.second;
neuron_activation_t = this->neurons->at(ti)->get_last_activation_value( );
connection_weight = this->connection_list->at(ci)->eval(*this->connection_weights);
std::cout << " [backpropagation] value ("<<ti<< "): " << neuron_activation_t << ", scaling: " << scaling_backprog[neuron_idx] << std::endl;
this->connection_list->at(ci)->eval_partial_derivative(*this->get_parameter_ptr_weights(),
gradient,
neuron_activation_t *
scaling_backprog[neuron_idx]);
scaling_backprog[ti] += scaling_backprog[neuron_idx] * connection_weight;
}
} else {
THROW_INVALID_ARGUMENT_ERROR(
"Neuron used in backpropagation does not contain differentiable activation function!\n");
}
}
}
}

Michal Kravcenko
committed
void NeuralNetwork::randomize_weights() {

Michal Kravcenko
committed
Martin Beseda
committed
// Init weight guess ("optimal" for logistic activation functions)
double r = 4 * sqrt(6. / (this->connection_weights->size()));

Michal Kravcenko
committed
Martin Beseda
committed
boost::random::uniform_real_distribution<> dist(-r, r);

Michal Kravcenko
committed
Martin Beseda
committed
for (size_t i = 0; i < this->connection_weights->size(); i++) {
this->connection_weights->at(i) = dist(gen);
}

Michal Kravcenko
committed
}
Martin Beseda
committed
void NeuralNetwork::randomize_biases() {
Martin Beseda
committed
// Init weight guess ("optimal" for logistic activation functions)
boost::random::uniform_real_distribution<> dist(-1, 1);
Martin Beseda
committed
for (size_t i = 0; i < this->neuron_biases->size(); i++) {
this->neuron_biases->at(i) = dist(gen);
}
void NeuralNetwork::randomize_parameters() {
this->randomize_biases();
this->randomize_weights();
}
void NeuralNetwork::scale_biases(double alpha) {
for(size_t i = 0; i < this->get_n_biases(); ++i){
this->neuron_biases->at( i ) *= alpha;
}
}
void NeuralNetwork::scale_weights(double alpha) {
for(size_t i = 0; i < this->get_n_weights(); ++i){
this->connection_weights->at( i ) *= alpha;
}
}
void NeuralNetwork::scale_parameters(double alpha) {
this->scale_biases( alpha );
this->scale_weights( alpha );
}
Martin Beseda
committed
size_t NeuralNetwork::get_n_inputs() {
return this->input_neuron_indices->size();
}

Michal Kravcenko
committed
Martin Beseda
committed
size_t NeuralNetwork::get_n_outputs() {
return this->output_neuron_indices->size();
}
Martin Beseda
committed
size_t NeuralNetwork::get_n_weights() {
return this->connection_weights->size();
Martin Beseda
committed
size_t NeuralNetwork::get_n_biases() {
return this->neuron_biases->size();
}
Martin Beseda
committed
int NeuralNetwork::get_neuron_bias_index(size_t neuron_idx) {
return this->neuron_bias_indices->at(neuron_idx);
Martin Beseda
committed
size_t NeuralNetwork::get_n_neurons() {
return this->neurons->size();
}
Martin Beseda
committed
void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) {
if (!this->input_neuron_indices) {
this->input_neuron_indices = new ::std::vector<size_t>(input_neurons_indices);
Martin Beseda
committed
} else {
delete this->input_neuron_indices;
this->input_neuron_indices = new ::std::vector<size_t>(input_neurons_indices);
Martin Beseda
committed
void NeuralNetwork::specify_output_neurons(std::vector<size_t> &output_neurons_indices) {
if (!this->output_neuron_indices) {
this->output_neuron_indices = new ::std::vector<size_t>(output_neurons_indices);
Martin Beseda
committed
} else {
delete this->output_neuron_indices;
this->output_neuron_indices = new ::std::vector<size_t>(output_neurons_indices);
Martin Beseda
committed
}
}
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
void NeuralNetwork::write_weights() {
std::cout << "Connection weights: ";
if (this->connection_weights) {
for (size_t i = 0; i < this->connection_weights->size() - 1; ++i) {
std::cout << this->connection_weights->at(i) << ", ";
}
std::cout << this->connection_weights->at(this->connection_weights->size() - 1) << std::endl;
}
}
void NeuralNetwork::write_weights(std::string file_path) {
std::ofstream ofs(file_path);
if(!ofs.is_open()) {
THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
}
ofs << "Connection weights: ";
if (this->connection_weights) {
for (size_t i = 0; i < this->connection_weights->size() - 1; ++i) {
ofs << this->connection_weights->at(i) << ", ";
}
ofs << this->connection_weights->at(this->connection_weights->size() - 1) << std::endl;
}
}
void NeuralNetwork::write_weights(std::ofstream* file_path) {
*file_path << "Connection weights: ";
Martin Beseda
committed
if (this->connection_weights) {
for (size_t i = 0; i < this->connection_weights->size() - 1; ++i) {
*file_path << this->connection_weights->at(i) << ", ";
Martin Beseda
committed
}
*file_path << this->connection_weights->at(this->connection_weights->size() - 1) << std::endl;
Martin Beseda
committed
}
}
void NeuralNetwork::write_biases() {
std::cout << "Network biases: ";
if(this->neuron_biases) {
for(unsigned int i = 0; i < this->neuron_biases->size() - 1; i++) {
std::cout << this->neuron_biases->at(i) << ", ";
}
std::cout << this->neuron_biases->at(this->neuron_biases->size() - 1) << std::endl;
}
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
void NeuralNetwork::write_biases(std::string file_path) {
std::ofstream ofs(file_path);
if(!ofs.is_open()) {
THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
}
ofs << "Network biases: ";
if(this->neuron_biases) {
for(unsigned int i = 0; i < this->neuron_biases->size() - 1; i++) {
ofs << this->neuron_biases->at(i) << ", ";
}
ofs << this->neuron_biases->at(this->neuron_biases->size() - 1) << std::endl;
}
}
void NeuralNetwork::write_biases(std::ofstream* file_path) {
*file_path << "Network biases: ";
if(this->neuron_biases) {
for(unsigned int i = 0; i < this->neuron_biases->size() - 1; i++) {
*file_path << this->neuron_biases->at(i) << ", ";
}
*file_path << this->neuron_biases->at(this->neuron_biases->size() - 1) << std::endl;
}
}
void NeuralNetwork::write_stats() {
Martin Beseda
committed
::std::cout << std::flush
<< "Number of neurons: " << this->neurons->size() << ::std::endl
<< "Number of connections: " << this->connection_list->size() << ::std::endl
<< "Number of active weights: " << this->connection_weights->size() << ::std::endl
<< "Number of active biases: " << this->neuron_biases->size() << ::std::endl;
if(this->normalization_strategy) {
Martin Beseda
committed
::std::cout << std::flush
<< "Normalization strategy maximum value: "
<< this->normalization_strategy->get_max_value() << std::endl
<< "Normalization strategy minimum value: "
<< this->normalization_strategy->get_min_value()
<< std::endl;
}
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
void NeuralNetwork::write_stats(std::string file_path) {
std::ofstream ofs(file_path);
if(!ofs.is_open()) {
THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
}
ofs << "Number of neurons: " << this->neurons->size() << ::std::endl
<< "Number of connections: " << this->connection_list->size() << ::std::endl
<< "Number of active weights: " << this->connection_weights->size() << ::std::endl
<< "Number of active biases: " << this->neuron_biases->size() << ::std::endl;
if(this->normalization_strategy) {
ofs << "Normalization strategy maximum value: "
<< this->normalization_strategy->get_max_value() << std::endl
<< "Normalization strategy minimum value: "
<< this->normalization_strategy->get_min_value()
<< std::endl;
}
ofs.close();
}
void NeuralNetwork::write_stats(std::ofstream* file_path) {
*file_path << "Number of neurons: " << this->neurons->size() << ::std::endl
<< "Number of connections: " << this->connection_list->size() << ::std::endl
<< "Number of active weights: " << this->connection_weights->size() << ::std::endl
<< "Number of active biases: " << this->neuron_biases->size() << ::std::endl;
if(this->normalization_strategy) {
*file_path << "Normalization strategy maximum value: "
<< this->normalization_strategy->get_max_value() << std::endl
<< "Normalization strategy minimum value: "
<< this->normalization_strategy->get_min_value()
<< std::endl;
}
}
Martin Beseda
committed
std::vector<double> *NeuralNetwork::get_parameter_ptr_biases() {
return this->neuron_biases;
}
Martin Beseda
committed
std::vector<double> *NeuralNetwork::get_parameter_ptr_weights() {
return this->connection_weights;
Martin Beseda
committed
size_t NeuralNetwork::add_new_connection_to_list(ConnectionFunctionGeneral *con) {
this->connection_list->push_back(con);
return this->connection_list->size() - 1;
}

Michal Kravcenko
committed
Martin Beseda
committed
void NeuralNetwork::add_inward_connection(size_t s, size_t t, size_t con_idx) {
if (!this->inward_adjacency->at(s)) {
this->inward_adjacency->at(s) = new ::std::vector<std::pair<size_t, size_t>>(0);
Martin Beseda
committed
this->inward_adjacency->at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
Martin Beseda
committed
void NeuralNetwork::add_outward_connection(size_t s, size_t t, size_t con_idx) {
if (!this->outward_adjacency->at(s)) {
this->outward_adjacency->at(s) = new ::std::vector<std::pair<size_t, size_t>>(0);
Martin Beseda
committed
this->outward_adjacency->at(s)->push_back(std::pair<size_t, size_t>(t, con_idx));
Martin Beseda
committed
void NeuralNetwork::analyze_layer_structure() {
Martin Beseda
committed
if (this->layers_analyzed) {
//nothing to do
return;
}
Martin Beseda
committed
/* buffer preparation */
this->neuron_potentials->resize(this->get_n_neurons());
Martin Beseda
committed
/* space allocation */
if (this->neuron_layers_feedforward) {
for (auto e: *this->neuron_layers_feedforward) {
delete e;
e = nullptr;
}
delete this->neuron_layers_feedforward;
this->neuron_layers_feedforward = nullptr;

Michal Kravcenko
committed
// if(this->neuron_layers_feedbackward){
// for(auto e: *this->neuron_layers_feedbackward){
// delete e;
// e = nullptr;
// }
// delete this->neuron_layers_feedbackward;
// this->neuron_layers_feedbackward = nullptr;
// }
this->neuron_layers_feedforward = new ::std::vector<std::vector<size_t> *>(0);
// this->neuron_layers_feedbackward = new ::std::vector<std::vector<size_t>*>(0);
Martin Beseda
committed
auto n = this->neurons->size();
Martin Beseda
committed
/* helpful counters */
::std::vector<size_t> inward_saturation(n);
::std::vector<size_t> outward_saturation(n);
::std::fill(inward_saturation.begin(), inward_saturation.end(), 0);
::std::fill(outward_saturation.begin(), outward_saturation.end(), 0);
Martin Beseda
committed
for (unsigned int i = 0; i < n; ++i) {
if (this->inward_adjacency->at(i)) {
inward_saturation[i] = this->inward_adjacency->at(i)->size();
}
Martin Beseda
committed
if (this->outward_adjacency->at(i)) {
outward_saturation[i] = this->outward_adjacency->at(i)->size();
}
}
::std::vector<size_t> active_eval_set(2 * n);
Martin Beseda
committed
size_t active_set_size[2];
Martin Beseda
committed
/* feedforward analysis */
active_set_size[0] = 0;
active_set_size[1] = 0;
Martin Beseda
committed
size_t idx1 = 0, idx2 = 1;
active_set_size[0] = this->get_n_inputs();
size_t i = 0;
for (i = 0; i < this->get_n_inputs(); ++i) {
active_eval_set[i] = this->input_neuron_indices->at(i);
}
size_t active_ni;
while (active_set_size[idx1] > 0) {
/* we add the current active set as the new outward layer */
::std::vector<size_t> *new_feedforward_layer = new ::std::vector<size_t>(active_set_size[idx1]);
Martin Beseda
committed
this->neuron_layers_feedforward->push_back(new_feedforward_layer);
//we iterate through the active neurons and propagate the signal
for (i = 0; i < active_set_size[idx1]; ++i) {
active_ni = active_eval_set[i + n * idx1];
new_feedforward_layer->at(i) = active_ni;
Martin Beseda
committed
if (!this->outward_adjacency->at(active_ni)) {
continue;
}
for (auto ni: *(this->outward_adjacency->at(active_ni))) {
inward_saturation[ni.first]--;
Martin Beseda
committed
if (inward_saturation[ni.first] == 0) {
active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
active_set_size[idx2]++;
}
Martin Beseda
committed
idx1 = idx2;
idx2 = (idx1 + 1) % 2;
Martin Beseda
committed
active_set_size[idx2] = 0;
}

Michal Kravcenko
committed
// /* feed backward analysis */
// active_set_size[0] = 0;
// active_set_size[1] = 0;
//
// idx1 = 0;
// idx2 = 1;
//
// active_set_size[0] = this->get_n_outputs();
// for(i = 0; i < this->get_n_outputs(); ++i){
// active_eval_set[i] = this->output_neuron_indices->at(i);
// }
//
// while(active_set_size[idx1] > 0){
//
// /* we add the current active set as the new outward layer */
// ::std::vector<size_t> *new_feedbackward_layer = new ::std::vector<size_t>(active_set_size[idx1]);

Michal Kravcenko
committed
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
// this->neuron_layers_feedbackward->push_back( new_feedbackward_layer );
//
// //we iterate through the active neurons and propagate the signal backward
// for(i = 0; i < active_set_size[idx1]; ++i){
// active_ni = active_eval_set[i + n * idx1];
// new_feedbackward_layer->at( i ) = active_ni;
//
// if(!this->inward_adjacency->at(active_ni)){
// continue;
// }
//
// for(auto ni: *(this->inward_adjacency->at(active_ni))){
// outward_saturation[ni.first]--;
//
// if(outward_saturation[ni.first] == 0){
// active_eval_set[active_set_size[idx2] + n * idx2] = ni.first;
// active_set_size[idx2]++;
// }
// }
// }
//
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
//
// active_set_size[idx2] = 0;
// }
Martin Beseda
committed
this->layers_analyzed = true;
}
Martin Beseda
committed
void NeuralNetwork::save_text(std::string filepath) {
Martin Beseda
committed
{
boost::archive::text_oarchive oa(ofs);
oa << *this;
ofs.close();
}
Martin Beseda
committed
NormalizationStrategy* NeuralNetwork::get_normalization_strategy_instance() {
return this->normalization_strategy;
}
void NeuralNetwork::set_normalization_strategy_instance(NormalizationStrategy *ns) {
if(!ns) {
THROW_RUNTIME_ERROR("Argument 'ns' is not initialized!");
}
this->normalization_strategy = ns;
}
Martin Beseda
committed
FullyConnectedFFN::FullyConnectedFFN(std::vector<unsigned int>* neuron_numbers,
NEURON_TYPE hidden_layer_neuron_type,
std::ofstream* ofs) : NeuralNetwork() {
Martin Beseda
committed
std::vector<NEURON_TYPE> tmp;
for(auto i = 0; i < neuron_numbers->size(); i++) {
tmp.emplace_back(hidden_layer_neuron_type);
}
Martin Beseda
committed
this->init(neuron_numbers, &tmp, ofs);
Martin Beseda
committed
}
FullyConnectedFFN::FullyConnectedFFN(std::vector<unsigned int>* neuron_numbers,
Martin Beseda
committed
std::vector<lib4neuro::NEURON_TYPE>* hidden_layer_neuron_types,
std::ofstream* ofs) : NeuralNetwork() {
this->init(neuron_numbers, hidden_layer_neuron_types, ofs);
Martin Beseda
committed
}
Martin Beseda
committed
void FullyConnectedFFN::init(std::vector<unsigned int>* neuron_numbers,
std::vector<NEURON_TYPE>* hidden_layer_neuron_types,
std::ofstream* ofs) {
THROW_INVALID_ARGUMENT_ERROR("Parameter 'neuron_numbers' specifying numbers of neurons in network's layers "
"doesn't specify input and output layers, which are compulsory!");
this->neurons = new ::std::vector<Neuron *>(0);
this->neuron_biases = new ::std::vector<double>(0);
this->neuron_potentials = new ::std::vector<double>(0);
this->neuron_bias_indices = new ::std::vector<int>(0);
this->connection_weights = new ::std::vector<double>(0);
this->connection_list = new ::std::vector<ConnectionFunctionGeneral *>(0);
this->inward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
this->outward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
this->neuron_layers_feedforward = new ::std::vector<std::vector<size_t> *>(0);
this->neuron_layers_feedbackward = new ::std::vector<std::vector<size_t> *>(0);
this->input_neuron_indices = new ::std::vector<size_t>(0);
this->output_neuron_indices = new ::std::vector<size_t>(0);
this->delete_weights = true;
this->delete_biases = true;
this->layers_analyzed = false;
unsigned int inp_dim = neuron_numbers->at(0); //!< Network input dimension
unsigned int out_dim = neuron_numbers->back(); //!< Network output dimension
COUT_DEBUG("Fully connected feed-forward network being constructed:" << std::endl);
COUT_DEBUG("# of inputs: " << inp_dim << std::endl);
COUT_DEBUG("# of outputs: " << out_dim << std::endl);
Martin Beseda
committed
WRITE_TO_OFS_DEBUG(ofs, "Fully connected feed-forward network being constructed:" << std::endl
<< "# of inputs: " << inp_dim << std::endl
<< "# of outputs: " << out_dim << std::endl);
Martin Beseda
committed
std::vector<size_t> input_layer_neuron_indices;
std::vector<size_t> previous_layer_neuron_indices;
std::vector<size_t> current_layer_neuron_indices;
/* Creation of INPUT layer neurons */
current_layer_neuron_indices.reserve(inp_dim);
input_layer_neuron_indices.reserve(inp_dim);
for(unsigned int i = 0; i < inp_dim; i++) {
size_t neuron_id = this->add_neuron(new NeuronLinear, BIAS_TYPE::NO_BIAS);
current_layer_neuron_indices.emplace_back(neuron_id);
}
input_layer_neuron_indices = current_layer_neuron_indices;
/* Creation of HIDDEN layers */
for(unsigned int i = 1; i <= neuron_numbers->size()-2; i++) {
COUT_DEBUG("Hidden layer #" << i << ": " << neuron_numbers->at(i) << " neurons" << std::endl);
Martin Beseda
committed
WRITE_TO_OFS_DEBUG(ofs, "Hidden layer #" << i << ": " << neuron_numbers->at(i) << " neurons" << std::endl);
previous_layer_neuron_indices.reserve(neuron_numbers->at(i-1));
previous_layer_neuron_indices = current_layer_neuron_indices;
current_layer_neuron_indices.clear();
current_layer_neuron_indices.reserve(neuron_numbers->at(i));
/* Creation of one single hidden layer */
for(unsigned int j = 0; j < neuron_numbers->at(i); j++) {
size_t neuron_id;
/* Create new hidden neuron */
Martin Beseda
committed
switch (hidden_layer_neuron_types->at(i-1)) {
case NEURON_TYPE::BINARY: {
neuron_id = this->add_neuron(new NeuronBinary, BIAS_TYPE::NEXT_BIAS);
Martin Beseda
committed
COUT_DEBUG("Added BINARY neuron." << std::endl);
Martin Beseda
committed
WRITE_TO_OFS_DEBUG(ofs, "Added BINARY neuron." << std::endl);
case NEURON_TYPE::CONSTANT: {
THROW_INVALID_ARGUMENT_ERROR("Constant neurons can't be used in fully connected feed-forward networks!");
case NEURON_TYPE::LINEAR: {
neuron_id = this->add_neuron(new NeuronLinear, BIAS_TYPE::NEXT_BIAS);
Martin Beseda
committed
COUT_DEBUG("Added LINEAR neuron." << std::endl);
Martin Beseda
committed
WRITE_TO_OFS_DEBUG(ofs, "Added LINEAR neuron." << std::endl);
case NEURON_TYPE::LOGISTIC: {
neuron_id = this->add_neuron(new NeuronLogistic, BIAS_TYPE::NEXT_BIAS);
Martin Beseda
committed
COUT_DEBUG("Added LOGISTIC neuron." << std::endl);
Martin Beseda
committed
WRITE_TO_OFS_DEBUG(ofs, "Added LINEAR neuron." << std::endl);
break;
}
}
current_layer_neuron_indices.emplace_back(neuron_id);
/* Connect new neuron with all neurons from the previous layer */
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
for(auto ind : previous_layer_neuron_indices) {
this->add_connection_simple(ind, neuron_id, l4n::SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT);
}
}
}
previous_layer_neuron_indices.reserve(neuron_numbers->back()-1);
previous_layer_neuron_indices = current_layer_neuron_indices;
current_layer_neuron_indices.clear();
current_layer_neuron_indices.reserve(out_dim);
/* Creation of OUTPUT layer neurons */
for(unsigned int i = 0; i < out_dim; i++) {
size_t neuron_id = this->add_neuron(new NeuronLinear, BIAS_TYPE::NO_BIAS);
current_layer_neuron_indices.emplace_back(neuron_id);
/* Connect new neuron with all neuron from the previous layer */
for(auto ind : previous_layer_neuron_indices) {
this->add_connection_simple(ind, neuron_id, l4n::SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT);
}
}
/* Init variables containing indices of INPUT nad OUTPUT neurons */
this->input_neuron_indices = new ::std::vector<size_t>(inp_dim);
this->output_neuron_indices = new ::std::vector<size_t>(out_dim);
*this->input_neuron_indices = input_layer_neuron_indices;
*this->output_neuron_indices = current_layer_neuron_indices;
this->analyze_layer_structure();
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
void NeuralNetwork::get_jacobian(std::vector<std::vector<double>> &jacobian, std::pair<std::vector<double>, std::vector<double>> &data, std::vector<double> &error) {
std::vector<double> fv(this->get_n_outputs());
jacobian.resize(this->get_n_outputs());
error.resize(this->get_n_outputs());
for(size_t i = 0; i < this->get_n_outputs(); ++i){
jacobian[i].resize(this->get_n_weights() + this->get_n_biases());
std::fill(jacobian[i].begin(), jacobian[i].end(), 0);
}
this->eval_single( data.first, fv );
std::vector<double> error_partial(this->get_n_outputs());
std::fill(error_partial.begin(), error_partial.end(), 0.0);
for( size_t i = 0; i < this->get_n_outputs(); ++i){
error_partial[i] = 1;
this->add_to_gradient_single(data.first, error_partial, 1.0, jacobian[i]);
error[i] = data.second[i] - fv[i];
error_partial[i] = 0;
}
}