Newer
Older

Michal Kravcenko
committed
/**
* DESCRIPTION OF THE FILE
*
* @author Michal Kravčenko
* @date 13.6.18 -
*/

Michal Kravcenko
committed
Martin Beseda
committed
#include <iostream>
#include <NetConnection/ConnectionFunctionConstant.h>
Martin Beseda
committed
#include "message.h"

Michal Kravcenko
committed
#include "NeuralNetwork.h"
Martin Beseda
committed
#include "NeuralNetworkSerialization.h"
#include "exceptions.h"
Martin Beseda
committed
namespace lib4neuro {
NeuralNetwork::NeuralNetwork() {
this->neurons = new ::std::vector<Neuron *>(0);
// this->neuron_biases = new ::std::vector<double>(0);
// this->neuron_bias_indices = new ::std::vector<int>(0);
// this->connection_weights = new ::std::vector<double>(0);
// this->connection_list = ::std::vector<std::shared_ptr<ConnectionFunctionGeneral>>(0);
this->inward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
this->outward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
this->neuron_layers_feedforward = new ::std::vector<std::vector<size_t> *>(0);
this->neuron_layers_feedbackward = new ::std::vector<std::vector<size_t> *>(0);
// this->input_neuron_indices = new ::std::vector<size_t>(0);
// this->output_neuron_indices = new ::std::vector<size_t>(0);
Martin Beseda
committed
this->delete_weights = true;
this->delete_biases = true;
this->layers_analyzed = false;
}
Martin Beseda
committed
NeuralNetwork::NeuralNetwork(std::string filepath) {
if(ifs.is_open()) {
try {
boost::archive::text_iarchive ia(ifs);
ia >> *this;
}catch(boost::archive::archive_exception& e) {
THROW_RUNTIME_ERROR("Serialized archive error: '" + e.what() + "'! Please, check if your file is really "
"the serialized DataSet.");
}
ifs.close();
} else {
THROW_RUNTIME_ERROR("File '" + filepath + "' couldn't be open!");
}
Martin Beseda
committed
}
Martin Beseda
committed
NeuralNetwork::~NeuralNetwork() {
Martin Beseda
committed
if (this->neurons) {
for (auto n: *(this->neurons)) {
delete n;
n = nullptr;
}
delete this->neurons;
this->neurons = nullptr;
// if (this->neuron_potentials) {
// delete this->neuron_potentials;
// this->neuron_potentials = nullptr;
// }
//
// if (this->neuron_bias_indices) {
// delete this->neuron_bias_indices;
// this->neuron_bias_indices = nullptr;
// }
//
// if (this->output_neuron_indices) {
// delete this->output_neuron_indices;
// this->output_neuron_indices = nullptr;
// }
//
// if (this->input_neuron_indices) {
// delete this->input_neuron_indices;
// this->input_neuron_indices = nullptr;
// }
// if (this->connection_weights && this->delete_weights) {
// delete this->connection_weights;
// this->connection_weights = nullptr;
// }
// if (this->neuron_biases && this->delete_biases) {
// delete this->neuron_biases;
// this->neuron_biases = nullptr;
// }
// if (this->connection_list) {
//
// if (this->delete_weights) {
// for (auto& c: *this->connection_list) {
// printf("%p\n", c);
// if(c) {
// printf("Deleting %p\n", c);
// puts("c");
//// delete c;
// puts("a");
//// c = nullptr;
// puts("b");
// }
// }
// }
// }
// this->connection_list.clear();
// delete this->connection_list;
// this->connection_list = nullptr;
Martin Beseda
committed
if (this->inward_adjacency) {
for (auto e: *this->inward_adjacency) {
if (e) {
delete e;
e = nullptr;
}
Martin Beseda
committed
delete this->inward_adjacency;
this->inward_adjacency = nullptr;
}
Martin Beseda
committed
if (this->outward_adjacency) {
for (
auto e: *this->outward_adjacency) {
Martin Beseda
committed
if (e) {
delete e;
e = nullptr;
}
delete this-> outward_adjacency;
this->outward_adjacency = nullptr;
Martin Beseda
committed
if (this->neuron_layers_feedforward) {
for (
auto e: *this->neuron_layers_feedforward) {
Martin Beseda
committed
delete e;
e = nullptr;
}
delete this->neuron_layers_feedforward;
this->neuron_layers_feedforward = nullptr;
}
Martin Beseda
committed
if (this->neuron_layers_feedbackward) {
for (
auto e: *this->neuron_layers_feedbackward) {
Martin Beseda
committed
delete e;
e = nullptr;
}
delete this->neuron_layers_feedbackward;
this->neuron_layers_feedbackward = nullptr;
}
NeuralNetwork *NeuralNetwork::get_subnet(::std::vector<size_t> &input_neuron_indices,
::std::vector<size_t> &output_neuron_indices) {
THROW_NOT_IMPLEMENTED_ERROR();
Martin Beseda
committed
NeuralNetwork *output_net = nullptr;
// TODO rework due to the changed structure of the class
// Neuron * active_neuron, * target_neuron;
//
// size_t n = this->neurons->size();
// bool *part_of_subnetwork = new bool[n];
// ::std::fill(part_of_subnetwork, part_of_subnetwork + n, false);
//
// bool *is_reachable_from_source = new bool[n];
// bool *is_reachable_from_destination = new bool[n];
// ::std::fill(is_reachable_from_source, is_reachable_from_source + n, false);
// ::std::fill(is_reachable_from_destination, is_reachable_from_destination + n, false);
// ::std::fill(visited_neurons, visited_neurons + n, false);
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//
// size_t active_set_size[2];
// active_set_size[0] = 0;
// active_set_size[1] = 0;
// size_t * active_neuron_set = new size_t[2 * n];
// size_t idx1 = 0, idx2 = 1;
//
// /* MAPPING BETWEEN NEURONS AND THEIR INDICES */
// size_t idx = 0, idx_target;
// for(Neuron *v: *this->neurons){
// v->set_idx( idx );
// idx++;
// }
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// for(size_t i: input_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
//
// visited_neurons[i] = true;
// }
//
// /* FORWARD PASS */
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_source[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// for(Connection* connection: *(active_neuron->get_connections_out())){
//
// target_neuron = connection->get_neuron_out( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
//
// /* INITIAL STATE FOR THE FORWARD PASS */
// active_set_size[0] = active_set_size[1] = 0;
// ::std::fill(visited_neurons, visited_neurons + n, false);
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
//
// for(size_t i: output_neuron_indices ){
//
// if( i < 0 || i >= n){
// //invalid index
// continue;
// }
// active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
// active_set_size[idx1]++;
//
// visited_neurons[i] = true;
// }
//
// /* BACKWARD PASS */
// size_t n_new_neurons = 0;
// while(active_set_size[idx1] > 0){
//
// //we iterate through the active neurons and propagate the signal
// for(int i = 0; i < active_set_size[idx1]; ++i){
// idx = active_neuron_set[i];
//
// is_reachable_from_destination[ idx ] = true;
//
// active_neuron = this->neurons->at( idx );
//
// if(is_reachable_from_source[ idx ]){
// n_new_neurons++;
// }
//
// for(Connection* connection: *(active_neuron->get_connections_in())){
//
// target_neuron = connection->get_neuron_in( );
// idx_target = target_neuron->get_idx( );
//
// if( visited_neurons[idx_target] ){
// //this neuron was already analyzed
// continue;
// }
//
// visited_neurons[idx_target] = true;
// active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
// active_set_size[idx2]++;
// }
// }
// idx1 = idx2;
// idx2 = (idx1 + 1) % 2;
// active_set_size[idx2] = 0;
// }
//
// /* FOR CONSISTENCY REASONS */
// for(size_t in: input_neuron_indices){
// if( !is_reachable_from_destination[in] ){
// n_new_neurons++;
// }
// is_reachable_from_destination[in] = true;
// }
// /* FOR CONSISTENCY REASONS */
// for(size_t in: output_neuron_indices){
// if( !is_reachable_from_source[in] ){
// n_new_neurons++;
// }
// is_reachable_from_source[in] = true;
// }
//
// /* WE FORM THE SET OF NEURONS IN THE OUTPUT NETWORK */
// if(n_new_neurons > 0){
//// printf("Number of new neurons: %d\n", n_new_neurons);
// output_net = new NeuralNetwork();
// output_net->set_weight_array( this->connection_weights );
//
// ::std::vector<size_t > local_inputs(0), local_outputs(0);
// local_inputs.reserve(input_neuron_indices.size());
// local_outputs.reserve(output_neuron_indices.size());
//
// ::std::vector<Neuron*> local_n_arr(0);
// ::std::vector<Neuron*> local_local_n_arr(0);
// local_local_n_arr.reserve( n_new_neurons );
//
// int * neuron_local_mapping = new int[ n ];
// ::std::fill(neuron_local_mapping, neuron_local_mapping + n, -1);
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
// idx = 0;
// for(size_t i = 0; i < n; ++i){
// if(is_reachable_from_source[i] && is_reachable_from_destination[i]){
// neuron_local_mapping[i] = (int)idx;
// idx++;
//
// Neuron *new_neuron = this->neurons->at(i)->get_copy( );
//
// output_net->add_neuron( new_neuron );
// local_local_n_arr.push_back( new_neuron );
// local_n_arr.push_back( this->neurons->at(i) );
// }
// }
// for(size_t in: input_neuron_indices){
// local_inputs.push_back(neuron_local_mapping[in]);
// }
// for(size_t in: output_neuron_indices){
// local_outputs.push_back(neuron_local_mapping[in]);
// }
//
//// printf("%d\n", local_n_arr.size());
//// printf("inputs: %d, outputs: %d\n", local_inputs.size(), local_outputs.size());
// int local_idx_1, local_idx_2;
// for(Neuron* source_neuron: local_n_arr){
// //we also add the relevant edges
// local_idx_1 = neuron_local_mapping[source_neuron->get_idx()];
//
// for(Connection* connection: *(source_neuron->get_connections_out( ))){
// target_neuron = connection->get_neuron_out();
//
// local_idx_2 = neuron_local_mapping[target_neuron->get_idx()];
// if(local_idx_2 >= 0){
// //this edge is part of the subnetwork
// Connection* new_connection = connection->get_copy( local_local_n_arr[local_idx_1], local_local_n_arr[local_idx_2] );
//
// local_local_n_arr[local_idx_1]->add_connection_out(new_connection);
// local_local_n_arr[local_idx_2]->add_connection_in(new_connection);
//
//// printf("adding a connection between neurons %d, %d\n", local_idx_1, local_idx_2);
// }
//
// }
//
// }
// output_net->specify_input_neurons(local_inputs);
// output_net->specify_output_neurons(local_outputs);
//
//
// delete [] neuron_local_mapping;
// }
//
// delete [] is_reachable_from_source;
// delete [] is_reachable_from_destination;
// delete [] part_of_subnetwork;
// delete [] visited_neurons;
// delete [] active_neuron_set;
//
//
Martin Beseda
committed
return output_net;
}
Martin Beseda
committed
size_t NeuralNetwork::add_neuron(Neuron *n, BIAS_TYPE bt, size_t bias_idx) {
Martin Beseda
committed
if (bt == BIAS_TYPE::NO_BIAS) {
Martin Beseda
committed
} else if (bt == BIAS_TYPE::NEXT_BIAS) {
this->neuron_bias_indices.push_back((int) this->neuron_biases.size());
this->neuron_biases.resize(this->neuron_biases.size() + 1);
Martin Beseda
committed
} else if (bt == BIAS_TYPE::EXISTING_BIAS) {
::std::cerr << "The supplied bias index is too large!\n" << ::std::endl;
Martin Beseda
committed
}
this->neuron_bias_indices.push_back((int) bias_idx);

Michal Kravcenko
committed
}
this->outward_adjacency->push_back(new ::std::vector<std::pair<size_t, size_t>>(0));
this->inward_adjacency->push_back(new ::std::vector<std::pair<size_t, size_t>>(0));
Martin Beseda
committed
this->neurons->push_back(n);
Martin Beseda
committed
this->layers_analyzed = false;
return this->neurons->size() - 1;
}
void NeuralNetwork::eval_single_debug(::std::vector<double> &input, ::std::vector<double> &output,
::std::vector<double> *custom_weights_and_biases) {
if ((this->input_neuron_indices.size() * this->output_neuron_indices.size()) <= 0) {
THROW_INVALID_ARGUMENT_ERROR("Input and output neurons have not been specified!");
}
if (this->input_neuron_indices.size() != input.size()) {
THROW_INVALID_ARGUMENT_ERROR("Data input size != Network input size");
}
if (this->output_neuron_indices.size() != output.size()) {
THROW_INVALID_ARGUMENT_ERROR("Data output size != Network output size");
}
double potential, bias;
int bias_idx;
this->copy_parameter_space(custom_weights_and_biases);
this->analyze_layer_structure();
/* reset of the output and the neuron potentials */
::std::fill(output.begin(), output.end(), 0.0);
::std::fill(this->neuron_potentials.begin(), this->neuron_potentials.end(), 0.0);
/* set the potentials of the input neurons */
for (size_t i = 0; i < this->input_neuron_indices.size(); ++i) {
this->neuron_potentials.at(this->input_neuron_indices.at(i)) = input[i];
std::cout << this->neuron_potentials.at(this->input_neuron_indices.at(i)) << ", ";
}
std::cout << std::endl;
/* we iterate through all the feed-forward layers and transfer the signals */
for (auto layer: *this->neuron_layers_feedforward) {
/* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
for (auto si: *layer) {
bias = 0.0;
potential = this->neurons->at(si)->activate(this->neuron_potentials.at(si), bias);
std::cout << " applying bias: " << bias << " to neuron potential: " << this->neuron_potentials.at(si) << " -> " << potential << std::endl;
for (auto c: *this->outward_adjacency->at(si)) {
size_t ti = c.first;
size_t ci = c.second;
this->connection_list.at(ci)->eval(this->connection_weights) * potential;
std::cout << " adding input to neuron " << ti << " += " << this->connection_list.at(ci)->eval(this->connection_weights) << "*" << potential << std::endl;
output[i] = this->neurons->at(oi)->activate(this->neuron_potentials.at(oi), bias);
std::cout << "setting the output[" << i << "] = " << output[i] << "(bias = " << bias << ")" << std::endl;
++i;
}
}
Martin Beseda
committed
size_t
NeuralNetwork::add_connection_simple(size_t n1_idx, size_t n2_idx, SIMPLE_CONNECTION_TYPE sct,
size_t weight_idx) {
std::shared_ptr<ConnectionFunctionIdentity> con_weight_u1u2;
// ConnectionFunctionIdentity* con_weight_u1u2;
Martin Beseda
committed
if (sct == SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT) {
con_weight_u1u2 = std::make_shared<ConnectionFunctionIdentity>(ConnectionFunctionIdentity());
// con_weight_u1u2 = new ConnectionFunctionIdentity();
Martin Beseda
committed
} else {
if (sct == SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT) {
weight_idx = this->connection_weights.size();
this->connection_weights.resize(weight_idx + 1);
Martin Beseda
committed
} else if (sct == SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT) {
if (weight_idx >= this->connection_weights.size()) {
::std::cerr << "The supplied connection weight index is too large!\n" << ::std::endl;
Martin Beseda
committed
}

Michal Kravcenko
committed
}
con_weight_u1u2 = std::make_shared<ConnectionFunctionIdentity>(ConnectionFunctionIdentity(weight_idx));
// con_weight_u1u2 = new ConnectionFunctionIdentity(weight_idx);
Martin Beseda
committed
}
Martin Beseda
committed
size_t conn_idx = this->add_new_connection_to_list(con_weight_u1u2);
// size_t conn_idx = this->add_new_connection_to_list(con_weight_u1u2);
Martin Beseda
committed
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
Martin Beseda
committed
this->layers_analyzed = false;
Martin Beseda
committed
}
NeuralNetwork::add_connection_constant(size_t n1_idx, size_t n2_idx, double weight) {
std::shared_ptr<ConnectionFunctionConstant> cfc = std::make_shared<ConnectionFunctionConstant>(ConnectionFunctionConstant());
size_t conn_idx = this->add_new_connection_to_list(cfc);
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
this->layers_analyzed = false;
return conn_idx;
Martin Beseda
committed
void NeuralNetwork::add_existing_connection(size_t n1_idx, size_t n2_idx, size_t connection_idx,
NeuralNetwork &parent_network) {
size_t conn_idx = this->add_new_connection_to_list(parent_network.connection_list.at(connection_idx));
Martin Beseda
committed
this->add_outward_connection(n1_idx, n2_idx, conn_idx);
this->add_inward_connection(n2_idx, n1_idx, conn_idx);
Martin Beseda
committed
this->layers_analyzed = false;
}
Martin Beseda
committed
void NeuralNetwork::copy_parameter_space(std::vector<double> *parameters) {
if (parameters != nullptr) {
for (unsigned int i = 0; i < this->connection_weights.size(); ++i) {
this->connection_weights.at(i) = (*parameters).at(i);
Martin Beseda
committed
}
for (unsigned int i = 0; i < this->neuron_biases.size(); ++i) {
(this->neuron_biases).at(i) = (*parameters).at(i + this->connection_weights.size());
Martin Beseda
committed
}
}

Michal Kravcenko
committed
Martin Beseda
committed
void NeuralNetwork::set_parameter_space_pointers(NeuralNetwork &parent_network) {

Michal Kravcenko
committed
if (!this->connection_weights.empty()) {
// delete connection_weights;
this->connection_weights.clear();
Martin Beseda
committed
}

Michal Kravcenko
committed
this->neuron_biases.clear();
// if (this->neuron_biases) {
// delete this->neuron_biases;
// }

Michal Kravcenko
committed
Martin Beseda
committed
this->connection_weights = parent_network.connection_weights;
this->neuron_biases = parent_network.neuron_biases;
Martin Beseda
committed
this->delete_biases = false;
this->delete_weights = false;

Michal Kravcenko
committed
}
void NeuralNetwork::eval_single(::std::vector<double>& input,
::std::vector<double>& output,
::std::vector<double>* custom_weights_and_biases) {
if ((this->input_neuron_indices.size() * this->output_neuron_indices.size()) <= 0) {
THROW_INVALID_ARGUMENT_ERROR("Input and output neurons have not been specified!");
Martin Beseda
committed
}

Michal Kravcenko
committed
if (this->input_neuron_indices.size() != input.size()) {
THROW_INVALID_ARGUMENT_ERROR("Data input size != Network input size");
Martin Beseda
committed
}

Michal Kravcenko
committed
if (this->output_neuron_indices.size() != output.size()) {
THROW_INVALID_ARGUMENT_ERROR("Data output size != Network output size");
Martin Beseda
committed
}
Martin Beseda
committed
double potential, bias;
int bias_idx;
Martin Beseda
committed
this->copy_parameter_space(custom_weights_and_biases);
Martin Beseda
committed
this->analyze_layer_structure();

Michal Kravcenko
committed
Martin Beseda
committed
/* reset of the output and the neuron potentials */
::std::fill(output.begin(), output.end(), 0.0);
::std::fill(this->neuron_potentials.begin(), this->neuron_potentials.end(), 0.0);

Michal Kravcenko
committed
Martin Beseda
committed
/* set the potentials of the input neurons */
for (size_t i = 0; i < this->input_neuron_indices.size(); ++i) {
this->neuron_potentials.at(this->input_neuron_indices.at(i)) = input[i];
Martin Beseda
committed
}

Michal Kravcenko
committed
Martin Beseda
committed
/* we iterate through all the feed-forward layers and transfer the signals */
for (auto layer: *this->neuron_layers_feedforward) {
/* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
for (auto si: *layer) {
bias = 0.0;
Martin Beseda
committed
if (bias_idx >= 0) {
Martin Beseda
committed
}
potential = this->neurons->at(si)->activate(this->neuron_potentials.at(si), bias);

Michal Kravcenko
committed
Martin Beseda
committed
for (auto c: *this->outward_adjacency->at(si)) {
size_t ti = c.first;
size_t ci = c.second;

Michal Kravcenko
committed
this->connection_list.at(ci)->eval(this->connection_weights) * potential;
Martin Beseda
committed
}

Michal Kravcenko
committed
Martin Beseda
committed
unsigned int i = 0;
Martin Beseda
committed
bias = 0.0;
Martin Beseda
committed
if (bias_idx >= 0) {
Martin Beseda
committed
}
output[i] = this->neurons->at(oi)->activate(this->neuron_potentials.at(oi), bias);
Martin Beseda
committed
++i;

Michal Kravcenko
committed
}

Michal Kravcenko
committed
}
void NeuralNetwork::add_to_gradient_single(std::vector<double> &input, ::std::vector<double> &error_derivative,
double error_scaling, ::std::vector<double> &gradient) {

Michal Kravcenko
committed
::std::vector<double> scaling_backprog(this->get_n_neurons());
::std::fill(scaling_backprog.begin(), scaling_backprog.end(), 0.0);

Michal Kravcenko
committed
size_t bias_shift = this->get_n_weights();
size_t neuron_idx;
int bias_idx;
double neuron_potential, neuron_potential_t, neuron_bias, connection_weight;

Michal Kravcenko
committed

Michal Kravcenko
committed
/* initial error propagation */
::std::vector<size_t> *current_layer = this->neuron_layers_feedforward->at(
this->neuron_layers_feedforward->size() - 1);
//TODO might not work in the future as the output neurons could be permuted
for (size_t i = 0; i < current_layer->size(); ++i) {
neuron_idx = current_layer->at(i);
scaling_backprog[neuron_idx] = error_derivative[i] * error_scaling;
}

Michal Kravcenko
committed
/* we iterate through all the layers in reverse order and calculate partial derivatives scaled correspondingly */
for (size_t j = this->neuron_layers_feedforward->size(); j > 0; --j) {

Michal Kravcenko
committed
current_layer = this->neuron_layers_feedforward->at(j - 1);

Michal Kravcenko
committed
for (size_t i = 0; i < current_layer->size(); ++i) {

Michal Kravcenko
committed
neuron_idx = current_layer->at(i);
active_neuron = dynamic_cast<NeuronDifferentiable *> (this->neurons->at(neuron_idx));

Michal Kravcenko
committed
bias_idx = this->neuron_bias_indices.at(neuron_idx);
neuron_potential = this->neuron_potentials.at(neuron_idx);

Michal Kravcenko
committed
gradient[bias_shift + bias_idx] += scaling_backprog[neuron_idx] *
active_neuron->activation_function_eval_derivative_bias(
neuron_potential, neuron_bias);
scaling_backprog[neuron_idx] *= active_neuron->activation_function_eval_derivative(
neuron_potential,
neuron_bias);
}

Michal Kravcenko
committed
/* connections to lower level neurons */
for (auto c: *this->inward_adjacency->at(neuron_idx)) {
size_t ti = c.first;
size_t ci = c.second;

Michal Kravcenko
committed

Michal Kravcenko
committed
neuron_potential_t = this->neurons->at(ti)->get_last_activation_value( );
connection_weight = this->connection_list.at(ci)->eval(this->connection_weights);

Michal Kravcenko
committed
this->connection_list.at(ci)->eval_partial_derivative(*this->get_parameter_ptr_weights(),
gradient,
neuron_potential_t *
scaling_backprog[neuron_idx]);

Michal Kravcenko
committed
scaling_backprog[ti] += scaling_backprog[neuron_idx] * connection_weight;
}
} else {
THROW_INVALID_ARGUMENT_ERROR(
"Neuron used in backpropagation does not contain differentiable activation function!\n");

Michal Kravcenko
committed
}
}
}
}

Michal Kravcenko
committed
void NeuralNetwork::add_to_gradient_single_debug(std::vector<double> &input, ::std::vector<double> &error_derivative,
double error_scaling, ::std::vector<double> &gradient) {

Michal Kravcenko
committed

Michal Kravcenko
committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
::std::vector<double> scaling_backprog(this->get_n_neurons());
::std::fill(scaling_backprog.begin(), scaling_backprog.end(), 0.0);
size_t bias_shift = this->get_n_weights();
size_t neuron_idx;
int bias_idx;
double neuron_potential, neuron_activation_t, neuron_bias, connection_weight;
NeuronDifferentiable *active_neuron;
/* initial error propagation */
::std::vector<size_t> *current_layer = this->neuron_layers_feedforward->at(
this->neuron_layers_feedforward->size() - 1);
//TODO might not work in the future as the output neurons could be permuted
std::cout << "Error scaling on the output layer: ";
for (size_t i = 0; i < current_layer->size(); ++i) {
neuron_idx = current_layer->at(i);
scaling_backprog[neuron_idx] = error_derivative[i] * error_scaling;
std::cout << scaling_backprog[neuron_idx] << " [neuron " << neuron_idx << "], ";
}
std::cout << std::endl;
/* we iterate through all the layers in reverse order and calculate partial derivatives scaled correspondingly */
for (size_t j = this->neuron_layers_feedforward->size(); j > 0; --j) {
current_layer = this->neuron_layers_feedforward->at(j - 1);
for (size_t i = 0; i < current_layer->size(); ++i) {
neuron_idx = current_layer->at(i);
active_neuron = dynamic_cast<NeuronDifferentiable *> (this->neurons->at(neuron_idx));
if (active_neuron) {
std::cout << " [backpropagation] active neuron: " << neuron_idx << std::endl;
bias_idx = this->neuron_bias_indices.at(neuron_idx);
neuron_potential = this->neuron_potentials.at(neuron_idx);

Michal Kravcenko
committed
if (bias_idx >= 0) {

Michal Kravcenko
committed
gradient[bias_shift + bias_idx] += scaling_backprog[neuron_idx] *
active_neuron->activation_function_eval_derivative_bias(
neuron_potential, neuron_bias);
scaling_backprog[neuron_idx] *= active_neuron->activation_function_eval_derivative(
neuron_potential,
neuron_bias);
}
std::cout << " [backpropagation] scaling coefficient: " << scaling_backprog[neuron_idx] << std::endl;
/* connections to lower level neurons */
for (auto c: *this->inward_adjacency->at(neuron_idx)) {
size_t ti = c.first;
size_t ci = c.second;
neuron_activation_t = this->neurons->at(ti)->get_last_activation_value( );
connection_weight = this->connection_list.at(ci)->eval(this->connection_weights);

Michal Kravcenko
committed
std::cout << " [backpropagation] value ("<<ti<< "): " << neuron_activation_t << ", scaling: " << scaling_backprog[neuron_idx] << std::endl;
this->connection_list.at(ci)->eval_partial_derivative(*this->get_parameter_ptr_weights(),

Michal Kravcenko
committed
gradient,
neuron_activation_t *
scaling_backprog[neuron_idx]);
scaling_backprog[ti] += scaling_backprog[neuron_idx] * connection_weight;
}
} else {
THROW_INVALID_ARGUMENT_ERROR(
"Neuron used in backpropagation does not contain differentiable activation function!\n");
}
}
}
}

Michal Kravcenko
committed
void NeuralNetwork::randomize_weights() {

Michal Kravcenko
committed
Martin Beseda
committed
// Init weight guess ("optimal" for logistic activation functions)
double r = 4 * sqrt(6. / (this->connection_weights.size()));

Michal Kravcenko
committed
Martin Beseda
committed
boost::random::uniform_real_distribution<> dist(-r, r);

Michal Kravcenko
committed
for (size_t i = 0; i < this->connection_weights.size(); i++) {
this->connection_weights.at(i) = dist(gen);
Martin Beseda
committed
}

Michal Kravcenko
committed
}
Martin Beseda
committed
void NeuralNetwork::randomize_biases() {
Martin Beseda
committed
// Init weight guess ("optimal" for logistic activation functions)
boost::random::uniform_real_distribution<> dist(-1, 1);
for (size_t i = 0; i < this->neuron_biases.size(); i++) {
this->neuron_biases.at(i) = dist(gen);
Martin Beseda
committed
}
void NeuralNetwork::randomize_parameters() {
this->randomize_biases();
this->randomize_weights();
}
void NeuralNetwork::scale_biases(double alpha) {
for(size_t i = 0; i < this->get_n_biases(); ++i){
void NeuralNetwork::scale_weights(double alpha) {
for(size_t i = 0; i < this->get_n_weights(); ++i){
void NeuralNetwork::scale_parameters(double alpha) {
this->scale_biases( alpha );
this->scale_weights( alpha );
}
Martin Beseda
committed
size_t NeuralNetwork::get_n_inputs() {
Martin Beseda
committed
}

Michal Kravcenko
committed
Martin Beseda
committed
size_t NeuralNetwork::get_n_outputs() {
Martin Beseda
committed
}
Martin Beseda
committed
size_t NeuralNetwork::get_n_weights() {
Martin Beseda
committed
size_t NeuralNetwork::get_n_biases() {
}
Martin Beseda
committed
int NeuralNetwork::get_neuron_bias_index(size_t neuron_idx) {
return this->neuron_bias_indices.at(neuron_idx);
Martin Beseda
committed
size_t NeuralNetwork::get_n_neurons() {
return this->neurons->size();
}
Martin Beseda
committed
void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) {
this->input_neuron_indices = input_neurons_indices;
// if (!this->input_neuron_indices) {
// this->input_neuron_indices = new ::std::vector<size_t>(input_neurons_indices);
// } else {
// delete this->input_neuron_indices;
// this->input_neuron_indices = new ::std::vector<size_t>(input_neurons_indices);
// }
Martin Beseda
committed
void NeuralNetwork::specify_output_neurons(std::vector<size_t> &output_neurons_indices) {
this->output_neuron_indices = output_neurons_indices;
// if (!this->output_neuron_indices) {
// this->output_neuron_indices = new ::std::vector<size_t>(output_neurons_indices);
// } else {
// delete this->output_neuron_indices;
// this->output_neuron_indices = new ::std::vector<size_t>(output_neurons_indices);
// }
Martin Beseda
committed
}
void NeuralNetwork::write_weights() {
std::cout << "Connection weights: ";
if (!this->connection_weights.empty()) {
for (size_t i = 0; i < this->connection_weights.size() - 1; ++i) {
std::cout << this->connection_weights.at(i) << ", ";
}
std::cout << this->connection_weights.at(this->connection_weights.size() - 1) << std::endl;
}
}
void NeuralNetwork::write_weights(std::string file_path) {
std::ofstream ofs(file_path);
if(!ofs.is_open()) {
THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
}
ofs << "Connection weights: ";
if (!this->connection_weights.empty()) {
for (size_t i = 0; i < this->connection_weights.size() - 1; ++i) {
ofs << this->connection_weights.at(i) << ", ";
}
ofs << this->connection_weights.at(this->connection_weights.size() - 1) << std::endl;
}
}
void NeuralNetwork::write_weights(std::ofstream* file_path) {
*file_path << "Connection weights: ";
if (!this->connection_weights.empty()) {
for (size_t i = 0; i < this->connection_weights.size() - 1; ++i) {
*file_path << this->connection_weights.at(i) << ", ";
Martin Beseda
committed
}
*file_path << this->connection_weights.at(this->connection_weights.size() - 1) << std::endl;
Martin Beseda
committed
}
}
void NeuralNetwork::write_biases() {
std::cout << "Network biases: ";
if(!this->neuron_biases.empty()) {
for(unsigned int i = 0; i < this->neuron_biases.size() - 1; i++) {
std::cout << this->neuron_biases.at(i) << ", ";
}
std::cout << this->neuron_biases.at(this->neuron_biases.size() - 1) << std::endl;
}
void NeuralNetwork::write_biases(std::string file_path) {
std::ofstream ofs(file_path);
if(!ofs.is_open()) {
THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
}
ofs << "Network biases: ";
if(!this->neuron_biases.empty()) {
for(unsigned int i = 0; i < this->neuron_biases.size() - 1; i++) {
ofs << this->neuron_biases.at(i) << ", ";
}
ofs << this->neuron_biases.at(this->neuron_biases.size() - 1) << std::endl;
}
}
void NeuralNetwork::write_biases(std::ofstream* file_path) {
*file_path << "Network biases: ";
if(!this->neuron_biases.empty()) {
for(unsigned int i = 0; i < this->neuron_biases.size() - 1; i++) {
*file_path << this->neuron_biases.at(i) << ", ";
}
*file_path << this->neuron_biases.at(this->neuron_biases.size() - 1) << std::endl;
}
}
void NeuralNetwork::write_stats() {
Martin Beseda
committed
::std::cout << std::flush
<< "Number of neurons: " << this->neurons->size() << ::std::endl
<< "Number of connections: " << this->connection_list.size() << ::std::endl
<< "Number of active weights: " << this->connection_weights.size() << ::std::endl
<< "Number of active biases: " << this->neuron_biases.size() << ::std::endl;
if(this->normalization_strategy) {
Martin Beseda
committed
::std::cout << std::flush
<< "Normalization strategy maximum value: "
<< this->normalization_strategy->get_max_value() << std::endl
<< "Normalization strategy minimum value: "
<< this->normalization_strategy->get_min_value()
<< std::endl;
}
void NeuralNetwork::write_stats(std::string file_path) {
std::ofstream ofs(file_path);
if(!ofs.is_open()) {
THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
}
ofs << "Number of neurons: " << this->neurons->size() << ::std::endl
<< "Number of connections: " << this->connection_list.size() << ::std::endl
<< "Number of active weights: " << this->connection_weights.size() << ::std::endl
<< "Number of active biases: " << this->neuron_biases.size() << ::std::endl;
if(this->normalization_strategy) {
ofs << "Normalization strategy maximum value: "
<< this->normalization_strategy->get_max_value() << std::endl
<< "Normalization strategy minimum value: "
<< this->normalization_strategy->get_min_value()
<< std::endl;
}
ofs.close();
}