Skip to content
Snippets Groups Projects
NeuralNetwork.cpp 52.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • /**
     * DESCRIPTION OF THE FILE
     *
     * @author Michal Kravčenko
     * @date 13.6.18 - 
     */
    
    #include <4neuro.h>
    
    namespace lib4neuro {
        NeuralNetwork::NeuralNetwork() {
    
            this->neurons = new ::std::vector<Neuron *>(0);
            this->neuron_biases = new ::std::vector<double>(0);
            this->neuron_potentials = new ::std::vector<double>(0);
            this->neuron_bias_indices = new ::std::vector<int>(0);
    
            this->connection_weights = new ::std::vector<double>(0);
            this->connection_list = new ::std::vector<ConnectionFunctionGeneral *>(0);
            this->inward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
            this->outward_adjacency = new ::std::vector<std::vector<std::pair<size_t, size_t>> *>(0);
    
            this->neuron_layers_feedforward = new ::std::vector<std::vector<size_t> *>(0);
            this->neuron_layers_feedbackward = new ::std::vector<std::vector<size_t> *>(0);
    
            this->input_neuron_indices = new ::std::vector<size_t>(0);
            this->output_neuron_indices = new ::std::vector<size_t>(0);
    
            this->delete_weights = true;
            this->delete_biases = true;
            this->layers_analyzed = false;
        }
    
        NeuralNetwork::NeuralNetwork(std::string filepath) {
    
            ::std::ifstream ifs(filepath);
    
            if(ifs.is_open()) {
                try {
                    boost::archive::text_iarchive ia(ifs);
                    ia >> *this;
                }catch(boost::archive::archive_exception& e) {
                    THROW_RUNTIME_ERROR("Serialized archive error: '" + e.what() + "'! Please, check if your file is really "
                                                                                   "the serialized DataSet.");
                }
                ifs.close();
            } else {
                THROW_RUNTIME_ERROR("File '" + filepath + "' couldn't be open!");
            }
    
    
            if (this->neurons) {
                for (auto n: *(this->neurons)) {
                    delete n;
                    n = nullptr;
                }
                delete this->neurons;
                this->neurons = nullptr;
    
            if (this->neuron_potentials) {
                delete this->neuron_potentials;
                this->neuron_potentials = nullptr;
            }
    
            if (this->neuron_bias_indices) {
                delete this->neuron_bias_indices;
                this->neuron_bias_indices = nullptr;
            }
    
            if (this->output_neuron_indices) {
                delete this->output_neuron_indices;
                this->output_neuron_indices = nullptr;
            }
    
            if (this->input_neuron_indices) {
                delete this->input_neuron_indices;
                this->input_neuron_indices = nullptr;
            }
    
            if (this->connection_weights && this->delete_weights) {
                delete this->connection_weights;
                this->connection_weights = nullptr;
            }
    
            if (this->neuron_biases && this->delete_biases) {
                delete this->neuron_biases;
                this->neuron_biases = nullptr;
            }
    
                if (this->delete_weights) {
                    for (auto c: *this->connection_list) {
                        delete c;
                        c = nullptr;
                    }
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
            }
            delete this->connection_list;
            this->connection_list = nullptr;
    
            if (this->inward_adjacency) {
                for (auto e: *this->inward_adjacency) {
                    if (e) {
                        delete e;
                        e = nullptr;
                    }
    
                delete this->inward_adjacency;
                this->inward_adjacency = nullptr;
    
                for (
                    auto e: *this->outward_adjacency) {
    
                delete this->
                        outward_adjacency;
                this->
                        outward_adjacency = nullptr;
    
                for (
                    auto e: *this->neuron_layers_feedforward) {
    
                    delete e;
                    e = nullptr;
                }
                delete this->neuron_layers_feedforward;
                this->neuron_layers_feedforward = nullptr;
    
                for (
                    auto e: *this->neuron_layers_feedbackward) {
    
                    delete e;
                    e = nullptr;
                }
                delete this->neuron_layers_feedbackward;
                this->neuron_layers_feedbackward = nullptr;
    
        NeuralNetwork *NeuralNetwork::get_subnet(::std::vector<size_t> &input_neuron_indices,
    
                                                 ::std::vector<size_t> &output_neuron_indices) {
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    // TODO rework due to the changed structure of the class
    //    Neuron * active_neuron, * target_neuron;
    //
    //    size_t n = this->neurons->size();
    //    bool *part_of_subnetwork = new bool[n];
    
    //    ::std::fill(part_of_subnetwork, part_of_subnetwork + n, false);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    //
    //    bool *is_reachable_from_source = new bool[n];
    //    bool *is_reachable_from_destination = new bool[n];
    
    //    ::std::fill(is_reachable_from_source, is_reachable_from_source + n, false);
    //    ::std::fill(is_reachable_from_destination, is_reachable_from_destination + n, false);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    //
    //    bool *visited_neurons = new bool[n];
    
    //    ::std::fill(visited_neurons, visited_neurons + n, false);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    //
    //    size_t active_set_size[2];
    //    active_set_size[0] = 0;
    //    active_set_size[1] = 0;
    //    size_t * active_neuron_set = new size_t[2 * n];
    //    size_t idx1 = 0, idx2 = 1;
    //
    //    /* MAPPING BETWEEN NEURONS AND THEIR INDICES */
    //    size_t idx = 0, idx_target;
    //    for(Neuron *v: *this->neurons){
    //        v->set_idx( idx );
    //        idx++;
    //    }
    //
    //    /* INITIAL STATE FOR THE FORWARD PASS */
    //    for(size_t i: input_neuron_indices ){
    //
    //        if( i < 0 || i >= n){
    //            //invalid index
    //            continue;
    //        }
    //        active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
    //        active_set_size[idx1]++;
    //
    //        visited_neurons[i] = true;
    //    }
    //
    //    /* FORWARD PASS */
    //    while(active_set_size[idx1] > 0){
    //
    //        //we iterate through the active neurons and propagate the signal
    //        for(int i = 0; i < active_set_size[idx1]; ++i){
    //            idx = active_neuron_set[i];
    //
    //            is_reachable_from_source[ idx ] = true;
    //
    //            active_neuron = this->neurons->at( idx );
    //
    //            for(Connection* connection: *(active_neuron->get_connections_out())){
    //
    //                target_neuron = connection->get_neuron_out( );
    //                idx_target = target_neuron->get_idx( );
    //
    //                if( visited_neurons[idx_target] ){
    //                    //this neuron was already analyzed
    //                    continue;
    //                }
    //
    //                visited_neurons[idx_target] = true;
    //                active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
    //                active_set_size[idx2]++;
    //            }
    //        }
    //        idx1 = idx2;
    //        idx2 = (idx1 + 1) % 2;
    //        active_set_size[idx2] = 0;
    //    }
    //
    //
    //    /* INITIAL STATE FOR THE FORWARD PASS */
    //    active_set_size[0] = active_set_size[1] = 0;
    
    //    ::std::fill(visited_neurons, visited_neurons + n, false);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    //
    //    for(size_t i: output_neuron_indices ){
    //
    //        if( i < 0 || i >= n){
    //            //invalid index
    //            continue;
    //        }
    //        active_neuron_set[idx1 * n + active_set_size[idx1]] = i;
    //        active_set_size[idx1]++;
    //
    //        visited_neurons[i] = true;
    //    }
    //
    //    /* BACKWARD PASS */
    //    size_t n_new_neurons = 0;
    //    while(active_set_size[idx1] > 0){
    //
    //        //we iterate through the active neurons and propagate the signal
    //        for(int i = 0; i < active_set_size[idx1]; ++i){
    //            idx = active_neuron_set[i];
    //
    //            is_reachable_from_destination[ idx ] = true;
    //
    //            active_neuron = this->neurons->at( idx );
    //
    //            if(is_reachable_from_source[ idx ]){
    //                n_new_neurons++;
    //            }
    //
    //            for(Connection* connection: *(active_neuron->get_connections_in())){
    //
    //                target_neuron = connection->get_neuron_in( );
    //                idx_target = target_neuron->get_idx( );
    //
    //                if( visited_neurons[idx_target] ){
    //                    //this neuron was already analyzed
    //                    continue;
    //                }
    //
    //                visited_neurons[idx_target] = true;
    //                active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target;
    //                active_set_size[idx2]++;
    //            }
    //        }
    //        idx1 = idx2;
    //        idx2 = (idx1 + 1) % 2;
    //        active_set_size[idx2] = 0;
    //    }
    //
    //    /* FOR CONSISTENCY REASONS */
    //    for(size_t in: input_neuron_indices){
    //        if( !is_reachable_from_destination[in] ){
    //            n_new_neurons++;
    //        }
    //        is_reachable_from_destination[in] = true;
    //    }
    //    /* FOR CONSISTENCY REASONS */
    //    for(size_t in: output_neuron_indices){
    //        if( !is_reachable_from_source[in] ){
    //            n_new_neurons++;
    //        }
    //        is_reachable_from_source[in] = true;
    //    }
    //
    //    /* WE FORM THE SET OF NEURONS IN THE OUTPUT NETWORK  */
    //    if(n_new_neurons > 0){
    ////        printf("Number of new neurons: %d\n", n_new_neurons);
    //        output_net = new NeuralNetwork();
    //        output_net->set_weight_array( this->connection_weights );
    //
    
    //        ::std::vector<size_t > local_inputs(0), local_outputs(0);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    //        local_inputs.reserve(input_neuron_indices.size());
    //        local_outputs.reserve(output_neuron_indices.size());
    //
    
    //        ::std::vector<Neuron*> local_n_arr(0);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    //        local_n_arr.reserve( n_new_neurons );
    //
    
    //        ::std::vector<Neuron*> local_local_n_arr(0);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    //        local_local_n_arr.reserve( n_new_neurons );
    //
    //        int * neuron_local_mapping = new int[ n ];
    
    //        ::std::fill(neuron_local_mapping, neuron_local_mapping + n, -1);
    
    Michal Kravcenko's avatar
    Michal Kravcenko committed
    //        idx = 0;
    //        for(size_t i = 0; i < n; ++i){
    //            if(is_reachable_from_source[i] && is_reachable_from_destination[i]){
    //                neuron_local_mapping[i] = (int)idx;
    //                idx++;
    //
    //                Neuron *new_neuron = this->neurons->at(i)->get_copy( );
    //
    //                output_net->add_neuron( new_neuron );
    //                local_local_n_arr.push_back( new_neuron );
    //                local_n_arr.push_back( this->neurons->at(i) );
    //            }
    //        }
    //        for(size_t in: input_neuron_indices){
    //            local_inputs.push_back(neuron_local_mapping[in]);
    //        }
    //        for(size_t in: output_neuron_indices){
    //            local_outputs.push_back(neuron_local_mapping[in]);
    //        }
    //
    ////        printf("%d\n", local_n_arr.size());
    ////        printf("inputs: %d, outputs: %d\n", local_inputs.size(), local_outputs.size());
    //        int local_idx_1, local_idx_2;
    //        for(Neuron* source_neuron: local_n_arr){
    //            //we also add the relevant edges
    //            local_idx_1 = neuron_local_mapping[source_neuron->get_idx()];
    //
    //            for(Connection* connection: *(source_neuron->get_connections_out( ))){
    //                target_neuron = connection->get_neuron_out();
    //
    //                local_idx_2 = neuron_local_mapping[target_neuron->get_idx()];
    //                if(local_idx_2 >= 0){
    //                    //this edge is part of the subnetwork
    //                    Connection* new_connection = connection->get_copy( local_local_n_arr[local_idx_1], local_local_n_arr[local_idx_2] );
    //
    //                    local_local_n_arr[local_idx_1]->add_connection_out(new_connection);
    //                    local_local_n_arr[local_idx_2]->add_connection_in(new_connection);
    //
    ////                    printf("adding a connection between neurons %d, %d\n", local_idx_1, local_idx_2);
    //                }
    //
    //            }
    //
    //        }
    //        output_net->specify_input_neurons(local_inputs);
    //        output_net->specify_output_neurons(local_outputs);
    //
    //
    //        delete [] neuron_local_mapping;
    //    }
    //
    //    delete [] is_reachable_from_source;
    //    delete [] is_reachable_from_destination;
    //    delete [] part_of_subnetwork;
    //    delete [] visited_neurons;
    //    delete [] active_neuron_set;
    //
    //
    
        size_t NeuralNetwork::add_neuron(Neuron *n, BIAS_TYPE bt, size_t bias_idx) {
    
            if (bt == BIAS_TYPE::NO_BIAS) {
                this->neuron_bias_indices->push_back(-1);
            } else if (bt == BIAS_TYPE::NEXT_BIAS) {
                this->neuron_bias_indices->push_back((int) this->neuron_biases->size());
                this->neuron_biases->resize(this->neuron_biases->size() + 1);
            } else if (bt == BIAS_TYPE::EXISTING_BIAS) {
                if (bias_idx >= this->neuron_biases->size()) {
    
                    ::std::cerr << "The supplied bias index is too large!\n" << ::std::endl;
    
                }
                this->neuron_bias_indices->push_back((int) bias_idx);
    
            this->outward_adjacency->push_back(new ::std::vector<std::pair<size_t, size_t>>(0));
            this->inward_adjacency->push_back(new ::std::vector<std::pair<size_t, size_t>>(0));
    
            this->layers_analyzed = false;
            return this->neurons->size() - 1;
        }
    
        void NeuralNetwork::eval_single_debug(::std::vector<double> &input, ::std::vector<double> &output,
                                              ::std::vector<double> *custom_weights_and_biases) {
            if ((this->input_neuron_indices->size() * this->output_neuron_indices->size()) <= 0) {
                THROW_INVALID_ARGUMENT_ERROR("Input and output neurons have not been specified!");
            }
    
            if (this->input_neuron_indices->size() != input.size()) {
                THROW_INVALID_ARGUMENT_ERROR("Data input size != Network input size");
            }
    
            if (this->output_neuron_indices->size() != output.size()) {
                THROW_INVALID_ARGUMENT_ERROR("Data output size != Network output size");
            }
    
            double potential, bias;
            int bias_idx;
    
            this->copy_parameter_space(custom_weights_and_biases);
    
            this->analyze_layer_structure();
    
            /* reset of the output and the neuron potentials */
            ::std::fill(output.begin(), output.end(), 0.0);
            ::std::fill(this->neuron_potentials->begin(), this->neuron_potentials->end(), 0.0);
    
            /* set the potentials of the input neurons */
            for (size_t i = 0; i < this->input_neuron_indices->size(); ++i) {
                this->neuron_potentials->at(this->input_neuron_indices->at(i)) = input[i];
                std::cout << this->neuron_potentials->at(this->input_neuron_indices->at(i)) << ", ";
            }
            std::cout << std::endl;
    
    
    
            /* we iterate through all the feed-forward layers and transfer the signals */
            for (auto layer: *this->neuron_layers_feedforward) {
                /* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
    
                for (auto si: *layer) {
                    bias = 0.0;
                    bias_idx = this->neuron_bias_indices->at(si);
                    if (bias_idx >= 0) {
                        bias = this->neuron_biases->at(bias_idx);
                    }
                    potential = this->neurons->at(si)->activate(this->neuron_potentials->at(si), bias);
                    std::cout << "  applying bias: " << bias << " to neuron potential: " << this->neuron_potentials->at(si) << " -> " << potential << std::endl;
    
                    for (auto c: *this->outward_adjacency->at(si)) {
                        size_t ti = c.first;
                        size_t ci = c.second;
    
                        this->neuron_potentials->at(ti) +=
                                this->connection_list->at(ci)->eval(*this->connection_weights) * potential;
    
                        std::cout << "  adding input to neuron " << ti << " += " << this->connection_list->at(ci)->eval(*this->connection_weights) << "*" << potential << std::endl;
                    }
                }
            }
    
            unsigned int i = 0;
            for (auto oi: *this->output_neuron_indices) {
                bias = 0.0;
                bias_idx = this->neuron_bias_indices->at(oi);
                if (bias_idx >= 0) {
                    bias = this->neuron_biases->at(bias_idx);
                }
                output[i] = this->neurons->at(oi)->activate(this->neuron_potentials->at(oi), bias);
                std::cout << "setting the output[" << i << "] = " << output[i] << "(bias = " << bias << ")" << std::endl;
                ++i;
            }
        }
    
    
    
        NeuralNetwork::add_connection_simple(size_t n1_idx, size_t n2_idx, SIMPLE_CONNECTION_TYPE sct,
                                             size_t weight_idx) {
    
            ConnectionFunctionIdentity *con_weight_u1u2;
            if (sct == SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT) {
                con_weight_u1u2 = new ConnectionFunctionIdentity();
            } else {
                if (sct == SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT) {
                    weight_idx = this->connection_weights->size();
                    this->connection_weights->resize(weight_idx + 1);
                } else if (sct == SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT) {
                    if (weight_idx >= this->connection_weights->size()) {
    
                        ::std::cerr << "The supplied connection weight index is too large!\n" << ::std::endl;
    
                con_weight_u1u2 = new ConnectionFunctionIdentity(weight_idx);
            }
    
            size_t conn_idx = this->add_new_connection_to_list(con_weight_u1u2);
    
            this->add_outward_connection(n1_idx, n2_idx, conn_idx);
            this->add_inward_connection(n2_idx, n1_idx, conn_idx);
    
        void NeuralNetwork::add_existing_connection(size_t n1_idx, size_t n2_idx, size_t connection_idx,
                                                    NeuralNetwork &parent_network) {
    
            size_t conn_idx = this->add_new_connection_to_list(parent_network.connection_list->at(connection_idx));
    
            this->add_outward_connection(n1_idx, n2_idx, conn_idx);
            this->add_inward_connection(n2_idx, n1_idx, conn_idx);
    
        void NeuralNetwork::copy_parameter_space(std::vector<double> *parameters) {
            if (parameters != nullptr) {
                for (unsigned int i = 0; i < this->connection_weights->size(); ++i) {
    
                    (*this->connection_weights).at(i) = (*parameters).at(i);
    
                for (unsigned int i = 0; i < this->neuron_biases->size(); ++i) {
    
                    (*this->neuron_biases).at(i) = (*parameters).at(i + this->connection_weights->size());
    
        void NeuralNetwork::set_parameter_space_pointers(NeuralNetwork &parent_network) {
    
            if (this->connection_weights) {
                delete connection_weights;
            }
    
            if (this->neuron_biases) {
                delete this->neuron_biases;
            }
    
            this->connection_weights = parent_network.connection_weights;
            this->neuron_biases = parent_network.neuron_biases;
    
            this->delete_biases = false;
            this->delete_weights = false;
    
        void NeuralNetwork::get_jacobian(std::vector<std::vector<double>> &jacobian, std::pair<std::vector<double>, std::vector<double>> &data, std::bvector<double> &error) {
    
    
            std::vector<double> fv(this->get_n_outputs());
    
    
            jacobian.resize(this->get_n_outputs());
            error.resize(this->get_n_outputs());
            for(size_t i = 0; i < this->get_n_outputs(); ++i){
                jacobian[i].resize(this->get_n_weights() + this->get_n_biases());
                std::fill(jacobian[i].begin(), jacobian[i].end(), 0);
            }
    
    
            this->eval_single( data.first, fv );
    
            std::vector<double> error_partial(this->get_n_outputs());
            std::fill(error_partial.begin(), error_partial.end(), 0.0);
    
            for( size_t i = 0; i < this->get_n_outputs(); ++i){
                error_partial[i] = 1;
    
                this->add_to_gradient_single(data.first, error_partial, 1.0, jacobian[i]);
                error[i] = data.second[i] - fv[i];
    
        void NeuralNetwork::eval_single(::std::vector<double>& input,
                                        ::std::vector<double>& output,
                                        ::std::vector<double>* custom_weights_and_biases) {
    
    
            if ((this->input_neuron_indices->size() * this->output_neuron_indices->size()) <= 0) {
    
                THROW_INVALID_ARGUMENT_ERROR("Input and output neurons have not been specified!");
    
            if (this->input_neuron_indices->size() != input.size()) {
    
                THROW_INVALID_ARGUMENT_ERROR("Data input size != Network input size");
    
            if (this->output_neuron_indices->size() != output.size()) {
    
                THROW_INVALID_ARGUMENT_ERROR("Data output size != Network output size");
    
            this->copy_parameter_space(custom_weights_and_biases);
    
            /* reset of the output and the neuron potentials */
    
            ::std::fill(output.begin(), output.end(), 0.0);
            ::std::fill(this->neuron_potentials->begin(), this->neuron_potentials->end(), 0.0);
    
            /* set the potentials of the input neurons */
            for (size_t i = 0; i < this->input_neuron_indices->size(); ++i) {
                this->neuron_potentials->at(this->input_neuron_indices->at(i)) = input[i];
            }
    
            /* we iterate through all the feed-forward layers and transfer the signals */
            for (auto layer: *this->neuron_layers_feedforward) {
                /* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
    
                for (auto si: *layer) {
                    bias = 0.0;
                    bias_idx = this->neuron_bias_indices->at(si);
                    if (bias_idx >= 0) {
                        bias = this->neuron_biases->at(bias_idx);
                    }
                    potential = this->neurons->at(si)->activate(this->neuron_potentials->at(si), bias);
    
                    for (auto c: *this->outward_adjacency->at(si)) {
                        size_t ti = c.first;
                        size_t ci = c.second;
    
                        this->neuron_potentials->at(ti) +=
                                this->connection_list->at(ci)->eval(*this->connection_weights) * potential;
                    }
    
            unsigned int i = 0;
            for (auto oi: *this->output_neuron_indices) {
                bias = 0.0;
                bias_idx = this->neuron_bias_indices->at(oi);
                if (bias_idx >= 0) {
                    bias = this->neuron_biases->at(bias_idx);
                }
                output[i] = this->neurons->at(oi)->activate(this->neuron_potentials->at(oi), bias);
                ++i;
    
        void NeuralNetwork::add_to_gradient_single(std::vector<double> &input, ::std::vector<double> &error_derivative,
                                                   double error_scaling, ::std::vector<double> &gradient) {
    
            ::std::vector<double> scaling_backprog(this->get_n_neurons());
            ::std::fill(scaling_backprog.begin(), scaling_backprog.end(), 0.0);
    
            size_t bias_shift = this->get_n_weights();
            size_t neuron_idx;
            int bias_idx;
            double neuron_potential, neuron_potential_t, neuron_bias, connection_weight;
    
            NeuronDifferentiable *active_neuron;
    
            /* initial error propagation */
            ::std::vector<size_t> *current_layer = this->neuron_layers_feedforward->at(
                    this->neuron_layers_feedforward->size() - 1);
            //TODO might not work in the future as the output neurons could be permuted
            for (size_t i = 0; i < current_layer->size(); ++i) {
                neuron_idx = current_layer->at(i);
                scaling_backprog[neuron_idx] = error_derivative[i] * error_scaling;
            }
    
            /* we iterate through all the layers in reverse order and calculate partial derivatives scaled correspondingly */
            for (size_t j = this->neuron_layers_feedforward->size(); j > 0; --j) {
    
                current_layer = this->neuron_layers_feedforward->at(j - 1);
    
                for (size_t i = 0; i < current_layer->size(); ++i) {
    
                    neuron_idx = current_layer->at(i);
                    active_neuron = dynamic_cast<NeuronDifferentiable *> (this->neurons->at(neuron_idx));
    
                    if (active_neuron) {
                        bias_idx = this->neuron_bias_indices->at(neuron_idx);
                        neuron_potential = this->neuron_potentials->at(neuron_idx);
    
                        if (bias_idx >= 0) {
                            neuron_bias = this->neuron_biases->at(bias_idx);
                            gradient[bias_shift + bias_idx] += scaling_backprog[neuron_idx] *
                                                               active_neuron->activation_function_eval_derivative_bias(
                                                                       neuron_potential, neuron_bias);
                            scaling_backprog[neuron_idx] *= active_neuron->activation_function_eval_derivative(
                                    neuron_potential,
                                    neuron_bias);
                        }
    
                        /* connections to lower level neurons */
                        for (auto c: *this->inward_adjacency->at(neuron_idx)) {
                            size_t ti = c.first;
                            size_t ci = c.second;
    
                            neuron_potential_t = this->neurons->at(ti)->get_last_activation_value( );
    
                            connection_weight = this->connection_list->at(ci)->eval(*this->connection_weights);
    
                            this->connection_list->at(ci)->eval_partial_derivative(*this->get_parameter_ptr_weights(),
                                                                                   gradient,
                                                                                   neuron_potential_t *
                                                                                   scaling_backprog[neuron_idx]);
    
                            scaling_backprog[ti] += scaling_backprog[neuron_idx] * connection_weight;
                        }
                    } else {
    
                        THROW_INVALID_ARGUMENT_ERROR(
    
                                "Neuron used in backpropagation does not contain differentiable activation function!\n");
    
        void NeuralNetwork::add_to_gradient_single_debug(std::vector<double> &input, ::std::vector<double> &error_derivative,
    
                                                         double error_scaling, ::std::vector<double> &gradient) {
    
            ::std::vector<double> scaling_backprog(this->get_n_neurons());
            ::std::fill(scaling_backprog.begin(), scaling_backprog.end(), 0.0);
    
            size_t bias_shift = this->get_n_weights();
            size_t neuron_idx;
            int bias_idx;
            double neuron_potential, neuron_activation_t, neuron_bias, connection_weight;
    
            NeuronDifferentiable *active_neuron;
    
            /* initial error propagation */
            ::std::vector<size_t> *current_layer = this->neuron_layers_feedforward->at(
                    this->neuron_layers_feedforward->size() - 1);
            //TODO might not work in the future as the output neurons could be permuted
            std::cout << "Error scaling on the output layer: ";
            for (size_t i = 0; i < current_layer->size(); ++i) {
                neuron_idx = current_layer->at(i);
                scaling_backprog[neuron_idx] = error_derivative[i] * error_scaling;
    
                std::cout << scaling_backprog[neuron_idx] << " [neuron " << neuron_idx << "], ";
            }
            std::cout << std::endl;
    
            /* we iterate through all the layers in reverse order and calculate partial derivatives scaled correspondingly */
            for (size_t j = this->neuron_layers_feedforward->size(); j > 0; --j) {
    
                current_layer = this->neuron_layers_feedforward->at(j - 1);
    
                for (size_t i = 0; i < current_layer->size(); ++i) {
    
                    neuron_idx = current_layer->at(i);
                    active_neuron = dynamic_cast<NeuronDifferentiable *> (this->neurons->at(neuron_idx));
    
                    if (active_neuron) {
                        std::cout << "  [backpropagation] active neuron: " << neuron_idx << std::endl;
    
                        bias_idx = this->neuron_bias_indices->at(neuron_idx);
                        neuron_potential = this->neuron_potentials->at(neuron_idx);
    
                        if (bias_idx >= 0) {
                            neuron_bias = this->neuron_biases->at(bias_idx);
                            gradient[bias_shift + bias_idx] += scaling_backprog[neuron_idx] *
                                                               active_neuron->activation_function_eval_derivative_bias(
                                                                       neuron_potential, neuron_bias);
                            scaling_backprog[neuron_idx] *= active_neuron->activation_function_eval_derivative(
                                    neuron_potential,
                                    neuron_bias);
                        }
    
                        std::cout << "      [backpropagation] scaling coefficient: " << scaling_backprog[neuron_idx] << std::endl;
    
                        /* connections to lower level neurons */
                        for (auto c: *this->inward_adjacency->at(neuron_idx)) {
                            size_t ti = c.first;
                            size_t ci = c.second;
    
                            neuron_activation_t = this->neurons->at(ti)->get_last_activation_value( );
                            connection_weight = this->connection_list->at(ci)->eval(*this->connection_weights);
    
                            std::cout << "      [backpropagation] value ("<<ti<< "): " << neuron_activation_t << ", scaling: " << scaling_backprog[neuron_idx] << std::endl;
    
                            this->connection_list->at(ci)->eval_partial_derivative(*this->get_parameter_ptr_weights(),
                                                                                   gradient,
                                                                                   neuron_activation_t *
                                                                                   scaling_backprog[neuron_idx]);
    
                            scaling_backprog[ti] += scaling_backprog[neuron_idx] * connection_weight;
                        }
                    } else {
                        THROW_INVALID_ARGUMENT_ERROR(
                                "Neuron used in backpropagation does not contain differentiable activation function!\n");
                    }
                }
            }
        }
    
    
        void NeuralNetwork::randomize_weights() {
    
            boost::random::mt19937 gen(std::time(0));
    
    
            // Init weight guess ("optimal" for logistic activation functions)
    
            double r = 4 * sqrt(6. / (this->connection_weights->size()));
    
            boost::random::uniform_real_distribution<> dist(-r, r);
    
            for (size_t i = 0; i < this->connection_weights->size(); i++) {
                this->connection_weights->at(i) = dist(gen);
            }
    
        void NeuralNetwork::randomize_biases() {
    
            boost::random::mt19937 gen(std::time(0));
    
            // Init weight guess ("optimal" for logistic activation functions)
    
            boost::random::uniform_real_distribution<> dist(-1, 1);
    
            for (size_t i = 0; i < this->neuron_biases->size(); i++) {
                this->neuron_biases->at(i) = dist(gen);
            }
    
        void NeuralNetwork::randomize_parameters() {
            this->randomize_biases();
            this->randomize_weights();
        }
    
        void NeuralNetwork::scale_biases(double alpha) {
            for(size_t i = 0; i < this->get_n_biases(); ++i){
                this->neuron_biases->at( i ) *= alpha;
            }
        }
    
        void NeuralNetwork::scale_weights(double alpha) {
            for(size_t i = 0; i < this->get_n_weights(); ++i){
                this->connection_weights->at( i ) *= alpha;
            }
        }
    
        void NeuralNetwork::scale_parameters(double alpha) {
            this->scale_biases( alpha );
            this->scale_weights( alpha );
        }
    
        size_t NeuralNetwork::get_n_inputs() {
            return this->input_neuron_indices->size();
        }
    
        size_t NeuralNetwork::get_n_outputs() {
            return this->output_neuron_indices->size();
        }
    
        size_t NeuralNetwork::get_n_weights() {
            return this->connection_weights->size();
    
    
        size_t NeuralNetwork::get_n_biases() {
            return this->neuron_biases->size();
    
        int NeuralNetwork::get_neuron_bias_index(size_t neuron_idx) {
            return this->neuron_bias_indices->at(neuron_idx);
    
    
        size_t NeuralNetwork::get_n_neurons() {
            return this->neurons->size();
    
        void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) {
            if (!this->input_neuron_indices) {
    
                this->input_neuron_indices = new ::std::vector<size_t>(input_neurons_indices);
    
                this->input_neuron_indices = new ::std::vector<size_t>(input_neurons_indices);
    
        void NeuralNetwork::specify_output_neurons(std::vector<size_t> &output_neurons_indices) {
            if (!this->output_neuron_indices) {
    
                this->output_neuron_indices = new ::std::vector<size_t>(output_neurons_indices);
    
            } else {
                delete this->output_neuron_indices;
    
                this->output_neuron_indices = new ::std::vector<size_t>(output_neurons_indices);
    
        void NeuralNetwork::write_weights() {
            std::cout << "Connection weights: ";
            if (this->connection_weights) {
                for (size_t i = 0; i < this->connection_weights->size() - 1; ++i) {
                    std::cout << this->connection_weights->at(i) << ", ";
                }
                std::cout << this->connection_weights->at(this->connection_weights->size() - 1) << std::endl;
            }
        }
    
        void NeuralNetwork::write_weights(std::string file_path) {
            std::ofstream ofs(file_path);
    
            if(!ofs.is_open()) {
                THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
            }
    
            ofs << "Connection weights: ";
    
            if (this->connection_weights) {
                for (size_t i = 0; i < this->connection_weights->size() - 1; ++i) {
                    ofs << this->connection_weights->at(i) << ", ";
                }
                ofs << this->connection_weights->at(this->connection_weights->size() - 1) << std::endl;
            }
        }
    
        void NeuralNetwork::write_weights(std::ofstream* file_path) {
            *file_path << "Connection weights: ";
    
    
            if (this->connection_weights) {
                for (size_t i = 0; i < this->connection_weights->size() - 1; ++i) {
    
                    *file_path << this->connection_weights->at(i) << ", ";
    
                *file_path << this->connection_weights->at(this->connection_weights->size() - 1) << std::endl;
    
        void NeuralNetwork::write_biases() {
            std::cout << "Network biases: ";
    
            if(this->neuron_biases) {
                for(unsigned int i = 0; i < this->neuron_biases->size() - 1; i++) {
                    std::cout << this->neuron_biases->at(i) << ", ";
                }
                std::cout << this->neuron_biases->at(this->neuron_biases->size() - 1) << std::endl;
            }
    
        void NeuralNetwork::write_biases(std::string file_path) {
            std::ofstream ofs(file_path);
    
            if(!ofs.is_open()) {
                THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
            }
    
            ofs << "Network biases: ";
    
            if(this->neuron_biases) {
                for(unsigned int i = 0; i < this->neuron_biases->size() - 1; i++) {
                    ofs << this->neuron_biases->at(i) << ", ";
                }
                ofs << this->neuron_biases->at(this->neuron_biases->size() - 1) << std::endl;
            }
        }
    
        void NeuralNetwork::write_biases(std::ofstream* file_path) {
            *file_path << "Network biases: ";
    
            if(this->neuron_biases) {
                for(unsigned int i = 0; i < this->neuron_biases->size() - 1; i++) {
                    *file_path << this->neuron_biases->at(i) << ", ";
                }
                *file_path << this->neuron_biases->at(this->neuron_biases->size() - 1) << std::endl;
            }
        }
    
        void NeuralNetwork::write_stats() {
    
            ::std::cout << std::flush
                        << "Number of neurons: " << this->neurons->size() << ::std::endl
    
                        << "Number of connections: " << this->connection_list->size() << ::std::endl
                        << "Number of active weights: " << this->connection_weights->size() << ::std::endl
                        << "Number of active biases: " << this->neuron_biases->size() << ::std::endl;
    
                ::std::cout << std::flush
                            << "Normalization strategy maximum value: "
    
                            << this->normalization_strategy->get_max_value() << std::endl
                            << "Normalization strategy minimum value: "
                            << this->normalization_strategy->get_min_value()
                            << std::endl;
            }
    
        void NeuralNetwork::write_stats(std::string file_path) {
            std::ofstream ofs(file_path);
    
            if(!ofs.is_open()) {
                THROW_RUNTIME_ERROR("File " + file_path + " can not be opened!");
            }
    
            ofs << "Number of neurons: " << this->neurons->size() << ::std::endl
                << "Number of connections: " << this->connection_list->size() << ::std::endl
                << "Number of active weights: " << this->connection_weights->size() << ::std::endl
                << "Number of active biases: " << this->neuron_biases->size() << ::std::endl;
    
            if(this->normalization_strategy) {
                ofs << "Normalization strategy maximum value: "
                    << this->normalization_strategy->get_max_value() << std::endl
                    << "Normalization strategy minimum value: "
                    << this->normalization_strategy->get_min_value()
                    << std::endl;
            }
    
            ofs.close();
        }
    
        void NeuralNetwork::write_stats(std::ofstream* file_path) {
            *file_path << "Number of neurons: " << this->neurons->size() << ::std::endl
                       << "Number of connections: " << this->connection_list->size() << ::std::endl
                       << "Number of active weights: " << this->connection_weights->size() << ::std::endl
                       << "Number of active biases: " << this->neuron_biases->size() << ::std::endl;
    
            if(this->normalization_strategy) {