Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
Campbell Barton
committed
import bpy
Campbell Barton
committed
def vis_curve_object():
Campbell Barton
committed
cu = bpy.data.curves.new(name="Line", type='CURVE')
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
return ob
def vis_curve_spline(p1, h1, p2, h2):
ob = vis_curve_object()
spline = ob.data.splines.new(type='BEZIER')
spline.bezier_points.add(1)
spline.bezier_points[0].co = p1.to_3d()
spline.bezier_points[1].co = p2.to_3d()
spline.bezier_points[0].handle_right = h1.to_3d()
spline.bezier_points[1].handle_left = h2.to_3d()
def vis_circle_object(co, rad=1.0):
import math
Campbell Barton
committed
ob = bpy.data.objects.new(name="Circle", object_data=None)
ob.rotation_euler.x = math.pi / 2
ob.location = co.to_3d()
ob.empty_draw_size = rad
ob.layers = [True] * 20
base = scene.objects.link(ob)
return ob
def visualize_line(p1, p2, p3=None, rad=None):
pair = p1.to_3d(), p2.to_3d()
ob = vis_curve_object()
spline = ob.data.splines.new(type='POLY')
spline.points.add(1)
for co, v in zip((pair), spline.points):
v.co.xyz = co
Campbell Barton
committed
if p3:
spline = ob.data.splines.new(type='POLY')
spline.points[0].co.xyz = p3.to_3d()
if rad is not None:
vis_circle_object(p3, rad)
def treat_points(points,
double_limit=0.0001,
):
# first remove doubles
tot_len = 0.0
if double_limit != 0.0:
i = len(points) - 1
while i > 0:
length = (points[i] - points[i - 1]).length
if length < double_limit:
del points[i]
if i >= len(points):
i -= 1
else:
tot_len += length
i -= 1
return tot_len
def solve_curvature(p1, p2, n1, n2, fac, fallback):
Campbell Barton
committed
"""
from mathutils.geometry import (intersect_line_line,
Campbell Barton
committed
)
p1_a = p1 + n1
p2_a = p2 - n2
isect = intersect_line_line(p1,
p1_a,
p2,
p2_a,
Campbell Barton
committed
)
if isect:
Campbell Barton
committed
else:
corner = None
if corner:
p1_first_order = p1.lerp(corner, fac)
p2_first_order = corner.lerp(p2, fac)
co = p1_first_order.lerp(p2_first_order, fac)
Campbell Barton
committed
else:
# cant interpolate. just return interpolated value
Campbell Barton
committed
def points_to_bezier(points_orig,
double_limit=0.0001,
kink_tolerance=0.25,
bezier_tolerance=0.05, # error distance, scale dependant
Campbell Barton
committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
subdiv=8,
angle_span=0.95, # 1.0 tries to evaluate splines of 180d
):
import math
from mathutils import Vector
class Point(object):
__slots__ = ("co",
"angle",
"no",
"is_joint",
"next",
"prev",
)
def __init__(self, co):
self.co = co
self.is_joint = False
def calc_angle(self):
if self.prev is None or self.next is None:
self.angle = 0.0
else:
va = self.co - self.prev.co
vb = self.next.co - self.co
self.angle = va.angle(vb, 0.0)
def angle_diff(self):
""" use for detecting joints, detect difference in angle from
surrounding points.
"""
if self.prev is None or self.next is None:
return 0.0
else:
if (self.angle > self.prev.angle and
self.angle > self.next.angle):
return abs(self.angle - self.prev.angle) / math.pi
else:
return 0.0
Campbell Barton
committed
def calc_normal(self):
v1 = v2 = None
if self.prev and not self.prev.is_joint:
v1 = (self.co - self.prev.co).normalized()
if self.next and not self.next.is_joint:
v2 = (self.next.co - self.co).normalized()
Campbell Barton
committed
if v1 and v2:
self.no = (v1 + v2).normalized()
elif v1:
self.no = v1
elif v2:
self.no = v2
else:
print("Warning, assigning dummy normal")
Campbell Barton
committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
class Spline(object):
__slots__ = ("points",
"handle_left",
"handle_right",
"next",
"prev",
)
def __init__(self, points):
self.points = points
def link_points(self):
if hasattr(self.points[0], "prev"):
raise Exception("already linked")
p_prev = None
for p in self.points:
p.prev = p_prev
p_prev = p
p_prev = None
for p in reversed(self.points):
p.next = p_prev
p_prev = p
def split(self, i, is_joint=False):
prev = self.prev
next = self.next
if is_joint:
self.points[i].is_joint = True
# share a point
spline_a = Spline(self.points[:i + 1])
spline_b = Spline(self.points[i:])
# invalidate self, dont reuse!
self.points = None
Campbell Barton
committed
spline_a.next = spline_b
spline_b.prev = spline_a
Campbell Barton
committed
spline_a.prev = prev
spline_b.next = next
if prev:
prev.next = spline_a
if next:
next.prev = spline_b
return spline_a, spline_b
def calc_angle(self):
for p in self.points:
p.calc_angle()
def calc_normal(self):
for p in self.points:
p.calc_normal()
def calc_all(self):
self.link_points()
self.calc_angle()
self.calc_normal()
#~ def total_angle(self):
#~ return abs(sum((p.angle for p in self.points)))
Campbell Barton
committed
def redistribute(self, segment_length, smooth=False):
if len(self.points) == 1:
return
from mathutils.geometry import intersect_line_sphere
Campbell Barton
committed
p_line = p = self.points[0]
points = [(p.co.copy(), p.co.copy())]
p = p.next
def point_add(co, p=None):
co = co.copy()
co_smooth = co.copy()
if smooth:
if p is None:
Campbell Barton
committed
elif (p.prev.no - p.no).length < 0.001:
Campbell Barton
committed
elif (p.angle > 0.0) != (p.prev.angle > 0.0):
pass
else:
# visualize_line(p.co, p.co + p.no)
Campbell Barton
committed
# this assumes co is on the line
fac = ((p.prev.co - co).length /
(p.prev.co - p.co).length)
assert(fac >= 0.0 and fac <= 1.0)
co_smooth = solve_curvature(p.prev.co,
p.co,
p.prev.no,
p.no,
fac,
co,
)
Campbell Barton
committed
points.append((co, co_smooth))
def point_step(p):
if p.is_joint or p.next is None:
point_add(p.co)
return None
else:
return p.next
print("START")
while p:
# we want the first pont past the segment size
Campbell Barton
committed
#if p.is_joint:
# vis_circle_object(p.co)
length = (points[-1][0] - p.co).length
Campbell Barton
committed
if abs(length - segment_length) < 0.00001:
# close enough to be considered on the circle bounds
point_add(p.co)
p_line = p
p = point_step(p)
elif length < segment_length:
p = point_step(p)
else:
# the point is further then the segment width
p_start = points[-1][0] if p.prev is p_line else p.prev.co
Campbell Barton
committed
if (p_start - points[-1][0]).length > segment_length:
raise Exception("eek2")
if (p.co - points[-1][0]).length < segment_length:
raise Exception("eek3")
# print(p_start, p.co, points[-1][0], segment_length)
i1, i2 = intersect_line_sphere(p_start,
p.co,
points[-1][0],
segment_length,
)
Campbell Barton
committed
# print()
# print(i1, i2)
# assert(i1 is not None)
if i1 is not None:
point_add(i1, p)
p_line = p.prev
elif i2:
raise Exception("err")
Campbell Barton
committed
elif i1 is None and i2 is None:
visualize_line(p_start,
p.co,
points[-1][0],
segment_length,
)
# XXX FIXME
# raise Exception("BAD!s")
point_add(p.co)
p_line = p
p = point_step(p)
Campbell Barton
committed
joint = self.points[0].is_joint, self.points[-1].is_joint
self.points = [Point(p[1]) for p in points]
self.points[0].is_joint, self.points[-1].is_joint = joint
Campbell Barton
committed
self.calc_all()
# raise Exception("END")
def intersect_line(self, l1, l2, reverse=False):
""" Spectial kind of intersection, works in 3d on the plane
defimed by the points normal and the line.
Campbell Barton
committed
"""
from mathutils.geometry import (intersect_point_line,
)
if reverse:
p_first = self.points[-1]
no = -self.points[-1].no
point_iter = reversed(self.points[:-1])
else:
p_first = self.points[0]
no = self.points[0].no
point_iter = self.points[1:]
Campbell Barton
committed
# calculate the line right angles to the line
bi_no = (no - no.project(l2 - l1)).normalized()
Campbell Barton
committed
bi_l1 = p_first.co
bi_l2 = p_first.co + bi_no
Campbell Barton
committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
for p_apex in point_iter:
ix, fac = intersect_point_line(p_apex.co, bi_l1, bi_l2)
if fac < 0.0001:
if reverse:
p_apex_other = p_apex.next
else:
p_apex_other = p_apex.prev
# find the exact point on the line between the apex and
# the middle
p_test_1 = intersect_point_line(p_apex.co,
l1,
l2)[0]
p_test_2 = intersect_point_line(p_apex_other.co,
l1,
l2)[0]
w1 = (p_test_1 - p_apex.co).length
w2 = (p_test_2 - p_apex_other.co).length
#assert(w1 + w2 != 0)
try:
fac = w1 / (w1 + w2)
except ZeroDivisionError:
fac = 0.5
assert(fac >= 0.0 and fac <= 1.0)
p_apex_co = p_apex.co.lerp(p_apex_other.co, fac)
p_apex_no = p_apex.no.lerp(p_apex_other.no, fac)
p_apex_no.normalize()
# visualize_line(p_mid.to_3d(), corner.to_3d())
# visualize_line(p_apex.co.to_3d(), p_apex_co.to_3d())
return p_apex_co, p_apex_no, p_apex
# intersection not found
return None, None, None
@staticmethod
def bez_solve(p0, p1, p2, p3, u, v):
Campbell Barton
committed
ui = 1.0 - u
vi = 1.0 - v
u_p3 = u * u * u
v_p3 = v * v * v
ui_p3 = ui * ui * ui
vi_p3 = vi * vi * vi
a = 3.0 * ui * ui * u
b = 3.0 * ui * u * u
c = 3.0 * vi * vi * v
d = 3.0 * vi * v * v
det = a * d - b * c
if det == 0.0:
assert(0)
return 0
q1 = p1 - (ui_p3 * p0 + u_p3 * p3)
q2 = p2 - (vi_p3 * p0 + v_p3 * p3)
Campbell Barton
committed
return ((d * q1 - b * q2) / det,
(-c * q1 + a * q2) / det
)
Campbell Barton
committed
def bezier_solve__math1(self):
""" Calculate bezier handles,
assume the splines have been broken up.
Campbell Barton
committed
http://polymathprogrammer.com/
"""
Campbell Barton
committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
def get(f, min=0.0, max=1.0):
f = (f * (max - min) + min)
return self.points[int((len(self.points) - 1) * f)].co
p1 = get(0.0)
p2 = get(1.0)
i1 = get(1/3)
i2 = get(2/3)
pos = __class__.bez_solve(p1, i1, i2, p2, 1.0 / 3.0, 2.0 / 3.0)
self.handle_left = self.points[0].co + (pos[0] - self.points[0].co)
self.handle_right = self.points[-1].co + (pos[1] - self.points[-1].co)
def bezier_solve__math2(self):
def get(f, min=0.0, max=1.0):
f = (f * (max - min) + min)
return self.points[int((len(self.points) - 1) * f)].co
p1 = get(0.0, min=0.0, max=0.5)
p2 = get(1.0, min=0.0, max=0.5)
i1 = get(1/3, min=0.0, max=0.5)
i2 = get(2/3, min=0.0, max=0.5)
pos_a = __class__.bez_solve(p1, i1, i2, p2, 1.0 / 3.0, 2.0 / 3.0)
p1 = get(0.0, min=0.5, max=1.0)
p2 = get(1.0, min=0.5, max=1.0)
i1 = get(1/3, min=0.5, max=1.0)
i2 = get(2/3, min=0.5, max=1.0)
pos_b = __class__.bez_solve(p1, i1, i2, p2, 1.0 / 3.0, 2.0 / 3.0)
self.handle_left = self.points[0].co + (pos_a[0] - self.points[0].co) * 2
self.handle_right = self.points[-1].co + (pos_b[1] - self.points[-1].co) * 2
def bezier_solve__inkscape(self):
# static void
# estimate_bi(Point bezier[4], unsigned const ei,
# Point const data[], double const u[], unsigned const len)
def estimate_bi(bezier, ei, data, u):
def B0(u): return ( ( 1.0 - u ) * ( 1.0 - u ) * ( 1.0 - u ) )
def B1(u): return ( 3 * u * ( 1.0 - u ) * ( 1.0 - u ) )
def B2(u): return ( 3 * u * u * ( 1.0 - u ) )
def B3(u): return ( u * u * u )
# assert( not (1 <= ei and ei <= 2))
oi = 3 - ei
num = [0.0, 0.0, 0.0]
den = 0.0
for i in range(len(data)):
ui = u[i];
b = [
B0(ui),
B1(ui),
B2(ui),
B3(ui)
]
for d in range(3):
num[d] += (b[ei] * (b[0] * bezier[0][d] +
b[oi] * bezier[oi][d] +
b[3] * bezier[3][d] +
- data[i][d]))
den -= b[ei] * b[ei]
if den:
for d in range(3):
bezier[ei][d] = num[d] / den
else:
bezier[ei] = (oi * bezier[0] + ei * bezier[3]) / 3.0
bezier = [
self.points[0].co,
self.points[0].co.lerp(self.points[-1].co, 1/3),
self.points[0].co.lerp(self.points[-1].co, 2/3),
self.points[-1].co,
]
data = [p.co for p in self.points]
u = [i / len(self.points) for i in range(len(self.points))]
estimate_bi(bezier, 1, data, u)
estimate_bi(bezier, 2, data, u)
estimate_bi(bezier, 1, data, u)
estimate_bi(bezier, 2, data, u)
estimate_bi(bezier, 1, data, u)
estimate_bi(bezier, 2, data, u)
estimate_bi(bezier, 1, data, u)
estimate_bi(bezier, 2, data, u)
self.handle_left = bezier[1]
self.handle_right = bezier[2]
Campbell Barton
committed
def bezier_solve_ideasman42(self):
Campbell Barton
committed
from mathutils.geometry import (intersect_point_line,
intersect_line_line,
)
# get a line
p1 = self.points[0]
p2 = self.points[-1]
Campbell Barton
committed
# ------
# take 2
p_vec = (p2.co - p1.co).normalized()
Campbell Barton
committed
# vector between line and point directions
l1_no = (p1.no + p_vec).normalized()
l2_no = ((-p2.no) - p_vec).normalized()
Campbell Barton
committed
l1_co = p1.co + l1_no
l2_co = p2.co + l2_no
Campbell Barton
committed
# visualize_line(p1.co, l1_co)
# visualize_line(p2.co, l2_co)
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
line_ix_p1_co, line_ix_p1_no, line_ix_p1 = \
self.intersect_line(p1.co,
l1_co,
)
line_ix_p2_co, line_ix_p2_no, line_ix_p2 = \
self.intersect_line(p2.co,
l2_co,
reverse=True,
)
if line_ix_p1_co is None:
line_ix_p1_co, line_ix_p1_no, line_ix_p1 = \
p1.next.co, p1.next.no, p1.next
if line_ix_p2_co is None:
line_ix_p2_co, line_ix_p2_no, line_ix_p2 = \
p2.prev.co, p2.prev.no, p2.prev
# vis_circle_object(line_ix_p1_co)
# vis_circle_object(line_ix_p2_co)
l1_max = 0.0
p1_apex_co = None
p = self.points[1]
while p and (not p.is_joint) and p != line_ix_p1:
ix = intersect_point_line(p.co, p1.co, l1_co)[0]
length = (ix - p.co).length
if length > l1_max:
l1_max = length
p1_apex_co = p.co
p = p.next
l2_max = 0.0
p2_apex_co = None
p = self.points[-2]
while p and (not p.is_joint) and p != line_ix_p2:
ix = intersect_point_line(p.co, p2.co, l2_co)[0]
length = (ix - p.co).length
if length > l2_max:
l2_max = length
p2_apex_co = p.co
p = p.prev
if p1_apex_co is None:
p1_apex_co = p1.next.co
if p2_apex_co is None:
p2_apex_co = p2.prev.co
Campbell Barton
committed
Campbell Barton
committed
l1_tan = (p1.no - p1.no.project(l1_no)).normalized()
l2_tan = -(p2.no - p2.no.project(l2_no)).normalized()
# values are good!
visualize_line(p1.co, p1.co + l1_tan)
visualize_line(p2.co, p2.co + l2_tan)
visualize_line(p1.co, p1.co + l1_no)
visualize_line(p2.co, p2.co + l2_no)
Campbell Barton
committed
# calculate bias based on the position of the other point allong
# the tangent.
Campbell Barton
committed
# first need to reflect the second normal for angle comparison
# first fist need the reflection normal
# angle between - 0 - 1
from math import pi
no_ref = p_vec.cross(p2.no).cross(p_vec).normalized()
Campbell Barton
committed
l2_no_ref = p2.no.reflect(no_ref).normalized()
no_angle = p1.no.angle(l2_no_ref) / pi
Campbell Barton
committed
del no_ref
Campbell Barton
committed
# This could be tweaked but seems to work well
Campbell Barton
committed
# fac_fac = 1.0
print("angle", "%.6f" % no_angle)
Campbell Barton
committed
fac_1 = intersect_point_line(p2_apex_co,
p1.co,
p1.co + l1_tan * (p1.co - p1_apex_co).length,
)[1] * (1.0 + no_angle)
fac_2 = intersect_point_line(p1_apex_co,
p2.co,
p2.co + l2_tan * (p2.co - p2_apex_co).length,
)[1] * (1.0 + no_angle)
h1_fac = abs(fac_1)
h2_fac = abs(fac_2)
Campbell Barton
committed
Campbell Barton
committed
h1 = p1.co + (p1.no * h1_fac)
h2 = p2.co - (p2.no * h2_fac)
Campbell Barton
committed
self.handle_left = h1
self.handle_right = h2
Campbell Barton
committed
visualize_line(p1.co, p1_apex_co)
visualize_line(p1_apex_co, p2_apex_co)
Campbell Barton
committed
visualize_line(p1.co, p2.co)
'''
def bezier_solve(self):
return self.bezier_solve__inkscape()
def bezier_error(self, error_max=-1.0, test_count=8):
Campbell Barton
committed
from mathutils.geometry import interpolate_bezier
test_points = interpolate_bezier(self.points[0].co,
Campbell Barton
committed
self.handle_left,
self.handle_right,
Campbell Barton
committed
)
from mathutils.geometry import intersect_point_line
error = 0.0
# this is a rough method measuring the error but should be ok
Campbell Barton
committed
# TODO. dont test against every single point.
for co in test_points:
# initial values
co_best = self.points[0].co
length_best = (co - co_best).length
for p in self.points[1:]:
# dist to point
length = (co - p.co).length
if length < length_best:
length_best = length
co_best = p.co
Campbell Barton
committed
p_ix, fac = intersect_point_line(co, p.co, p.prev.co)
Campbell Barton
committed
if fac >= 0.0 and fac <= 1.0:
length = (co - p_ix).length
if length < length_best:
length_best = length
co_best = p_ix
error += length_best / test_count
if error_max != -1.0 and error > error_max:
return True
Campbell Barton
committed
if error_max != -1.0:
return False
else:
return error
Campbell Barton
committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
class Curve(object):
__slots__ = ("splines",
)
def __init__(self, splines):
self.splines = splines
def link_splines(self):
s_prev = None
for s in self.splines:
s.prev = s_prev
s_perv = s
s_prev = None
for s in reversed(self.splines):
s.next = s_prev
s_perv = s
def calc_data(self):
for s in self.splines:
s.calc_all()
self.link_splines()
def split_func_map_point(self, func, is_joint=False):
""" func takes a point and returns true on split
return True if any splits are made.
"""
s_index = 0
s = self.splines[s_index]
while s:
assert(self.splines[s_index] == s)
Campbell Barton
committed
for i, p in enumerate(s.points):
if i == 0 or i >= len(s.points) - 1:
continue
if func(p):
split_pair = s.split(i, is_joint=is_joint)
# keep list in sync
self.splines[s_index:s_index + 1] = split_pair
Campbell Barton
committed
# advance on main while loop
s = split_pair[0]
assert(self.splines[s_index] == s)
break
s = s.next
s_index += 1
def split_func_spline(self, func, is_joint=False, recursive=False):
""" func takes a spline and returns the point index on split or -1
return True if any splits are made.
"""
s_index = 0
s = self.splines[s_index]
while s:
assert(self.splines[s_index] == s)
Campbell Barton
committed
i = func(s)
if i != -1:
split_pair = s.split(i, is_joint=is_joint)
# keep list in sync
self.splines[s_index:s_index + 1] = split_pair
# advance on main while loop
s = split_pair[0]
assert(self.splines[s_index] == s)
Campbell Barton
committed
if recursive:
continue
s = s.next
s_index += 1
def validate(self):
s_prev = None
iii = 0
for s in self.splines:
assert(s.prev == s_prev)
if s_prev:
assert(s_prev.next == s)
s_prev = s
iii += 1
def redistribute(self, segment_length, smooth=False):
for s in self.splines:
s.redistribute(segment_length, smooth)
def to_blend_data(self):
""" Points to blender data, debugging only
"""
Campbell Barton
committed
for base in scene.object_bases:
base.select = False
cu = bpy.data.curves.new(name="Test", type='CURVE')
for s in self.splines:
spline = cu.splines.new(type='POLY')
spline.points.add(len(s.points) - 1)
for p, v in zip(s.points, spline.points):
Campbell Barton
committed
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
scene.objects.active = ob
base.select = True
# base.layers = [True] * 20
print(ob, "Done")
Campbell Barton
committed
def to_blend_curve(self, cu=None, cu_matrix=None):
""" return new bezier spline datablock or add to an existing
"""
if not cu:
cu = bpy.data.curves.new(name="Curve", type='CURVE')
spline = cu.splines.new(type='BEZIER')
spline.bezier_points.add(len(self.splines))
s_prev = None
for i, bp in enumerate(spline.bezier_points):
if i < len(self.splines):
s = self.splines[i]
else:
s = None
if s_prev and s:
pt = s.points[0]
hl = s_prev.handle_right
hr = s.handle_left
elif s:
pt = s.points[0]
hr = s.handle_left
Campbell Barton
committed
elif s_prev:
pt = s_prev.points[-1]
hl = s_prev.handle_right
Campbell Barton
committed
else:
assert(0)
bp.co.xyz = pt.co
bp.handle_left.xyz = hl
bp.handle_right.xyz = hr
Campbell Barton
committed
handle_type = 'FREE'
if pt.is_joint == False or (s_prev and s) == False:
Campbell Barton
committed
# at least dont allow allignment to break the curve output
if (pt.co - hl).angle(hr - pt.co, 0.0) < 0.1:
handle_type = 'ALIGNED'
bp.handle_left_type = bp.handle_right_type = handle_type
s_prev = s
Campbell Barton
committed
ob = bpy.data.objects.new(name="Test", object_data=cu)
ob.layers = [True] * 20
base = scene.objects.link(ob)
scene.objects.active = ob
base.select = True
return cu
points = list(points_orig)
Campbell Barton
committed
# remove doubles
tot_length = treat_points(points)
# calculate segment spacing
Campbell Barton
committed
curve = Curve([Spline([Point(p) for p in points])])
curve.calc_data()
if kink_tolerance != 0.0:
pass
curve.split_func_map_point(lambda p: p.angle_diff() > kink_tolerance,
is_joint=True,
)
# return
# curve.validate()
# higher quality but not really needed
'''
Campbell Barton
committed
curve.redistribute(segment_length / 4.0, smooth=True)
curve.redistribute(segment_length, smooth=False)
'''
curve.redistribute(segment_length, smooth=True)
Campbell Barton
committed
Campbell Barton
committed
# debug only!
# to test how good the bezier spline fitting is without corrections
Campbell Barton
committed
'''
for s in curve.splines:
s.bezier_solve()
'''
'''
def angle_point(s):
a = 0.0
a_best = len(s.points) // 2
i = 1
for p in s.points[2:-2]:
if p.angle > a:
a = p.angle
a_best = i
i += 1
return a_best
'''
Campbell Barton
committed
# or recursively subdivide...
Campbell Barton
committed
curve.split_func_spline(lambda s:
len(s.points) // 2 # angle_point(s)
if ((s.bezier_solve(),
s.bezier_error(bezier_tolerance))[1]
and (len(s.points)))
Campbell Barton
committed
else -1,
recursive=True,
)
Campbell Barton
committed
for s in curve.splines:
error += s.bezier_error()
print("%d :: %.6f" % (len(curve.splines), error))
Campbell Barton
committed
# VISUALIZE
# curve.to_blend_data()
curve.to_blend_curve()
if __name__ == "__main__":
if 0:
bpy.ops.wm.open_mainfile(filepath="/root/curve_test3.blend")
for c in "Curve Curve.001 Curve.002 Curve.003 Curve.004 Curve.005".split():
print("---", c)
ob = bpy.data.objects[c]
points = [p.co.xyz for s in ob.data.splines for p in s.points]
print("points_to_bezier 1")
points_to_bezier(points)
print("points_to_bezier 2")
else:
bpy.ops.wm.open_mainfile(filepath="/root/curve_test2.blend")
ob = bpy.data.objects['Curve']
points = [p.co.xyz for s in ob.data.splines for p in s.points]
Campbell Barton
committed
print("points_to_bezier 1")
points_to_bezier(points)
print("points_to_bezier 2")
Campbell Barton
committed
bpy.ops.wm.save_as_mainfile(filepath="/root/curve_test_edit.blend",
copy=True)
print("done!")