Skip to content
Snippets Groups Projects
render.py 222 KiB
Newer Older
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# #**** END GPL LICENSE BLOCK #****
Luca Bonavita's avatar
Luca Bonavita committed

Luca Bonavita's avatar
Luca Bonavita committed
import bpy
import subprocess
import os
import sys
import time
from math import atan, pi, degrees, sqrt, cos, sin
Maurice Raybaud's avatar
Maurice Raybaud committed
import random
import platform#
import subprocess#
import tempfile #generate temporary files with random names
from bpy.types import(Operator)
from imghdr import what #imghdr is a python lib to identify image file types
from . import df3 # for smoke rendering
from . import shading # for BI POV haders emulation
from . import primitives # for import and export of POV specific primitives
from . import nodes # for POV specific nodes
Maurice Raybaud's avatar
Maurice Raybaud committed
##############################SF###########################
##############find image texture
Maurice Raybaud's avatar
Maurice Raybaud committed
def imageFormat(imgF):
    ext = {
        'JPG': "jpeg",
        'JPEG': "jpeg",
        'GIF': "gif",
        'TGA': "tga",
        'IFF': "iff",
        'PPM': "ppm",
        'PNG': "png",
        'SYS': "sys",
        'TIFF': "tiff",
        'TIF': "tiff",
        'EXR': "exr",
        'HDR': "hdr",
    }.get(os.path.splitext(imgF)[-1].upper(), "")

        #maybe add a check for if path exists here?
        print(" WARNING: texture image has no extension") #too verbose
        ext = what(imgF) #imghdr is a python lib to identify image file types
Maurice Raybaud's avatar
Maurice Raybaud committed
    return ext

Maurice Raybaud's avatar
Maurice Raybaud committed
def imgMap(ts):
    image_map = ""
    if ts.mapping == 'FLAT':
        image_map = "map_type 0 "
    elif ts.mapping == 'SPHERE':
        image_map = "map_type 1 "
    elif ts.mapping == 'TUBE':
        image_map = "map_type 2 "

    ## map_type 3 and 4 in development (?)
    ## for POV-Ray, currently they just seem to default back to Flat (type 0)
    #    image_map = " map_type 3 "
    #    image_map = " map_type 4 "
    if ts.texture.use_interpolation:
        image_map += " interpolate 2 "
    if ts.texture.extension == 'CLIP':
        image_map += " once "
    #image_map += "}"
    #if ts.mapping=='CUBE':
    #    image_map+= "warp { cubic } rotate <-90,0,180>"
    # no direct cube type mapping. Though this should work in POV 3.7
    # it doesn't give that good results(best suited to environment maps?)
    #if image_map == "":
    #    print(" No texture image  found ")
Maurice Raybaud's avatar
Maurice Raybaud committed
    return image_map

def imgMapTransforms(ts):
    # XXX TODO: unchecked textures give error of variable referenced before assignment XXX
    # POV-Ray "scale" is not a number of repetitions factor, but ,its
    # inverse, a standard scale factor.
    # 0.5 Offset is needed relatively to scale because center of the
    # scale is 0.5,0.5 in blender and 0,0 in POV
            # Strange that the translation factor for scale is not the same as for
            # translate.
            # TODO: verify both matches with blender internal.
    image_map_transforms = ""
    image_map_transforms = ("scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>" % \
                  ( 1.0 / ts.scale.x,
                  1.0 / ts.scale.y,
                  1.0 / ts.scale.z,
                  0.5-(0.5/ts.scale.x) - (ts.offset.x),
                  0.5-(0.5/ts.scale.y) - (ts.offset.y),
                  ts.offset.z))
    # image_map_transforms = (" translate <-0.5,-0.5,0.0> scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>" % \
                  # ( 1.0 / ts.scale.x,
                  # 1.0 / ts.scale.y,
                  # 1.0 / ts.scale.z,
                  # (0.5 / ts.scale.x) + ts.offset.x,
                  # (0.5 / ts.scale.y) + ts.offset.y,
                  # ts.offset.z))
    # image_map_transforms = ("translate <-0.5,-0.5,0> scale <-1,-1,1> * <%.4g,%.4g,%.4g> translate <0.5,0.5,0> + <%.4g,%.4g,%.4g>" % \
                  # (1.0 / ts.scale.x,
                  # 1.0 / ts.scale.y,
                  # 1.0 / ts.scale.z,
                  # ts.offset.x,
                  # ts.offset.y,
                  # ts.offset.z))
    return image_map_transforms

Maurice Raybaud's avatar
Maurice Raybaud committed
def imgMapBG(wts):
    image_mapBG = ""
    # texture_coords refers to the mapping of world textures:
    if wts.texture_coords == 'VIEW' or wts.texture_coords == 'GLOBAL':
        image_mapBG = " map_type 0 "
    elif wts.texture_coords == 'ANGMAP':
        image_mapBG = " map_type 1 "
    elif wts.texture_coords == 'TUBE':
        image_mapBG = " map_type 2 "

    if wts.texture.use_interpolation:
        image_mapBG += " interpolate 2 "
    if wts.texture.extension == 'CLIP':
        image_mapBG += " once "
    #image_mapBG += "}"
    #if wts.mapping == 'CUBE':
    #   image_mapBG += "warp { cubic } rotate <-90,0,180>"
    # no direct cube type mapping. Though this should work in POV 3.7
    # it doesn't give that good results(best suited to environment maps?)
    #if image_mapBG == "":
    #    print(" No background texture image  found ")
Maurice Raybaud's avatar
Maurice Raybaud committed
    return image_mapBG
Maurice Raybaud's avatar
Maurice Raybaud committed
def path_image(image):
    return bpy.path.abspath(image.filepath, library=image.library).replace("\\","/")
    # .replace("\\","/") to get only forward slashes as it's what POV prefers,
Campbell Barton's avatar
Campbell Barton committed
# end find image texture
# -----------------------------------------------------------------------------
Campbell Barton's avatar
Campbell Barton committed
def string_strip_hyphen(name):
    return name.replace("-", "")
def safety(name, Level):
    # safety string name material
    #
    # Level=1 is for texture with No specular nor Mirror reflection
    # Level=2 is for texture with translation of spec and mir levels
    # for when no map influences them
    # Level=3 is for texture with Maximum Spec and Mirror
Maurice Raybaud's avatar
Maurice Raybaud committed
    try:
Campbell Barton's avatar
Campbell Barton committed
        if int(name) > 0:
            prefix = "shader"
Campbell Barton's avatar
Campbell Barton committed
    except:
    prefix = "shader_"
Campbell Barton's avatar
Campbell Barton committed
    name = string_strip_hyphen(name)
        return prefix + name
        return prefix + name + "0"  # used for 0 of specular map
        return prefix + name + "1"  # used for 1 of specular map
Maurice Raybaud's avatar
Maurice Raybaud committed
##############end safety string name material
##############################EndSF###########################
Luca Bonavita's avatar
Luca Bonavita committed

def is_renderable(scene, ob):
    return (ob.is_visible(scene) and not ob.hide_render and ob not in csg_list)
def renderable_objects(scene):
    return [ob for ob in bpy.data.objects if is_renderable(scene, ob)]
def no_renderable_objects(scene):
    return [ob for ob in csg_list]
user_dir = bpy.utils.resource_path('USER')
preview_dir = os.path.join(user_dir, "preview")

## Make sure Preview directory exists and is empty
smokePath = os.path.join(preview_dir, "smoke.df3")
def write_global_setting(scene,file):
    file.write("global_settings {\n")
    file.write("    assumed_gamma %.6f\n"%scene.pov.assumed_gamma)
    if scene.pov.global_settings_advanced:
        if scene.pov.radio_enable == False:
            file.write("    adc_bailout %.6f\n"%scene.pov.adc_bailout)
        file.write("    ambient_light <%.6f,%.6f,%.6f>\n"%scene.pov.ambient_light[:])
        file.write("    irid_wavelength <%.6f,%.6f,%.6f>\n"%scene.pov.irid_wavelength[:])
        file.write("    charset %s\n"%scene.pov.charset)
Campbell Barton's avatar
Campbell Barton committed
        file.write("    max_trace_level %s\n"%scene.pov.max_trace_level)
        file.write("    max_intersections %s\n"%scene.pov.max_intersections)
        file.write("    number_of_waves %s\n"%scene.pov.number_of_waves)
Campbell Barton's avatar
Campbell Barton committed
        file.write("    noise_generator %s\n"%scene.pov.noise_generator)
Campbell Barton's avatar
Campbell Barton committed
    # below properties not added to __init__ yet to avoid conflicts with material sss scale
    # unless it would override then should be interfaced also in scene units property tab

    # if scene.pov.sslt_enable:
Campbell Barton's avatar
Campbell Barton committed
        # file.write("    mm_per_unit %s\n"%scene.pov.mm_per_unit)
        # file.write("    subsurface {\n")
        # file.write("        samples %s, %s\n"%(scene.pov.sslt_samples_max,scene.pov.sslt_samples_min))
        # if scene.pov.sslt_radiosity:
            # file.write("        radiosity on\n")
        # file.write("}\n")

    if scene.pov.radio_enable:
        file.write("    radiosity {\n")
Campbell Barton's avatar
Campbell Barton committed
        file.write("        pretrace_start %.6f\n"%scene.pov.radio_pretrace_start)
        file.write("        pretrace_end %.6f\n"%scene.pov.radio_pretrace_end)
        file.write("        count %s\n"%scene.pov.radio_count)
        file.write("        nearest_count %s\n"%scene.pov.radio_nearest_count)
        file.write("        error_bound %.6f\n"%scene.pov.radio_error_bound)
        file.write("        recursion_limit %s\n"%scene.pov.radio_recursion_limit)
        file.write("        low_error_factor %.6f\n"%scene.pov.radio_low_error_factor)
        file.write("        gray_threshold %.6f\n"%scene.pov.radio_gray_threshold)
        file.write("        maximum_reuse %.6f\n"%scene.pov.radio_maximum_reuse)
        file.write("        minimum_reuse %.6f\n"%scene.pov.radio_minimum_reuse)
        file.write("        brightness %.6f\n"%scene.pov.radio_brightness)
        file.write("        adc_bailout %.6f\n"%scene.pov.radio_adc_bailout)
        if scene.pov.radio_normal:
Campbell Barton's avatar
Campbell Barton committed
            file.write("        normal on\n")
        if scene.pov.radio_always_sample:
Campbell Barton's avatar
Campbell Barton committed
            file.write("        always_sample on\n")
        if scene.pov.radio_media:
Campbell Barton's avatar
Campbell Barton committed
            file.write("        media on\n")
        if scene.pov.radio_subsurface:
            file.write("        subsurface on\n")
        file.write("    }\n")

    if scene.pov.photon_enable:
        file.write("    photons {\n")
        if scene.pov.photon_enable_count:
            file.write("        count %s\n"%scene.pov.photon_count)
        else:
            file.write("        spacing %.6g\n"%scene.pov.photon_spacing)
        if scene.pov.photon_gather:
            file.write("        gather %s, %s\n"%(scene.pov.photon_gather_min,scene.pov.photon_gather_max))
        if scene.pov.photon_autostop:
            file.write("        autostop %.4g\n"%scene.pov.photon_autostop_value)
        if scene.pov.photon_jitter_enable:
            file.write("        jitter %.4g\n"%scene.pov.photon_jitter)
        file.write("        max_trace_level %s\n"%scene.pov.photon_max_trace_level)
        if scene.pov.photon_adc:
            file.write("        adc_bailout %.6f\n"%scene.pov.photon_adc_bailout)
        if scene.pov.photon_media_enable:
            file.write("        media %s, %s\n"%(scene.pov.photon_media_steps,scene.pov.photon_media_factor))
        if scene.pov.photon_map_file_save_load in {'save'}:
            filePhName = 'Photon_map_file.ph'
            if scene.pov.photon_map_file != '':
                filePhName = scene.pov.photon_map_file+'.ph'
            filePhDir = tempfile.gettempdir()
            path = bpy.path.abspath(scene.pov.photon_map_dir)
            if os.path.exists(path):
                filePhDir = path
            fullFileName = os.path.join(filePhDir,filePhName)
            file.write('        save_file "%s"\n'%fullFileName)
            scene.pov.photon_map_file = fullFileName
        if scene.pov.photon_map_file_save_load in {'load'}:
            fullFileName = bpy.path.abspath(scene.pov.photon_map_file)
            if os.path.exists(fullFileName):
                file.write('        load_file "%s"\n'%fullFileName)
        file.write("}\n")
    file.write("}\n")
def write_object_modifiers(scene,ob,File):
    '''XXX WIP
    onceCSG = 0
    for mod in ob.modifiers:
        if onceCSG == 0:
            if mod :
                if mod.type == 'BOOLEAN':
                    if ob.pov.boolean_mod == "POV":
                        File.write("\tinside_vector <%.6g, %.6g, %.6g>\n" %
                                   (ob.pov.inside_vector[0],
                                    ob.pov.inside_vector[1],
                                    ob.pov.inside_vector[2]))
                        onceCSG = 1
    '''

        File.write("\thollow\n")
    if ob.pov.double_illuminate:
        File.write("\tdouble_illuminate\n")
    if ob.pov.no_shadow:
        File.write("\tno_shadow\n")
        File.write("\tno_image\n")
    if ob.pov.no_reflection:
        File.write("\tno_reflection\n")
    if ob.pov.no_radiosity:
        File.write("\tno_radiosity\n")
        File.write("\tinverse\n")
    if ob.pov.hierarchy:
        File.write("\thierarchy\n")

    # XXX, Commented definitions
    '''
    if scene.pov.photon_enable:
        File.write("photons {\n")
        if ob.pov.target:
            File.write("target %.4g\n"%ob.pov.target_value)
        if ob.pov.refraction:
            File.write("refraction on\n")
        if ob.pov.reflection:
            File.write("reflection on\n")
        if ob.pov.pass_through:
            File.write("pass_through\n")
        File.write("}\n")
    if ob.pov.object_ior > 1:
        File.write("interior {\n")
        File.write("ior %.4g\n"%ob.pov.object_ior)
        if scene.pov.photon_enable and ob.pov.target and ob.pov.refraction and ob.pov.dispersion:
            File.write("ior %.4g\n"%ob.pov.dispersion_value)
            File.write("ior %s\n"%ob.pov.dispersion_samples)
        if scene.pov.photon_enable == False:
            File.write("caustics %.4g\n"%ob.pov.fake_caustics_power)
    '''
Luca Bonavita's avatar
Luca Bonavita committed
def write_pov(filename, scene=None, info_callback=None):
Maurice Raybaud's avatar
Maurice Raybaud committed
    #file = filename
    file = open(filename, "w")
Luca Bonavita's avatar
Luca Bonavita committed

    # Only for testing
    if not scene:
        scene = bpy.data.scenes[0]

    render = scene.render
    world = scene.world
    global_matrix = mathutils.Matrix.Rotation(-pi / 2.0, 4, 'X')
    comments = scene.pov.comments_enable and not scene.pov.tempfiles_enable
    linebreaksinlists = scene.pov.list_lf_enable and not scene.pov.tempfiles_enable
    feature_set = bpy.context.user_preferences.addons[__package__].preferences.branch_feature_set_povray
    using_uberpov = (feature_set=='uberpov')
    pov_binary = PovrayRender._locate_binary()
    if using_uberpov:
        print("Unofficial UberPOV feature set chosen in preferences")
    else:
        print("Official POV-Ray 3.7 feature set chosen in preferences")
Campbell Barton's avatar
Campbell Barton committed
    if 'uber' in pov_binary:
        print("The name of the binary suggests you are probably rendering with Uber POV engine")
        print("The name of the binary suggests you are probably rendering with standard POV engine")
    tab = setTab(scene.pov.indentation_character, scene.pov.indentation_spaces)
    if not scene.pov.tempfiles_enable:
        def tabWrite(str_o):
            global tabLevel
            brackets = str_o.count("{") - str_o.count("}") + str_o.count("[") - str_o.count("]")
            if brackets < 0:
                tabLevel = tabLevel + brackets
            if tabLevel < 0:
                print("Indentation Warning: tabLevel = %s" % tabLevel)
                tabLevel = 0
            if tabLevel >= 1:
                file.write("%s" % tab * tabLevel)
            file.write(str_o)
            if brackets > 0:
                tabLevel = tabLevel + brackets
    else:
        def tabWrite(str_o):
            file.write(str_o)
Luca Bonavita's avatar
Luca Bonavita committed
    def uniqueName(name, nameSeq):

        if name not in nameSeq:
Campbell Barton's avatar
Campbell Barton committed
            name = string_strip_hyphen(name)
Luca Bonavita's avatar
Luca Bonavita committed
            return name

        name_orig = name
        i = 1
        while name in nameSeq:
Luca Bonavita's avatar
Luca Bonavita committed
            i += 1
Campbell Barton's avatar
Campbell Barton committed
        name = string_strip_hyphen(name)
Luca Bonavita's avatar
Luca Bonavita committed
        return name

    def writeMatrix(matrix):
        tabWrite("matrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n" %
                 (matrix[0][0], matrix[1][0], matrix[2][0],
                  matrix[0][1], matrix[1][1], matrix[2][1],
                  matrix[0][2], matrix[1][2], matrix[2][2],
                  matrix[0][3], matrix[1][3], matrix[2][3]))
Luca Bonavita's avatar
Luca Bonavita committed

        sMatrix = ("matrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n" %
                   (matrix[0][0], matrix[1][0], matrix[2][0],
                    matrix[0][1], matrix[1][1], matrix[2][1],
                    matrix[0][2], matrix[1][2], matrix[2][2],
                    matrix[0][3], matrix[1][3], matrix[2][3]))
    def writeObjectMaterial(material, ob):
        # DH - modified some variables to be function local, avoiding RNA write
        # this should be checked to see if it is functionally correct
        # Commented out: always write IOR to be able to use it for SSS, Fresnel reflections...
        #if material and material.transparency_method == 'RAYTRACE':
        if material:
            # But there can be only one!
            if material.subsurface_scattering.use:  # SSS IOR get highest priority
                tabWrite("interior {\n")
                tabWrite("ior %.6f\n" % material.subsurface_scattering.ior)
            # Then the raytrace IOR taken from raytrace transparency properties and used for
            # reflections if IOR Mirror option is checked.
            elif material.pov.mirror_use_IOR:
                tabWrite("interior {\n")
                tabWrite("ior %.6f\n" % material.raytrace_transparency.ior)
Maurice Raybaud's avatar
Maurice Raybaud committed
            else:
                tabWrite("interior {\n")
                tabWrite("ior %.6f\n" % material.raytrace_transparency.ior)
            pov_fake_caustics = False
            pov_photons_refraction = False
            pov_photons_reflection = False
                pov_photons_reflection = True
                pov_fake_caustics = False
                pov_photons_refraction = False
                pov_fake_caustics = True
                pov_photons_refraction = False
                pov_fake_caustics = False
                pov_photons_refraction = True
Luca Bonavita's avatar
Luca Bonavita committed

            # If only Raytrace transparency is set, its IOR will be used for refraction, but user
            # can set up 'un-physical' fresnel reflections in raytrace mirror parameters.
            # Last, if none of the above is specified, user can set up 'un-physical' fresnel
            # reflections in raytrace mirror parameters. And pov IOR defaults to 1.
            if material.pov.caustics_enable:
                    tabWrite("caustics %.3g\n" % material.pov.fake_caustics_power)
                    # Default of 1 means no dispersion
                    tabWrite("dispersion %.6f\n" % material.pov.photons_dispersion)
                    tabWrite("dispersion_samples %.d\n" % material.pov.photons_dispersion_samples)
Luca Bonavita's avatar
Luca Bonavita committed
            # Other interior args
            if material.use_transparency and material.transparency_method == 'RAYTRACE':
                # fade_distance
                # In Blender this value has always been reversed compared to what tooltip says.
                # 100.001 rather than 100 so that it does not get to 0
                # which deactivates the feature in POV
                tabWrite("fade_distance %.3g\n" % \
                         (100.001 - material.raytrace_transparency.depth_max))
                # fade_power
                tabWrite("fade_power %.3g\n" % material.raytrace_transparency.falloff)
                # fade_color
                tabWrite("fade_color <%.3g, %.3g, %.3g>\n" % material.pov.interior_fade_color[:])
Luca Bonavita's avatar
Luca Bonavita committed

Maurice Raybaud's avatar
Maurice Raybaud committed
            # (variable) dispersion_samples (constant count for now)
            if material.pov.photons_reflection or material.pov.refraction_type=="2":
                tabWrite("photons{")
                tabWrite("target %.3g\n" % ob.pov.spacing_multiplier)
                if not ob.pov.collect_photons:
                    tabWrite("collect off\n")
                if pov_photons_refraction:
                    tabWrite("refraction on\n")
                if pov_photons_reflection:
                    tabWrite("reflection on\n")
                tabWrite("}\n")
Luca Bonavita's avatar
Luca Bonavita committed
    materialNames = {}
    DEF_MAT_NAME = "" #or "Default"?
Luca Bonavita's avatar
Luca Bonavita committed
    def exportCamera():
        camera = scene.camera
        # DH disabled for now, this isn't the correct context
        active_object = None  # bpy.context.active_object # does not always work  MR
        matrix = global_matrix * camera.matrix_world
        focal_point = camera.data.dof_distance
Luca Bonavita's avatar
Luca Bonavita committed

        # compute resolution
        Qsize = render.resolution_x / render.resolution_y
        tabWrite("#declare camLocation  = <%.6f, %.6f, %.6f>;\n" %
                 matrix.translation[:])
        tabWrite("#declare camLookAt = <%.6f, %.6f, %.6f>;\n" %
                 tuple([degrees(e) for e in matrix.to_3x3().to_euler()]))
Luca Bonavita's avatar
Luca Bonavita committed

        if scene.pov.baking_enable and active_object and active_object.type == 'MESH':
            tabWrite("mesh_camera{ 1 3\n")  # distribution 3 is what we want here
            tabWrite("mesh{%s}\n" % active_object.name)
            tabWrite("}\n")
            tabWrite("location <0,0,.01>")
            tabWrite("direction <0,0,-1>")
Maurice Raybaud's avatar
Maurice Raybaud committed
        # Using standard camera otherwise
        else:
            tabWrite("location  <0, 0, 0>\n")
            tabWrite("look_at  <0, 0, -1>\n")
            tabWrite("right <%s, 0, 0>\n" % - Qsize)
            tabWrite("up <0, 1, 0>\n")
            tabWrite("angle  %f\n" % (360.0 * atan(16.0 / camera.data.lens) / pi))

            tabWrite("rotate  <%.6f, %.6f, %.6f>\n" % \
                     tuple([degrees(e) for e in matrix.to_3x3().to_euler()]))
            tabWrite("translate <%.6f, %.6f, %.6f>\n" % matrix.translation[:])
            if camera.data.pov.dof_enable and (focal_point != 0 or camera.data.dof_object):
                tabWrite("aperture %.3g\n" % camera.data.pov.dof_aperture)
                tabWrite("blur_samples %d %d\n" % \
                         (camera.data.pov.dof_samples_min, camera.data.pov.dof_samples_max))
                tabWrite("variance 1/%d\n" % camera.data.pov.dof_variance)
                tabWrite("confidence %.3g\n" % camera.data.pov.dof_confidence)
                if camera.data.dof_object:
                    focalOb = scene.objects[camera.data.dof_object.name]
                    matrixBlur = global_matrix * focalOb.matrix_world
                    tabWrite("focal_point <%.4f,%.4f,%.4f>\n"% matrixBlur.translation[:])
                else:
                    tabWrite("focal_point <0, 0, %f>\n" % focal_point)
        if camera.data.pov.normal_enable:
            tabWrite("normal {%s %.4f turbulence %.4f scale %.4f}\n"%
                    (camera.data.pov.normal_patterns,
                    camera.data.pov.cam_normal,
                    camera.data.pov.turbulence,
                    camera.data.pov.scale))
Luca Bonavita's avatar
Luca Bonavita committed
    def exportLamps(lamps):
        # Incremented after each lamp export to declare its target
        # currently used for Fresnel diffuse shader as their slope vector:
        global lampCount
        lampCount = 0
Luca Bonavita's avatar
Luca Bonavita committed
        # Get all lamps
        for ob in lamps:
            lamp = ob.data

            matrix = global_matrix * ob.matrix_world
Luca Bonavita's avatar
Luca Bonavita committed

            # Color is modified by energy #multiplied by 2 for a better match --Maurice
            color = tuple([c * (lamp.energy) for c in lamp.color])
Luca Bonavita's avatar
Luca Bonavita committed

            tabWrite("light_source {\n")
            tabWrite("< 0,0,0 >\n")
            tabWrite("color srgb<%.3g, %.3g, %.3g>\n" % color)
Luca Bonavita's avatar
Luca Bonavita committed

            if lamp.type == 'POINT':
Luca Bonavita's avatar
Luca Bonavita committed
                pass
            elif lamp.type == 'SPOT':
Luca Bonavita's avatar
Luca Bonavita committed

                # Falloff is the main radius from the centre line
                tabWrite("falloff %.2f\n" % (degrees(lamp.spot_size) / 2.0))  # 1 TO 179 FOR BOTH
                tabWrite("radius %.6f\n" % \
                         ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))
Luca Bonavita's avatar
Luca Bonavita committed

                # Blender does not have a tightness equivalent, 0 is most like blender default.
Luca Bonavita's avatar
Luca Bonavita committed

                if lamp.use_halo:
                    tabWrite("looks_like{\n")
                    tabWrite("sphere{<0,0,0>,%.6f\n" %lamp.distance)
                    tabWrite("hollow\n")
                    tabWrite("material{\n")
                    tabWrite("texture{\n")
                    tabWrite("pigment{rgbf<1,1,1,%.4f>}\n" % (lamp.halo_intensity*5.0))
                    tabWrite("}\n")
                    tabWrite("interior{\n")
                    tabWrite("media{\n")
                    tabWrite("emission 1\n")
                    tabWrite("scattering {1, 0.5}\n")
                    tabWrite("density{\n")
                    tabWrite("spherical\n")
                    tabWrite("color_map{\n")
                    tabWrite("[0.0 rgb <0,0,0>]\n")
                    tabWrite("[0.5 rgb <1,1,1>]\n")
                    tabWrite("[1.0 rgb <1,1,1>]\n")
                    tabWrite("}\n")
                    tabWrite("}\n")
                    tabWrite("}\n")
                    tabWrite("}\n")
                    tabWrite("}\n")
                    tabWrite("}\n")
                    tabWrite("}\n")
Luca Bonavita's avatar
Luca Bonavita committed
            elif lamp.type == 'SUN':
                tabWrite("parallel\n")
                tabWrite("point_at  <0, 0, -1>\n")  # *must* be after 'parallel'
Luca Bonavita's avatar
Luca Bonavita committed

            elif lamp.type == 'AREA':
                tabWrite("fade_distance %.6f\n" % (lamp.distance / 2.0))
                # Area lights have no falloff type, so always use blenders lamp quad equivalent
                # for those?
                tabWrite("fade_power %d\n" % 2)
Luca Bonavita's avatar
Luca Bonavita committed
                size_x = lamp.size
                samples_x = lamp.shadow_ray_samples_x
                if lamp.shape == 'SQUARE':
                    size_y = size_x
                    samples_y = samples_x
                else:
                    size_y = lamp.size_y
                    samples_y = lamp.shadow_ray_samples_y

                tabWrite("area_light <%.6f,0,0>,<0,%.6f,0> %d, %d\n" % \
                         (size_x, size_y, samples_x, samples_y))
                tabWrite("area_illumination\n")
                if lamp.shadow_ray_sample_method == 'CONSTANT_JITTERED':
Luca Bonavita's avatar
Luca Bonavita committed
                else:
                    tabWrite("adaptive 1\n")
                    tabWrite("jitter\n")
Luca Bonavita's avatar
Luca Bonavita committed

            # HEMI never has any shadow_method attribute
            if(not scene.render.use_shadows or lamp.type == 'HEMI' or
               (lamp.type != 'HEMI' and lamp.shadow_method == 'NOSHADOW')):
Luca Bonavita's avatar
Luca Bonavita committed

            # Sun shouldn't be attenuated. Hemi and area lights have no falloff attribute so they
            # are put to type 2 attenuation a little higher above.
            if lamp.type not in {'SUN', 'AREA', 'HEMI'}:
Maurice Raybaud's avatar
Maurice Raybaud committed
                if lamp.falloff_type == 'INVERSE_SQUARE':
                    tabWrite("fade_distance %.6f\n" % (sqrt(lamp.distance/2.0)))
                    tabWrite("fade_power %d\n" % 2)  # Use blenders lamp quad equivalent
Maurice Raybaud's avatar
Maurice Raybaud committed
                elif lamp.falloff_type == 'INVERSE_LINEAR':
Campbell Barton's avatar
Campbell Barton committed
                    tabWrite("fade_distance %.6f\n" % (lamp.distance / 2.0))
                    tabWrite("fade_power %d\n" % 1)  # Use blenders lamp linear
                    tabWrite("fade_distance %.6f\n" % (lamp.distance / 2.0))
Campbell Barton's avatar
Campbell Barton committed
                    tabWrite("fade_power %d\n" % 3)
                    # Use blenders lamp constant equivalent no attenuation.
                # Using Custom curve for fade power 3 for now.
                elif lamp.falloff_type == 'CUSTOM_CURVE':
Luca Bonavita's avatar
Luca Bonavita committed
            writeMatrix(matrix)


            lampCount += 1

            # v(A,B) rotates vector A about origin by vector B.
            file.write("#declare lampTarget%s= vrotate(<%.4g,%.4g,%.4g>,<%.4g,%.4g,%.4g>);\n" % \
                       (lampCount, -(ob.location.x), -(ob.location.y), -(ob.location.z),
                        ob.rotation_euler.x, ob.rotation_euler.y, ob.rotation_euler.z))
####################################################################################################
    def exportRainbows(rainbows):
        for ob in rainbows:
            povdataname = ob.data.name #enough?
            angle = degrees(ob.data.spot_size/2.5) #radians in blender (2
            width = ob.data.spot_blend *10
Campbell Barton's avatar
Campbell Barton committed
            distance = ob.data.shadow_buffer_clip_start
            #eps=0.0000001
            #angle = br/(cr+eps) * 10 #eps is small epsilon variable to avoid dividing by zero
            #width = ob.dimensions[2] #now let's say width of rainbow is the actual proxy height
            # formerly:
            #cz-bz # let's say width of the rainbow is height of the cone (interfacing choice
            # v(A,B) rotates vector A about origin by vector B.
            # and avoid a 0 length vector by adding 1
            # file.write("#declare %s_Target= vrotate(<%.6g,%.6g,%.6g>,<%.4g,%.4g,%.4g>);\n" % \
                       # (povdataname, -(ob.location.x+0.1), -(ob.location.y+0.1), -(ob.location.z+0.1),
Campbell Barton's avatar
Campbell Barton committed
                        # ob.rotation_euler.x, ob.rotation_euler.y, ob.rotation_euler.z))

            direction = (ob.location.x,ob.location.y,ob.location.z) # not taking matrix into account
            rmatrix = global_matrix * ob.matrix_world
            #ob.rotation_euler.to_matrix().to_4x4() * mathutils.Vector((0,0,1))
            # XXX Is result of the below offset by 90 degrees?
Campbell Barton's avatar
Campbell Barton committed
            up =ob.matrix_world.to_3x3()[1].xyz #* global_matrix
Campbell Barton's avatar
Campbell Barton committed
            # XXX TO CHANGE:
Campbell Barton's avatar
Campbell Barton committed
            #tabWrite("#declare %s = rainbow {\n"%povdataname)

            # clumsy for now but remove the rainbow from instancing
            # system because not an object. use lamps later instead of meshes
            #del data_ref[dataname]
            tabWrite("rainbow {\n")

            tabWrite("angle %.4f\n"%angle)
            tabWrite("width %.4f\n"%width)
            tabWrite("distance %.4f\n"%distance)
            tabWrite("arc_angle %.4f\n"%ob.pov.arc_angle)
            tabWrite("falloff_angle %.4f\n"%ob.pov.falloff_angle)
            tabWrite("direction <%.4f,%.4f,%.4f>\n"%rmatrix.translation[:])
            tabWrite("up <%.4f,%.4f,%.4f>\n"%(up[0],up[1],up[2]))
            tabWrite("color_map {\n")
            tabWrite("[0.000  color srgbt<1.0, 0.5, 1.0, 1.0>]\n")
            tabWrite("[0.130  color srgbt<0.5, 0.5, 1.0, 0.9>]\n")
            tabWrite("[0.298  color srgbt<0.2, 0.2, 1.0, 0.7>]\n")
            tabWrite("[0.412  color srgbt<0.2, 1.0, 1.0, 0.4>]\n")
            tabWrite("[0.526  color srgbt<0.2, 1.0, 0.2, 0.4>]\n")
            tabWrite("[0.640  color srgbt<1.0, 1.0, 0.2, 0.4>]\n")
            tabWrite("[0.754  color srgbt<1.0, 0.5, 0.2, 0.6>]\n")
            tabWrite("[0.900  color srgbt<1.0, 0.2, 0.2, 0.7>]\n")
            tabWrite("[1.000  color srgbt<1.0, 0.2, 0.2, 1.0>]\n")
            povMatName = "Default_texture"
            #tabWrite("texture {%s}\n"%povMatName)
            write_object_modifiers(scene,ob,file)
            #tabWrite("rotate x*90\n")
            #matrix = global_matrix * ob.matrix_world
            #writeMatrix(matrix)
            tabWrite("}\n")
            #continue #Don't render proxy mesh, skip to next object
################################XXX LOFT, ETC.
    def exportCurves(scene, ob):
        name_orig = "OB" + ob.name
        dataname_orig = "DATA" + ob.data.name

        name = string_strip_hyphen(bpy.path.clean_name(name_orig))
        dataname = string_strip_hyphen(bpy.path.clean_name(dataname_orig))

        global_matrix = mathutils.Matrix.Rotation(-pi / 2.0, 4, 'X')
        matrix=global_matrix*ob.matrix_world
        bezier_sweep = False
        if ob.pov.curveshape == 'sphere_sweep':
            #inlined spheresweep macro, which itself calls Shapes.inc:
            file.write('        #include "shapes.inc"\n')

            file.write('        #macro Shape_Bezierpoints_Sphere_Sweep(_merge_shape, _resolution, _points_array, _radius_array)\n')
            file.write('        //input adjusting and inspection\n')
            file.write('        #if(_resolution <= 1)\n')
            file.write('            #local res = 1;\n')
            file.write('        #else\n')
            file.write('            #local res = int(_resolution);\n')
            file.write('        #end\n')
            file.write('        #if(dimensions(_points_array) != 1 | dimensions(_radius_array) != 1)\n')
            file.write('            #error ""\n')
            file.write('        #elseif(div(dimension_size(_points_array,1),4) - dimension_size(_points_array,1)/4 != 0)\n')
            file.write('            #error ""\n')
            file.write('        #elseif(dimension_size(_points_array,1) != dimension_size(_radius_array,1))\n')
            file.write('            #error ""\n')
            file.write('        #else\n')
            file.write('            #local n_of_seg = div(dimension_size(_points_array,1), 4);\n')
            file.write('            #local ctrl_pts_array = array[n_of_seg]\n')
            file.write('            #local ctrl_rs_array = array[n_of_seg]\n')
            file.write('            #for(i, 0, n_of_seg-1)\n')
            file.write('                #local ctrl_pts_array[i] = array[4] {_points_array[4*i], _points_array[4*i+1], _points_array[4*i+2], _points_array[4*i+3]}\n')
            file.write('                #local ctrl_rs_array[i] = array[4] {abs(_radius_array[4*i]), abs(_radius_array[4*i+1]), abs(_radius_array[4*i+2]), abs(_radius_array[4*i+3])}\n')
            file.write('            #end\n')
            file.write('        #end\n')

            file.write('        //drawing\n')
            file.write('        #local mockup1 =\n')
            file.write('        #if(_merge_shape) merge{ #else union{ #end\n')
            file.write('            #for(i, 0, n_of_seg-1)\n')
            file.write('                #local has_head = true;\n')
            file.write('                #if(i = 0)\n')
            file.write('                    #if(vlength(ctrl_pts_array[i][0]-ctrl_pts_array[n_of_seg-1][3]) = 0 & ctrl_rs_array[i][0]-ctrl_rs_array[n_of_seg-1][3] <= 0)\n')
            file.write('                        #local has_head = false;\n')
            file.write('                    #end\n')
            file.write('                #else\n')
            file.write('                    #if(vlength(ctrl_pts_array[i][0]-ctrl_pts_array[i-1][3]) = 0 & ctrl_rs_array[i][0]-ctrl_rs_array[i-1][3] <= 0)\n')
            file.write('                        #local has_head = false;\n')
            file.write('                    #end\n')
            file.write('                #end\n')
            file.write('                #if(has_head = true)\n')
            file.write('                    sphere{\n')
            file.write('                    ctrl_pts_array[i][0], ctrl_rs_array[i][0]\n')
            file.write('                    }\n')
            file.write('                #end\n')
            file.write('                #local para_t = (1/2)/res;\n')
            file.write('                #local this_point = ctrl_pts_array[i][0]*pow(1-para_t,3) + ctrl_pts_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_pts_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_pts_array[i][3]*pow(para_t,3);\n')
            file.write('                #local this_radius = ctrl_rs_array[i][0]*pow(1-para_t,3) + ctrl_rs_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_rs_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_rs_array[i][3]*pow(para_t,3);\n')
            file.write('                #if(vlength(this_point-ctrl_pts_array[i][0]) > abs(this_radius-ctrl_rs_array[i][0]))\n')
            file.write('                    object{\n')
            file.write('                    Connect_Spheres(ctrl_pts_array[i][0], ctrl_rs_array[i][0], this_point, this_radius)\n')
            file.write('                    }\n')
            file.write('                #end\n')
            file.write('                sphere{\n')
            file.write('                this_point, this_radius\n')
            file.write('                }\n')
            file.write('                #for(j, 1, res-1)\n')
            file.write('                    #local last_point = this_point;\n')
            file.write('                    #local last_radius = this_radius;\n')
            file.write('                    #local para_t = (1/2+j)/res;\n')
            file.write('                    #local this_point = ctrl_pts_array[i][0]*pow(1-para_t,3) + ctrl_pts_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_pts_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_pts_array[i][3]*pow(para_t,3);\n')
            file.write('                    #local this_radius = ctrl_rs_array[i][0]*pow(1-para_t,3) + ctrl_rs_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_rs_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_rs_array[i][3]*pow(para_t,3);\n')
            file.write('                    #if(vlength(this_point-last_point) > abs(this_radius-last_radius))\n')
            file.write('                        object{\n')
            file.write('                        Connect_Spheres(last_point, last_radius, this_point, this_radius)\n')
            file.write('                        }\n')
            file.write('                    #end\n')
            file.write('                    sphere{\n')
            file.write('                    this_point, this_radius\n')
            file.write('                    }\n')
            file.write('                #end\n')
            file.write('                #local last_point = this_point;\n')
            file.write('                #local last_radius = this_radius;\n')
            file.write('                #local this_point = ctrl_pts_array[i][3];\n')
            file.write('                #local this_radius = ctrl_rs_array[i][3];\n')
            file.write('                #if(vlength(this_point-last_point) > abs(this_radius-last_radius))\n')
            file.write('                    object{\n')
            file.write('                    Connect_Spheres(last_point, last_radius, this_point, this_radius)\n')
            file.write('                    }\n')
            file.write('                #end\n')
            file.write('                sphere{\n')
            file.write('                this_point, this_radius\n')
            file.write('                }\n')
            file.write('            #end\n')
            file.write('        }\n')
            file.write('        mockup1\n')
            file.write('        #end\n')

            for spl in ob.data.splines:
                if spl.type == "BEZIER":
                    bezier_sweep = True
        if ob.pov.curveshape in {'loft','birail'}:
            n=0
            for spline in ob.data.splines:
                n+=1
                tabWrite('#declare %s%s=spline {\n'%(dataname,n))
                tabWrite('cubic_spline\n')
                lp = len(spline.points)
                delta = 1/(lp)
                d=-delta
                point = spline.points[lp-1]
                x,y,z,w  = point.co[:]
                tabWrite('%.6f, <%.6f,%.6f,%.6f>\n'%(d,x,y,z))
                d+=delta
                for point in spline.points:
                    x,y,z,w  = point.co[:]
                    tabWrite('%.6f, <%.6f,%.6f,%.6f>\n'%(d,x,y,z))
                    d+=delta
                for i in range(2):
                    point = spline.points[i]
                    x,y,z,w  = point.co[:]
                    tabWrite('%.6f, <%.6f,%.6f,%.6f>\n'%(d,x,y,z))
                    d+=delta
                tabWrite('}\n')
            if ob.pov.curveshape in {'loft'}:
                n = len(ob.data.splines)
                tabWrite('#declare %s = array[%s]{\n'%(dataname,(n+3)))
                tabWrite('spline{%s%s},\n'%(dataname,n))
                for i in range(n):
                    tabWrite('spline{%s%s},\n'%(dataname,(i+1)))
                tabWrite('spline{%s1},\n'%(dataname))
                tabWrite('spline{%s2}\n'%(dataname))
                tabWrite('}\n')
            # Use some of the Meshmaker.inc macro, here inlined
            file.write('#macro CheckFileName(FileName)\n')
            file.write('   #local Len=strlen(FileName);\n')
            file.write('   #if(Len>0)\n')
            file.write('      #if(file_exists(FileName))\n')
            file.write('         #if(Len>=4)\n')
            file.write('            #local Ext=strlwr(substr(FileName,Len-3,4))\n')
            file.write('            #if (strcmp(Ext,".obj")=0 | strcmp(Ext,".pcm")=0 | strcmp(Ext,".arr")=0)\n')
            file.write('               #local Return=99;\n')
            file.write('            #else\n')
            file.write('               #local Return=0;\n')
            file.write('            #end\n')
            file.write('         #else\n')
            file.write('            #local Return=0;\n')
            file.write('         #end\n')
            file.write('      #else\n')
            file.write('         #if(Len>=4)\n')
            file.write('            #local Ext=strlwr(substr(FileName,Len-3,4))\n')
            file.write('            #if (strcmp(Ext,".obj")=0 | strcmp(Ext,".pcm")=0 | strcmp(Ext,".arr")=0)\n')
            file.write('               #if (strcmp(Ext,".obj")=0)\n')
            file.write('                  #local Return=2;\n')
            file.write('               #end\n')
            file.write('               #if (strcmp(Ext,".pcm")=0)\n')
            file.write('                  #local Return=3;\n')
            file.write('               #end\n')
            file.write('               #if (strcmp(Ext,".arr")=0)\n')
            file.write('                  #local Return=4;\n')
            file.write('               #end\n')
            file.write('            #else\n')
            file.write('               #local Return=1;\n')
            file.write('            #end\n')
            file.write('         #else\n')
            file.write('            #local Return=1;\n')
            file.write('         #end\n')
            file.write('      #end\n')
            file.write('   #else\n')
            file.write('      #local Return=1;\n')
            file.write('   #end\n')
            file.write('   (Return)\n')
            file.write('#end\n')

            file.write('#macro BuildSpline(Arr, SplType)\n')
            file.write('   #local Ds=dimension_size(Arr,1);\n')
            file.write('   #local Asc=asc(strupr(SplType));\n')
            file.write('   #if(Asc!=67 & Asc!=76 & Asc!=81) \n')
            file.write('      #local Asc=76;\n')
            file.write('      #debug "\nWrong spline type defined (C/c/L/l/N/n/Q/q), using default linear_spline\\n"\n')
            file.write('   #end\n')
            file.write('   spline {\n')
            file.write('      #switch (Asc)\n')
            file.write('         #case (67) //C  cubic_spline\n')
            file.write('            cubic_spline\n')
            file.write('         #break\n')
            file.write('         #case (76) //L  linear_spline\n')
            file.write('            linear_spline\n')
            file.write('         #break\n')
            file.write('         #case (78) //N  linear_spline\n')
            file.write('            natural_spline\n')
            file.write('         #break\n')
            file.write('         #case (81) //Q  Quadratic_spline\n')
            file.write('            quadratic_spline\n')
            file.write('         #break\n')
            file.write('      #end\n')
            file.write('      #local Add=1/((Ds-2)-1);\n')
            file.write('      #local J=0-Add;\n')
            file.write('      #local I=0;\n')
            file.write('      #while (I<Ds)\n')
            file.write('         J\n')
            file.write('         Arr[I]\n')
            file.write('         #local I=I+1;\n')
            file.write('         #local J=J+Add;\n')
            file.write('      #end\n')
            file.write('   }\n')
            file.write('#end\n')


            file.write('#macro BuildWriteMesh2(VecArr, NormArr, UVArr, U, V, FileName)\n')
            #suppressed some file checking from original macro because no more separate files
            file.write(' #local Write=0;\n')
            file.write(' #debug concat("\\n\\n Building mesh2: \\n   - vertex_vectors\\n")\n')
            file.write('  #local NumVertices=dimension_size(VecArr,1);\n')
            file.write('  #switch (Write)\n')
            file.write('     #case(1)\n')
            file.write('        #write(\n')
            file.write('           MeshFile,\n')
            file.write('           "  vertex_vectors {\\n",\n')
            file.write('           "    ", str(NumVertices,0,0),"\\n    "\n')
            file.write('        )\n')
            file.write('     #break\n')
            file.write('     #case(2)\n')
            file.write('        #write(\n')
            file.write('           MeshFile,\n')
            file.write('           "# Vertices: ",str(NumVertices,0,0),"\\n"\n')
            file.write('        )\n')
            file.write('     #break\n')
            file.write('     #case(3)\n')
            file.write('        #write(\n')
            file.write('           MeshFile,\n')
            file.write('           str(2*NumVertices,0,0),",\\n"\n')
            file.write('        )\n')
            file.write('     #break\n')
            file.write('     #case(4)\n')
            file.write('        #write(\n')
            file.write('           MeshFile,\n')
            file.write('           "#declare VertexVectors= array[",str(NumVertices,0,0),"] {\\n  "\n')
            file.write('        )\n')
            file.write('     #break\n')
            file.write('  #end\n')
            file.write('  mesh2 {\n')
            file.write('     vertex_vectors {\n')
            file.write('        NumVertices\n')
            file.write('        #local I=0;\n')
            file.write('        #while (I<NumVertices)\n')
            file.write('           VecArr[I]\n')
            file.write('           #switch(Write)\n')
            file.write('              #case(1)\n')
            file.write('                 #write(MeshFile, VecArr[I])\n')
            file.write('              #break\n')
            file.write('              #case(2)\n')
            file.write('                 #write(\n')
            file.write('                    MeshFile,\n')
            file.write('                    "v ", VecArr[I].x," ", VecArr[I].y," ", VecArr[I].z,"\\n"\n')
            file.write('                 )\n')
            file.write('              #break\n')
            file.write('              #case(3)\n')
            file.write('                 #write(\n')
            file.write('                    MeshFile,\n')
            file.write('                    VecArr[I].x,",", VecArr[I].y,",", VecArr[I].z,",\\n"\n')
            file.write('                 )\n')
            file.write('              #break\n')
            file.write('              #case(4)\n')
            file.write('                 #write(MeshFile, VecArr[I])\n')
            file.write('              #break\n')
            file.write('           #end\n')
            file.write('           #local I=I+1;\n')
            file.write('           #if(Write=1 | Write=4)\n')
            file.write('              #if(mod(I,3)=0)\n')
            file.write('                 #write(MeshFile,"\\n    ")\n')
            file.write('              #end\n')
            file.write('           #end \n')
            file.write('        #end\n')
            file.write('        #switch(Write)\n')
            file.write('           #case(1)\n')
            file.write('              #write(MeshFile,"\\n  }\\n")\n')
            file.write('           #break\n')
            file.write('           #case(2)\n')
            file.write('              #write(MeshFile,"\\n")\n')
            file.write('           #break\n')
            file.write('           #case(3)\n')
            file.write('              // do nothing\n')
            file.write('           #break\n')
            file.write('           #case(4) \n')
            file.write('              #write(MeshFile,"\\n}\\n")\n')
            file.write('           #break\n')
            file.write('        #end\n')
            file.write('     }\n')

            file.write('     #debug concat("   - normal_vectors\\n")    \n')
            file.write('     #local NumVertices=dimension_size(NormArr,1);\n')
            file.write('     #switch(Write)\n')
            file.write('        #case(1)\n')
            file.write('           #write(\n')
            file.write('              MeshFile,\n')
            file.write('              "  normal_vectors {\\n",\n')
            file.write('              "    ", str(NumVertices,0,0),"\\n    "\n')
            file.write('           )\n')
            file.write('        #break\n')
            file.write('        #case(2)\n')
            file.write('           #write(\n')
            file.write('              MeshFile,\n')
            file.write('              "# Normals: ",str(NumVertices,0,0),"\\n"\n')
            file.write('           )\n')
            file.write('        #break\n')
            file.write('        #case(3)\n')
            file.write('           // do nothing\n')
            file.write('        #break\n')
            file.write('        #case(4)\n')
            file.write('           #write(\n')
            file.write('              MeshFile,\n')
            file.write('              "#declare NormalVectors= array[",str(NumVertices,0,0),"] {\\n  "\n')
            file.write('           )\n')
            file.write('        #break\n')
            file.write('     #end\n')
            file.write('     normal_vectors {\n')
            file.write('        NumVertices\n')
            file.write('        #local I=0;\n')
            file.write('        #while (I<NumVertices)\n')
            file.write('           NormArr[I]\n')
            file.write('           #switch(Write)\n')
            file.write('              #case(1)\n')
            file.write('                 #write(MeshFile NormArr[I])\n')
            file.write('              #break\n')
            file.write('              #case(2)\n')
            file.write('                 #write(\n')
            file.write('                    MeshFile,\n')
            file.write('                    "vn ", NormArr[I].x," ", NormArr[I].y," ", NormArr[I].z,"\\n"\n')
            file.write('                 )\n')
            file.write('              #break\n')
            file.write('              #case(3)\n')
            file.write('                 #write(\n')
            file.write('                    MeshFile,\n')
            file.write('                    NormArr[I].x,",", NormArr[I].y,",", NormArr[I].z,",\\n"\n')
            file.write('                 )\n')
            file.write('              #break\n')
            file.write('              #case(4)\n')
            file.write('                 #write(MeshFile NormArr[I])\n')
            file.write('              #break\n')
            file.write('           #end\n')
            file.write('           #local I=I+1;\n')
            file.write('           #if(Write=1 | Write=4) \n')
            file.write('              #if(mod(I,3)=0)\n')
            file.write('                 #write(MeshFile,"\\n    ")\n')
            file.write('              #end\n')
            file.write('           #end\n')
            file.write('        #end\n')
            file.write('        #switch(Write)\n')
            file.write('           #case(1)\n')
            file.write('              #write(MeshFile,"\\n  }\\n")\n')
            file.write('           #break\n')
            file.write('           #case(2)\n')
            file.write('              #write(MeshFile,"\\n")\n')
            file.write('           #break\n')
            file.write('           #case(3)\n')
            file.write('              //do nothing\n')
            file.write('           #break\n')
            file.write('           #case(4)\n')
            file.write('              #write(MeshFile,"\\n}\\n")\n')
            file.write('           #break\n')
            file.write('        #end\n')
            file.write('     }\n')
            file.write('     #debug concat("   - uv_vectors\\n")   \n')
            file.write('     #local NumVertices=dimension_size(UVArr,1);\n')
            file.write('     #switch(Write)\n')
            file.write('        #case(1)\n')
            file.write('           #write(\n')
            file.write('              MeshFile, \n')
            file.write('              "  uv_vectors {\\n",\n')
            file.write('              "    ", str(NumVertices,0,0),"\\n    "\n')
            file.write('           )\n')
            file.write('         #break\n')
            file.write('         #case(2)\n')
            file.write('           #write(\n')
            file.write('              MeshFile,\n')
            file.write('              "# UV-vectors: ",str(NumVertices,0,0),"\\n"\n')
            file.write('           )\n')
            file.write('         #break\n')
            file.write('         #case(3)\n')
            file.write('           // do nothing, *.pcm does not support uv-vectors\n')
            file.write('         #break\n')
            file.write('         #case(4)\n')
            file.write('            #write(\n')
            file.write('               MeshFile,\n')
            file.write('               "#declare UVVectors= array[",str(NumVertices,0,0),"] {\\n  "\n')
            file.write('            )\n')
            file.write('         #break\n')
            file.write('     #end\n')
            file.write('     uv_vectors {\n')
            file.write('        NumVertices\n')
            file.write('        #local I=0;\n')
            file.write('        #while (I<NumVertices)\n')
            file.write('           UVArr[I]\n')
            file.write('           #switch(Write)\n')
            file.write('              #case(1)\n')
            file.write('                 #write(MeshFile UVArr[I])\n')
            file.write('              #break\n')
            file.write('              #case(2)\n')
            file.write('                 #write(\n')
            file.write('                    MeshFile,\n')
            file.write('                    "vt ", UVArr[I].u," ", UVArr[I].v,"\\n"\n')
            file.write('                 )\n')
            file.write('              #break\n')
            file.write('              #case(3)\n')
            file.write('                 //do nothing\n')
            file.write('              #break\n')
            file.write('              #case(4)\n')
            file.write('                 #write(MeshFile UVArr[I])\n')
            file.write('              #break\n')
            file.write('           #end\n')
            file.write('           #local I=I+1; \n')
            file.write('           #if(Write=1 | Write=4)\n')
            file.write('              #if(mod(I,3)=0)\n')
            file.write('                 #write(MeshFile,"\\n    ")\n')
            file.write('              #end \n')
            file.write('           #end\n')
            file.write('        #end \n')
            file.write('        #switch(Write)\n')
            file.write('           #case(1)\n')
            file.write('              #write(MeshFile,"\\n  }\\n")\n')
            file.write('           #break\n')
            file.write('           #case(2)\n')
            file.write('              #write(MeshFile,"\\n")\n')
            file.write('           #break\n')
            file.write('           #case(3)\n')
            file.write('              //do nothing\n')
            file.write('           #break\n')
            file.write('           #case(4)\n')
            file.write('              #write(MeshFile,"\\n}\\n")\n')
            file.write('           #break\n')
            file.write('        #end\n')
            file.write('     }\n')
            file.write('\n')
            file.write('     #debug concat("   - face_indices\\n")   \n')
            file.write('     #declare NumFaces=U*V*2;\n')
            file.write('     #switch(Write)\n')
            file.write('        #case(1)\n')
            file.write('           #write(\n')
            file.write('              MeshFile,\n')
            file.write('              "  face_indices {\\n"\n')
            file.write('              "    ", str(NumFaces,0,0),"\\n    "\n')
            file.write('           )\n')
            file.write('        #break\n')
            file.write('        #case(2)\n')
            file.write('           #write (\n')
            file.write('              MeshFile,\n')
            file.write('              "# faces: ",str(NumFaces,0,0),"\\n"\n')
            file.write('           )\n')
            file.write('        #break\n')
            file.write('        #case(3)\n')
            file.write('           #write (\n')
            file.write('              MeshFile,\n')
            file.write('              "0,",str(NumFaces,0,0),",\\n"\n')
            file.write('           )\n')
            file.write('        #break\n')
            file.write('        #case(4)\n')
            file.write('           #write(\n')
            file.write('              MeshFile,\n')
            file.write('              "#declare FaceIndices= array[",str(NumFaces,0,0),"] {\\n  "\n')
            file.write('           )\n')
            file.write('        #break\n')
            file.write('     #end\n')
            file.write('     face_indices {\n')
            file.write('        NumFaces\n')
            file.write('        #local I=0;\n')
            file.write('        #local H=0;\n')
            file.write('        #local NumVertices=dimension_size(VecArr,1);\n')
            file.write('        #while (I<V)\n')
            file.write('           #local J=0;\n')
            file.write('           #while (J<U)\n')
            file.write('              #local Ind=(I*U)+I+J;\n')
            file.write('              <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
            file.write('              #switch(Write)\n')
            file.write('                 #case(1)\n')
            file.write('                    #write(\n')
            file.write('                       MeshFile,\n')
            file.write('                       <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
            file.write('                    )\n')
            file.write('                 #break\n')
            file.write('                 #case(2)\n')
            file.write('                    #write(\n')
            file.write('                       MeshFile,\n')
            file.write('                       "f ",Ind+1,"/",Ind+1,"/",Ind+1," ",Ind+1+1,"/",Ind+1+1,"/",Ind+1+1," ",Ind+U+2+1,"/",Ind+U+2+1,"/",Ind+U+2+1,"\\n",\n')
            file.write('                       "f ",Ind+U+1+1,"/",Ind+U+1+1,"/",Ind+U+1+1," ",Ind+1,"/",Ind+1,"/",Ind+1," ",Ind+U+2+1,"/",Ind+U+2+1,"/",Ind+U+2+1,"\\n"\n')
            file.write('                    )\n')
            file.write('                 #break\n')
            file.write('                 #case(3)\n')
            file.write('                    #write(\n')
            file.write('                       MeshFile,\n')
            file.write('                       Ind,",",Ind+NumVertices,",",Ind+1,",",Ind+1+NumVertices,",",Ind+U+2,",",Ind+U+2+NumVertices,",\\n"\n')
            file.write('                       Ind+U+1,",",Ind+U+1+NumVertices,",",Ind,",",Ind+NumVertices,",",Ind+U+2,",",Ind+U+2+NumVertices,",\\n"\n')
            file.write('                    )\n')
            file.write('                 #break\n')
            file.write('                 #case(4)\n')
            file.write('                    #write(\n')
            file.write('                       MeshFile,\n')
            file.write('                       <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
            file.write('                    )\n')
            file.write('                 #break\n')
            file.write('              #end\n')
            file.write('              #local J=J+1;\n')
            file.write('              #local H=H+1;\n')
            file.write('              #if(Write=1 | Write=4)\n')
            file.write('                 #if(mod(H,3)=0)\n')
            file.write('                    #write(MeshFile,"\\n    ")\n')
            file.write('                 #end \n')
            file.write('              #end\n')
            file.write('           #end\n')
            file.write('           #local I=I+1;\n')
            file.write('        #end\n')
            file.write('     }\n')
            file.write('     #switch(Write)\n')
            file.write('        #case(1)\n')
            file.write('           #write(MeshFile, "\\n  }\\n}")\n')
            file.write('           #fclose MeshFile\n')
            file.write('           #debug concat(" Done writing\\n")\n')
            file.write('        #break\n')
            file.write('        #case(2)\n')
            file.write('           #fclose MeshFile\n')
            file.write('           #debug concat(" Done writing\\n")\n')
            file.write('        #break\n')
            file.write('        #case(3)\n')
            file.write('           #fclose MeshFile\n')
            file.write('           #debug concat(" Done writing\\n")\n')
            file.write('        #break\n')
            file.write('        #case(4)\n')
            file.write('           #write(MeshFile, "\\n}\\n}")\n')
            file.write('           #fclose MeshFile\n')
            file.write('           #debug concat(" Done writing\\n")\n')
            file.write('        #break\n')
            file.write('     #end\n')
            file.write('  }\n')
            file.write('#end\n')
            file.write('#macro MSM(SplineArray, SplRes, Interp_type,  InterpRes, FileName)\n')
            file.write('    #declare Build=CheckFileName(FileName);\n')
            file.write('    #if(Build=0)\n')
            file.write('        #debug concat("\\n Parsing mesh2 from file: ", FileName, "\\n")\n')
            file.write('        #include FileName\n')
            file.write('        object{Surface}\n')
            file.write('    #else\n')
            file.write('        #local NumVertices=(SplRes+1)*(InterpRes+1);\n')
            file.write('        #local NumFaces=SplRes*InterpRes*2;\n')
            file.write('        #debug concat("\\n Calculating ",str(NumVertices,0,0)," vertices for ", str(NumFaces,0,0)," triangles\\n\\n")\n')
            file.write('        #local VecArr=array[NumVertices]\n')
            file.write('        #local NormArr=array[NumVertices]\n')
            file.write('        #local UVArr=array[NumVertices]\n')
            file.write('        #local N=dimension_size(SplineArray,1);\n')
            file.write('        #local TempSplArr0=array[N];\n')
            file.write('        #local TempSplArr1=array[N];\n')
            file.write('        #local TempSplArr2=array[N];\n')
            file.write('        #local PosStep=1/SplRes;\n')
            file.write('        #local InterpStep=1/InterpRes;\n')
            file.write('        #local Count=0;\n')
            file.write('        #local Pos=0;\n')
            file.write('        #while(Pos<=1)\n')
            file.write('            #local I=0;\n')
            file.write('            #if (Pos=0)\n')
            file.write('                #while (I<N)\n')
            file.write('                    #local Spl=spline{SplineArray[I]}\n')
            file.write('                    #local TempSplArr0[I]=<0,0,0>+Spl(Pos);\n')
            file.write('                    #local TempSplArr1[I]=<0,0,0>+Spl(Pos+PosStep);\n')
            file.write('                    #local TempSplArr2[I]=<0,0,0>+Spl(Pos-PosStep);\n')
            file.write('                    #local I=I+1;\n')
            file.write('                #end\n')
            file.write('                #local S0=BuildSpline(TempSplArr0, Interp_type)\n')
            file.write('                #local S1=BuildSpline(TempSplArr1, Interp_type)\n')
            file.write('                #local S2=BuildSpline(TempSplArr2, Interp_type)\n')
            file.write('            #else\n')
            file.write('                #while (I<N)\n')
            file.write('                    #local Spl=spline{SplineArray[I]}\n')
            file.write('                    #local TempSplArr1[I]=<0,0,0>+Spl(Pos+PosStep);\n')
            file.write('                    #local I=I+1;\n')
            file.write('                #end\n')
            file.write('                #local S1=BuildSpline(TempSplArr1, Interp_type)\n')
            file.write('            #end\n')
            file.write('            #local J=0;\n')
            file.write('            #while (J<=1)\n')
            file.write('                #local P0=<0,0,0>+S0(J);\n')
            file.write('                #local P1=<0,0,0>+S1(J);\n')
            file.write('                #local P2=<0,0,0>+S2(J);\n')
            file.write('                #local P3=<0,0,0>+S0(J+InterpStep);\n')
            file.write('                #local P4=<0,0,0>+S0(J-InterpStep);\n')
            file.write('                #local B1=P4-P0;\n')
            file.write('                #local B2=P2-P0;\n')
            file.write('                #local B3=P3-P0;\n')
            file.write('                #local B4=P1-P0;\n')
            file.write('                #local N1=vcross(B1,B2);\n')
            file.write('                #local N2=vcross(B2,B3);\n')
            file.write('                #local N3=vcross(B3,B4);\n')
            file.write('                #local N4=vcross(B4,B1);\n')
            file.write('                #local Norm=vnormalize((N1+N2+N3+N4));\n')
            file.write('                #local VecArr[Count]=P0;\n')
            file.write('                #local NormArr[Count]=Norm;\n')
            file.write('                #local UVArr[Count]=<J,Pos>;\n')
            file.write('                #local J=J+InterpStep;\n')
            file.write('                #local Count=Count+1;\n')
            file.write('            #end\n')
            file.write('            #local S2=spline{S0}\n')
            file.write('            #local S0=spline{S1}\n')
            file.write('            #debug concat("\\r Done ", str(Count,0,0)," vertices : ", str(100*Count/NumVertices,0,2)," %")\n')
            file.write('            #local Pos=Pos+PosStep;\n')
            file.write('        #end\n')
            file.write('        BuildWriteMesh2(VecArr, NormArr, UVArr, InterpRes, SplRes, "")\n')
            file.write('    #end\n')
            file.write('#end\n\n')

            file.write('#macro Coons(Spl1, Spl2, Spl3, Spl4, Iter_U, Iter_V, FileName)\n')
            file.write('   #declare Build=CheckFileName(FileName);\n')
            file.write('   #if(Build=0)\n')
            file.write('      #debug concat("\\n Parsing mesh2 from file: ", FileName, "\\n")\n')
            file.write('      #include FileName\n')
            file.write('      object{Surface}\n')
            file.write('   #else\n')
            file.write('      #local NumVertices=(Iter_U+1)*(Iter_V+1);\n')
            file.write('      #local NumFaces=Iter_U*Iter_V*2;\n')
            file.write('      #debug concat("\\n Calculating ", str(NumVertices,0,0), " vertices for ",str(NumFaces,0,0), " triangles\\n\\n")\n')
            file.write('      #declare VecArr=array[NumVertices]   \n')
            file.write('      #declare NormArr=array[NumVertices]   \n')
            file.write('      #local UVArr=array[NumVertices]      \n')
            file.write('      #local Spl1_0=Spl1(0);\n')
            file.write('      #local Spl2_0=Spl2(0);\n')
            file.write('      #local Spl3_0=Spl3(0);\n')
            file.write('      #local Spl4_0=Spl4(0);\n')
            file.write('      #local UStep=1/Iter_U;\n')
            file.write('      #local VStep=1/Iter_V;\n')
            file.write('      #local Count=0;\n')
            file.write('      #local I=0;\n')
            file.write('      #while (I<=1)\n')
            file.write('         #local Im=1-I;\n')
            file.write('         #local J=0;\n')
            file.write('         #while (J<=1)\n')
            file.write('            #local Jm=1-J;\n')
            file.write('            #local C0=Im*Jm*(Spl1_0)+Im*J*(Spl2_0)+I*J*(Spl3_0)+I*Jm*(Spl4_0);\n')
            file.write('            #local P0=LInterpolate(I, Spl1(J), Spl3(Jm)) + \n')
            file.write('               LInterpolate(Jm, Spl2(I), Spl4(Im))-C0;\n')
            file.write('            #declare VecArr[Count]=P0;\n')
            file.write('            #local UVArr[Count]=<J,I>;\n')
            file.write('            #local J=J+UStep;\n')
            file.write('            #local Count=Count+1;\n')
            file.write('         #end\n')
            file.write('         #debug concat(\n')
            file.write('            "\r Done ", str(Count,0,0)," vertices :         ",\n')
            file.write('            str(100*Count/NumVertices,0,2)," %"\n')
            file.write('         )\n')
            file.write('         #local I=I+VStep;\n')
            file.write('      #end\n')
            file.write('      #debug "\r Normals                                  "\n')
            file.write('      #local Count=0;\n')
            file.write('      #local I=0;\n')
            file.write('      #while (I<=Iter_V)\n')
            file.write('         #local J=0;\n')
            file.write('         #while (J<=Iter_U)\n')
            file.write('            #local Ind=(I*Iter_U)+I+J;\n')
            file.write('            #local P0=VecArr[Ind];\n')
            file.write('            #if(J=0)\n')
            file.write('               #local P1=P0+(P0-VecArr[Ind+1]);\n')
            file.write('            #else\n')
            file.write('               #local P1=VecArr[Ind-1];\n')
            file.write('            #end\n')
            file.write('            #if (J=Iter_U)\n')
            file.write('               #local P2=P0+(P0-VecArr[Ind-1]);\n')
            file.write('            #else\n')
            file.write('               #local P2=VecArr[Ind+1];\n')
            file.write('            #end\n')
            file.write('            #if (I=0)\n')
            file.write('               #local P3=P0+(P0-VecArr[Ind+Iter_U+1]);\n')
            file.write('            #else\n')
            file.write('               #local P3=VecArr[Ind-Iter_U-1];\n')
            file.write('            #end\n')
            file.write('            #if (I=Iter_V)\n')
            file.write('               #local P4=P0+(P0-VecArr[Ind-Iter_U-1]);\n')
            file.write('            #else\n')
            file.write('               #local P4=VecArr[Ind+Iter_U+1];\n')
            file.write('            #end\n')
            file.write('            #local B1=P4-P0;\n')
            file.write('            #local B2=P2-P0;\n')
            file.write('            #local B3=P3-P0;\n')
            file.write('            #local B4=P1-P0;\n')
            file.write('            #local N1=vcross(B1,B2);\n')
            file.write('            #local N2=vcross(B2,B3);\n')
            file.write('            #local N3=vcross(B3,B4);\n')
            file.write('            #local N4=vcross(B4,B1);\n')
            file.write('            #local Norm=vnormalize((N1+N2+N3+N4));\n')
            file.write('            #declare NormArr[Count]=Norm;\n')
            file.write('            #local J=J+1;\n')
            file.write('            #local Count=Count+1;\n')
            file.write('         #end\n')
            file.write('         #debug concat("\r Done ", str(Count,0,0)," normals : ",str(100*Count/NumVertices,0,2), " %")\n')
            file.write('         #local I=I+1;\n')
            file.write('      #end\n')
            file.write('      BuildWriteMesh2(VecArr, NormArr, UVArr, Iter_U, Iter_V, FileName)\n')
            file.write('   #end\n')
            file.write('#end\n\n')
Campbell Barton's avatar
Campbell Barton committed
            tabWrite("\n//dummy sphere to represent empty curve location\n")
            tabWrite("#declare %s =\n"%dataname)
Campbell Barton's avatar
Campbell Barton committed
            tabWrite("sphere {<%.6g, %.6g, %.6g>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n\n" % (ob.location.x, ob.location.y, ob.location.z)) # ob.name > povdataname)
        # And non empty curves
        else:
            if bezier_sweep == False:
                tabWrite("#declare %s =\n"%dataname)
            if ob.pov.curveshape == 'sphere_sweep' and bezier_sweep == False:
                tabWrite("union {\n")
                for spl in ob.data.splines:
                    if spl.type != "BEZIER":
                        spl_type = "linear"
                        if spl.type == "NURBS":
                            spl_type = "cubic"
                        points=spl.points
                        numPoints=len(points)
                        if spl.use_cyclic_u:
                            numPoints+=3

                        tabWrite("sphere_sweep { %s_spline %s,\n"%(spl_type,numPoints))
                        if spl.use_cyclic_u:
                            pt1 = points[len(points)-1]
                            wpt1 = pt1.co
                            tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt1[0], wpt1[1], wpt1[2], pt1.radius*ob.data.bevel_depth))
                        for pt in points:
                            wpt = pt.co
                            tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt[0], wpt[1], wpt[2], pt.radius*ob.data.bevel_depth))
                        if spl.use_cyclic_u:
                            for i in range (0,2):
                                endPt=points[i]
                                wpt = endPt.co
                                tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt[0], wpt[1], wpt[2], endPt.radius*ob.data.bevel_depth))
            if ob.pov.curveshape == 'sor':
                for spl in ob.data.splines:
                    if spl.type in {'POLY','NURBS'}:
                        points=spl.points
                        numPoints=len(points)
                        tabWrite("sor { %s,\n"%numPoints)
                        for pt in points:
                            wpt = pt.co
                            tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
                    else:
                        tabWrite("box { 0,0\n")
            if ob.pov.curveshape in {'lathe','prism'}:
                spl = ob.data.splines[0]
                if spl.type == "BEZIER":
                    points=spl.bezier_points
                    lenCur=len(points)-1
                    lenPts=lenCur*4
                    ifprism = ''
                    if ob.pov.curveshape in {'prism'}:
                        height = ob.data.extrude
                        ifprism = '-%s, %s,'%(height, height)
                        lenCur+=1
                        lenPts+=4
                    tabWrite("%s { bezier_spline %s %s,\n"%(ob.pov.curveshape,ifprism,lenPts))
                    for i in range(0,lenCur):
                        p1=points[i].co
                        pR=points[i].handle_right
                        end = i+1
                        if i == lenCur-1 and ob.pov.curveshape in {'prism'}:
                            end = 0
                        pL=points[end].handle_left
                        p2=points[end].co
                        line="<%.4g,%.4g>"%(p1[0],p1[1])
                        line+="<%.4g,%.4g>"%(pR[0],pR[1])
                        line+="<%.4g,%.4g>"%(pL[0],pL[1])
                        line+="<%.4g,%.4g>"%(p2[0],p2[1])
                        tabWrite("%s\n" %line)
                else:
                    lenCur=len(points)
                    lenPts=lenCur
                    ifprism = ''
                    if ob.pov.curveshape in {'prism'}:
                        height = ob.data.extrude
                        ifprism = '-%s, %s,'%(height, height)
                        lenPts+=3
                    spl_type = 'quadratic'
                    if spl.type == 'POLY':
                        spl_type = 'linear'
                    tabWrite("%s { %s_spline %s %s,\n"%(ob.pov.curveshape,spl_type,ifprism,lenPts))
                    if ob.pov.curveshape in {'prism'}:
                        pt = points[len(points)-1]
                        wpt = pt.co
                        tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
                        wpt = pt.co
                        tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
                    if ob.pov.curveshape in {'prism'}:
                        for i in range(2):
                            pt = points[i]
                            wpt = pt.co
                            tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
            if bezier_sweep:
                for p in range(len(ob.data.splines)):
                    br = []
                    depth = ob.data.bevel_depth
                    spl = ob.data.splines[p]
                    points=spl.bezier_points
                    lenCur = len(points)-1
                    numPoints = lenCur*4
                    if spl.use_cyclic_u:
                        lenCur += 1
                        numPoints += 4
                    tabWrite("#declare %s_points_%s = array[%s]{\n"%(dataname,p,numPoints))
                    for i in range(lenCur):
                        p1=points[i].co
                        pR=points[i].handle_right
                        end = i+1
                        if spl.use_cyclic_u and i == (lenCur - 1):
                            end = 0
                        pL=points[end].handle_left
                        p2=points[end].co
                        r3 = points[end].radius * depth
                        r0 = points[i].radius * depth
                        r1 = 2/3*r0 + 1/3*r3
                        r2 = 1/3*r0 + 2/3*r3
                        br.append((r0,r1,r2,r3))
                        line="<%.4g,%.4g,%.4f>"%(p1[0],p1[1],p1[2])
                        line+="<%.4g,%.4g,%.4f>"%(pR[0],pR[1],pR[2])
                        line+="<%.4g,%.4g,%.4f>"%(pL[0],pL[1],pL[2])
                        line+="<%.4g,%.4g,%.4f>"%(p2[0],p2[1],p2[2])
                        tabWrite("%s\n" %line)
                    tabWrite("}\n")
                    tabWrite("#declare %s_radii_%s = array[%s]{\n"%(dataname,p,len(br)*4))
                    for Tuple in br:
                        tabWrite('%.4f,%.4f,%.4f,%.4f\n'%(Tuple[0],Tuple[1],Tuple[2],Tuple[3]))
                    tabWrite("}\n")
                if len(ob.data.splines)== 1:
                    tabWrite('#declare %s = object{\n'%dataname)
                    tabWrite('    Shape_Bezierpoints_Sphere_Sweep(yes,%s, %s_points_%s, %s_radii_%s) \n'%(ob.data.resolution_u,dataname,p,dataname,p))
                else:
                    tabWrite('#declare %s = union{\n'%dataname)
                    for p in range(len(ob.data.splines)):
                        tabWrite('    object{Shape_Bezierpoints_Sphere_Sweep(yes,%s, %s_points_%s, %s_radii_%s)} \n'%(ob.data.resolution_u,dataname,p,dataname,p))
                    #tabWrite('#include "bezier_spheresweep.inc"\n') #now inlined
                   # tabWrite('#declare %s = object{Shape_Bezierpoints_Sphere_Sweep(yes,%s, %s_bezier_points, %.4f) \n'%(dataname,ob.data.resolution_u,dataname,ob.data.bevel_depth))
            if ob.pov.curveshape in {'loft'}:
                tabWrite('object {MSM(%s,%s,"c",%s,"")\n'%(dataname,ob.pov.res_u,ob.pov.res_v))
            if ob.pov.curveshape in {'birail'}:
                splines = '%s1,%s2,%s3,%s4'%(dataname,dataname,dataname,dataname)
                tabWrite('object {Coons(%s, %s, %s, "")\n'%(splines,ob.pov.res_u,ob.pov.res_v))
            povMatName = "Default_texture"
            if ob.active_material:
                #povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
                try:
                    material = ob.active_material
                    writeObjectMaterial(material, ob)
                except IndexError:
                    print(me)
            #tabWrite("texture {%s}\n"%povMatName)
            if ob.pov.curveshape in {'prism'}:
                tabWrite("rotate <90,0,0>\n")
                tabWrite("scale y*-1\n" )
            tabWrite("}\n")
Campbell Barton's avatar
Campbell Barton committed

#################################################################


Luca Bonavita's avatar
Luca Bonavita committed
    def exportMeta(metas):

        # TODO - blenders 'motherball' naming is not supported.
        if comments and len(metas) >= 1:
            file.write("//--Blob objects--\n\n")
        # Get groups of metaballs by blender name prefix.
        meta_group = {}
        meta_elems = {}
Luca Bonavita's avatar
Luca Bonavita committed
        for ob in metas:
            if not prefix in meta_group:
                meta_group[prefix] = ob  # .data.threshold
            elems = [(elem, ob) for elem in ob.data.elements if elem.type in {'BALL', 'ELLIPSOID','CAPSULE','CUBE','PLANE'}]
            if prefix in meta_elems:
                meta_elems[prefix].extend(elems)
                meta_elems[prefix] = elems
            # empty metaball
            if len(elems)==0:
                tabWrite("\n//dummy sphere to represent empty meta location\n")
Campbell Barton's avatar
Campbell Barton committed
                tabWrite("sphere {<%.6g, %.6g, %.6g>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n\n" % (ob.location.x, ob.location.y, ob.location.z)) # ob.name > povdataname)
            # other metaballs
            else:
Campbell Barton's avatar
Campbell Barton committed
                    if len(meta_elems[mg])!=0:
                        tabWrite("blob{threshold %.4g // %s \n" % (ob.data.threshold, mg))
                        for elems in meta_elems[mg]:
                            elem = elems[0]
                            loc = elem.co
                            stiffness = elem.stiffness
                            if elem.use_negative:
                                stiffness = - stiffness
                            if elem.type == 'BALL':
                                tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g " %
                                         (loc.x, loc.y, loc.z, elem.radius, stiffness))
                                writeMatrix(global_matrix * elems[1].matrix_world)
Campbell Barton's avatar
Campbell Barton committed
                                tabWrite("}\n")
                            elif elem.type == 'ELLIPSOID':
                                tabWrite("sphere{ <%.6g, %.6g, %.6g>,%.4g,%.4g " %
                                         (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z,
                                          elem.radius, stiffness))
                                tabWrite("scale <%.6g, %.6g, %.6g>" % (elem.size_x, elem.size_y, elem.size_z))
                                writeMatrix(global_matrix * elems[1].matrix_world)
Campbell Barton's avatar
Campbell Barton committed
                                tabWrite("}\n")
                            elif elem.type == 'CAPSULE':
                                tabWrite("cylinder{ <%.6g, %.6g, %.6g>,<%.6g, %.6g, %.6g>,%.4g,%.4g " %
                                         ((loc.x - elem.size_x), (loc.y), (loc.z),
                                          (loc.x + elem.size_x), (loc.y), (loc.z),
                                          elem.radius, stiffness))
Campbell Barton's avatar
Campbell Barton committed
                                #tabWrite("scale <%.6g, %.6g, %.6g>" % (elem.size_x, elem.size_y, elem.size_z))
                                writeMatrix(global_matrix * elems[1].matrix_world)
                                tabWrite("}\n")

                            elif elem.type == 'CUBE':
                                tabWrite("cylinder { -x*8, +x*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale  <1/4,1,1> scale <%.6g, %.6g, %.6g>\n" % (elem.radius*2.0, stiffness/4.0, loc.x, loc.y, loc.z, elem.size_x, elem.size_y, elem.size_z))
                                writeMatrix(global_matrix * elems[1].matrix_world)
                                tabWrite("}\n")
                                tabWrite("cylinder { -y*8, +y*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1,1/4,1> scale <%.6g, %.6g, %.6g>\n" % (elem.radius*2.0, stiffness/4.0, loc.x, loc.y, loc.z, elem.size_x, elem.size_y, elem.size_z))
                                writeMatrix(global_matrix * elems[1].matrix_world)
Campbell Barton's avatar
Campbell Barton committed
                                tabWrite("}\n")
                                tabWrite("cylinder { -z*8, +z*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1,1,1/4> scale <%.6g, %.6g, %.6g>\n" % (elem.radius*2.0, stiffness/4.0, loc.x, loc.y, loc.z, elem.size_x, elem.size_y, elem.size_z))
                                writeMatrix(global_matrix * elems[1].matrix_world)
                                tabWrite("}\n")
                            elif elem.type == 'PLANE':
                                tabWrite("cylinder { -x*8, +x*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale  <1/4,1,1> scale <%.6g, %.6g, %.6g>\n" % (elem.radius*2.0, stiffness/4.0, loc.x, loc.y, loc.z, elem.size_x, elem.size_y, elem.size_z))
                                writeMatrix(global_matrix * elems[1].matrix_world)
                                tabWrite("}\n")
                                tabWrite("cylinder { -y*8, +y*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1,1/4,1> scale <%.6g, %.6g, %.6g>\n" % (elem.radius*2.0, stiffness/4.0, loc.x, loc.y, loc.z, elem.size_x, elem.size_y, elem.size_z))
                                writeMatrix(global_matrix * elems[1].matrix_world)
Campbell Barton's avatar
Campbell Barton committed
                                tabWrite("}\n")
                        try:
                            material = elems[1].data.materials[0]  # lame! - blender cant do enything else.
                        except:
                            material = None
                        if material:
                            diffuse_color = material.diffuse_color
                            trans = 1.0 - material.alpha
                            if material.use_transparency and material.transparency_method == 'RAYTRACE':
                                povFilter = material.raytrace_transparency.filter * (1.0 - material.alpha)
                                trans = (1.0 - material.alpha) - povFilter
                            else:
                                povFilter = 0.0
                            material_finish = materialNames[material.name]
                            tabWrite("pigment {srgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} \n" %
                                     (diffuse_color[0], diffuse_color[1], diffuse_color[2],
                                      povFilter, trans))
                            tabWrite("finish{%s} " % safety(material_finish, Level=2))
                        else:
                            tabWrite("pigment{srgb 1} finish{%s} " % (safety(DEF_MAT_NAME, Level=2)))

                            writeObjectMaterial(material, ob)
                            #writeObjectMaterial(material, elems[1])
                            tabWrite("radiosity{importance %3g}\n" % ob.pov.importance_value)
Campbell Barton's avatar
Campbell Barton committed
                            tabWrite("}\n\n")  # End of Metaball block
Luca Bonavita's avatar
Luca Bonavita committed
            meta = ob.data

            # important because no elements will break parsing.
            elements = [elem for elem in meta.elements if elem.type in {'BALL', 'ELLIPSOID'}]
Luca Bonavita's avatar
Luca Bonavita committed

                tabWrite("blob {\n")
                tabWrite("threshold %.4g\n" % meta.threshold)
Luca Bonavita's avatar
Luca Bonavita committed

                    material = meta.materials[0]  # lame! - blender cant do enything else.
Luca Bonavita's avatar
Luca Bonavita committed

                for elem in elements:
                    loc = elem.co
Luca Bonavita's avatar
Luca Bonavita committed

                    stiffness = elem.stiffness
                    if elem.use_negative:
                        stiffness = - stiffness
Luca Bonavita's avatar
Luca Bonavita committed

                    if elem.type == 'BALL':
Luca Bonavita's avatar
Luca Bonavita committed

                        tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g }\n" %
                                 (loc.x, loc.y, loc.z, elem.radius, stiffness))
Luca Bonavita's avatar
Luca Bonavita committed

                        # After this wecould do something simple like...
                        # except we'll write the color
Luca Bonavita's avatar
Luca Bonavita committed

                    elif elem.type == 'ELLIPSOID':
                        # location is modified by scale
                        tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g }\n" %
                                 (loc.x / elem.size_x,
                                  loc.y / elem.size_y,
                                  loc.z / elem.size_z,
                        tabWrite("scale <%.6g, %.6g, %.6g> \n" %
Luca Bonavita's avatar
Luca Bonavita committed

                if material:
                    diffuse_color = material.diffuse_color
                    if material.use_transparency and material.transparency_method == 'RAYTRACE':
                        povFilter = material.raytrace_transparency.filter * (1.0 - material.alpha)
                        trans = (1.0 - material.alpha) - povFilter
                        povFilter = 0.0
Luca Bonavita's avatar
Luca Bonavita committed

                    material_finish = materialNames[material.name]
                    tabWrite("pigment {srgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} \n" %
                             (diffuse_color[0], diffuse_color[1], diffuse_color[2],
                              povFilter, trans))
                    tabWrite("finish {%s}\n" % safety(material_finish, Level=2))
Luca Bonavita's avatar
Luca Bonavita committed

                    # Write the finish last.
                    tabWrite("finish {%s}\n" % (safety(DEF_MAT_NAME, Level=2)))
Luca Bonavita's avatar
Luca Bonavita committed

                writeObjectMaterial(material, elems[1])
Luca Bonavita's avatar
Luca Bonavita committed

                writeMatrix(global_matrix * ob.matrix_world)
                # Importance for radiosity sampling added here
                # importance > ob.pov.importance_value
                tabWrite("importance %3g \n" % importance)
                tabWrite("}\n")
Luca Bonavita's avatar
Luca Bonavita committed

                tabWrite("}\n")  # End of Metaball block
                if comments and len(metas) >= 1:
    def exportMeshes(scene, sel, csg):
#        obmatslist = []
#        def hasUniqueMaterial():
#            # Grab materials attached to object instances ...
#            if hasattr(ob, 'material_slots'):
#                for ms in ob.material_slots:
#                    if ms.material is not None and ms.link == 'OBJECT':
#                        if ms.material in obmatslist:
#                            return False
#                        else:
#                            obmatslist.append(ms.material)
#                            return True
#        def hasObjectMaterial(ob):
#            # Grab materials attached to object instances ...
#            if hasattr(ob, 'material_slots'):
#                for ms in ob.material_slots:
#                    if ms.material is not None and ms.link == 'OBJECT':
#                        # If there is at least one material slot linked to the object
#                        # and not the data (mesh), always create a new, "private" data instance.
#                        return True
#            return False
        # For objects using local material(s) only!
        # This is a mapping between a tuple (dataname, materialnames, ...), and the POV dataname.
        # As only objects using:
        #     * The same data.
        #     * EXACTLY the same materials, in EXACTLY the same sockets.
        # ... can share a same instance in POV export.
        def checkObjectMaterials(ob, name, dataname):
            if hasattr(ob, 'material_slots'):
                has_local_mats = False
                key = [dataname]
                for ms in ob.material_slots:
                    if ms.material is not None:
                        key.append(ms.material.name)
                        if ms.link == 'OBJECT' and not has_local_mats:
                            has_local_mats = True
                    else:
                        # Even if the slot is empty, it is important to grab it...
                        key.append("")
                if has_local_mats:
                    # If this object uses local material(s), lets find if another object
                    # using the same data and exactly the same list of materials
                    # (in the same slots) has already been processed...
                    # Note that here also, we use object name as new, unique dataname for Pov.
                    key = tuple(key)  # Lists are not hashable...
                    if key not in obmats2data:
                        obmats2data[key] = name
                    return obmats2data[key]
            return None

        data_ref = {}
        def store(scene, ob, name, dataname, matrix):
            # The Object needs to be written at least once but if its data is
            # already in data_ref this has already been done.
            # This func returns the "povray" name of the data, or None
            # if no writing is needed.
            if ob.is_modified(scene, 'RENDER'):
                # Data modified.
                # Create unique entry in data_ref by using object name
                # (always unique in Blender) as data name.
                data_ref[name] = [(name, MatrixAsPovString(matrix))]
                return name
            # Here, we replace dataname by the value returned by checkObjectMaterials, only if
            # it is not evaluated to False (i.e. only if the object uses some local material(s)).
            dataname = checkObjectMaterials(ob, name, dataname) or dataname
            if dataname in data_ref:
                # Data already known, just add the object instance.
                data_ref[dataname].append((name, MatrixAsPovString(matrix)))
                # No need to write data
                return None
            else:
                # Data not yet processed, create a new entry in data_ref.
                data_ref[dataname] = [(name, MatrixAsPovString(matrix))]
                return dataname
        def exportSmoke(smoke_obj_name):
            #if LuxManager.CurrentScene.name == 'preview':
                #return 1, 1, 1, 1.0
            #else:
            flowtype = -1
            smoke_obj = bpy.data.objects[smoke_obj_name]
            domain = None

            # Search smoke domain target for smoke modifiers
            for mod in smoke_obj.modifiers:
                if mod.name == 'Smoke':
                    if mod.smoke_type == 'FLOW':
                        if mod.flow_settings.smoke_flow_type == 'BOTH':
                            flowtype = 2
                        else:
                            if mod.flow_settings.smoke_flow_type == 'SMOKE':
                                flowtype = 0
                            else:
                                if mod.flow_settings.smoke_flow_type == 'FIRE':
                                    flowtype = 1

                    if mod.smoke_type == 'DOMAIN':
                        domain = smoke_obj
                        smoke_modifier = mod

            eps = 0.000001
            if domain is not None:
                #if bpy.app.version[0] >= 2 and bpy.app.version[1] >= 71:
                # Blender version 2.71 supports direct access to smoke data structure
                set = mod.domain_settings
                channeldata = []
                for v in set.density_grid:
                    channeldata.append(v.real)
                    print(v.real)
                ## Usage en voxel texture:
                # channeldata = []
                # if channel == 'density':
                    # for v in set.density_grid:
                        # channeldata.append(v.real)

                # if channel == 'fire':
                    # for v in set.flame_grid:
                        # channeldata.append(v.real)

                resolution = set.resolution_max
                big_res = []
                big_res.append(set.domain_resolution[0])
                big_res.append(set.domain_resolution[1])
                big_res.append(set.domain_resolution[2])

                if set.use_high_resolution:
                    big_res[0] = big_res[0] * (set.amplify + 1)
                    big_res[1] = big_res[1] * (set.amplify + 1)
                    big_res[2] = big_res[2] * (set.amplify + 1)
                # else:
                    # p = []
                    ##gather smoke domain settings
                    # BBox = domain.bound_box
                    # p.append([BBox[0][0], BBox[0][1], BBox[0][2]])
                    # p.append([BBox[6][0], BBox[6][1], BBox[6][2]])
                    # set = mod.domain_settings
                    # resolution = set.resolution_max
                    # smokecache = set.point_cache
                    # ret = read_cache(smokecache, set.use_high_resolution, set.amplify + 1, flowtype)
                    # res_x = ret[0]
                    # res_y = ret[1]
                    # res_z = ret[2]
                    # density = ret[3]
                    # fire = ret[4]

                    # if res_x * res_y * res_z > 0:
                        ##new cache format
                        # big_res = []
                        # big_res.append(res_x)
                        # big_res.append(res_y)
                        # big_res.append(res_z)
                    # else:
                        # max = domain.dimensions[0]
                        # if (max - domain.dimensions[1]) < -eps:
                            # max = domain.dimensions[1]

                        # if (max - domain.dimensions[2]) < -eps:
                            # max = domain.dimensions[2]

                        # big_res = [int(round(resolution * domain.dimensions[0] / max, 0)),
                                   # int(round(resolution * domain.dimensions[1] / max, 0)),
                                   # int(round(resolution * domain.dimensions[2] / max, 0))]

                    # if set.use_high_resolution:
                        # big_res = [big_res[0] * (set.amplify + 1), big_res[1] * (set.amplify + 1),
                                   # big_res[2] * (set.amplify + 1)]

                    # if channel == 'density':
                        # channeldata = density

                    # if channel == 'fire':
                        # channeldata = fire

                        # sc_fr = '%s/%s/%s/%05d' % (efutil.export_path, efutil.scene_filename(), bpy.context.scene.name, bpy.context.scene.frame_current)
                        #               if not os.path.exists( sc_fr ):
                        #                   os.makedirs(sc_fr)
                        #               smoke_filename = '%s.smoke' % bpy.path.clean_name(domain.name)
                        #               smoke_path = '/'.join([sc_fr, smoke_filename])
                        #               with open(smoke_path, 'wb') as smoke_file:
                        #                   # Binary densitygrid file format
                        #                   #
                        #                   # File header
                        #                   smoke_file.write(b'SMOKE')        #magic number
                        #                   smoke_file.write(struct.pack('<I', big_res[0]))
                        #                   smoke_file.write(struct.pack('<I', big_res[1]))
                        #                   smoke_file.write(struct.pack('<I', big_res[2]))
                        # Density data
                        #                   smoke_file.write(struct.pack('<%df'%len(channeldata), *channeldata))
                        #               LuxLog('Binary SMOKE file written: %s' % (smoke_path))

        #return big_res[0], big_res[1], big_res[2], channeldata
                mydf3 = df3.df3(big_res[0],big_res[1],big_res[2])
                sim_sizeX, sim_sizeY, sim_sizeZ = mydf3.size()
                for x in range(sim_sizeX):
                    for y in range(sim_sizeY):
                        for z in range(sim_sizeZ):
                            mydf3.set(x, y, z, channeldata[((z * sim_sizeY + y) * sim_sizeX + x)])

                mydf3.exportDF3(smokePath)
                print('Binary smoke.df3 file written in preview directory')
                if comments:
                    file.write("\n//--Smoke--\n\n")

                # Note: We start with a default unit cube.
                #       This is mandatory to read correctly df3 data - otherwise we could just directly use bbox
                #       coordinates from the start, and avoid scale/translate operations at the end...
                file.write("box{<0,0,0>, <1,1,1>\n")
                file.write("    pigment{ rgbt 1 }\n")
                file.write("    hollow\n")
                file.write("    interior{ //---------------------\n")
                file.write("        media{ method 3\n")
                file.write("               emission <1,1,1>*1\n")# 0>1 for dark smoke to white vapour
                file.write("               scattering{ 1, // Type\n")
                file.write("                  <1,1,1>*0.1\n")
                file.write("                } // end scattering\n")
                file.write("                density{density_file df3 \"%s\"\n" % (smokePath))
                file.write("                        color_map {\n")
                file.write("                        [0.00 rgb 0]\n")
                file.write("                        [0.05 rgb 0]\n")
                file.write("                        [0.20 rgb 0.2]\n")
                file.write("                        [0.30 rgb 0.6]\n")
                file.write("                        [0.40 rgb 1]\n")
                file.write("                        [1.00 rgb 1]\n")
                file.write("                       } // end color_map\n")
                file.write("               } // end of density\n")
                file.write("               samples %i // higher = more precise\n" % resolution)
                file.write("         } // end of media --------------------------\n")
                file.write("    } // end of interior\n")

                # START OF TRANSFORMATIONS

                # Size to consider here are bbox dimensions (i.e. still in object space, *before* applying
                # loc/rot/scale and other transformations (like parent stuff), aka matrix_world).
                bbox = smoke_obj.bound_box
                dim = [abs(bbox[6][0] - bbox[0][0]), abs(bbox[6][1] - bbox[0][1]), abs(bbox[6][2] - bbox[0][2])]

                # We scale our cube to get its final size and shapes but still in *object* space (same as Blender's bbox).
                file.write("scale<%.6g,%.6g,%.6g>\n" % (dim[0], dim[1], dim[2]))

                # We offset our cube such that (0,0,0) coordinate matches Blender's object center.
                file.write("translate<%.6g,%.6g,%.6g>\n" % (bbox[0][0], bbox[0][1], bbox[0][2]))

                # We apply object's transformations to get final loc/rot/size in world space!
                # Note: we could combine the two previous transformations with this matrix directly...
                writeMatrix(global_matrix * smoke_obj.matrix_world)

                # END OF TRANSFORMATIONS

                file.write("}\n")
                #file.write("               interpolate 1\n")
                #file.write("               frequency 0\n")
                #file.write("   }\n")
Campbell Barton's avatar
Campbell Barton committed
                #file.write("}\n")

Luca Bonavita's avatar
Luca Bonavita committed
        for ob in sel:
            ob_num += 1

            # XXX I moved all those checks here, as there is no need to compute names
            if (ob.type in {'LIGHT', 'CAMERA', #'EMPTY', #empties can bear dupligroups
                            'META', 'ARMATURE', 'LATTICE'}):
Luca Bonavita's avatar
Luca Bonavita committed
                continue
            for mod in ob.modifiers:
                if mod and hasattr(mod, 'smoke_type'):
                    smokeFlag=True
                    if (mod.smoke_type == 'DOMAIN'):
                        exportSmoke(ob.name)
                    break # don't render domain mesh or flow emitter mesh, skip to next object.
Campbell Barton's avatar
Campbell Barton committed
            if not smokeFlag:
                # Export Hair
                renderEmitter = True
                if hasattr(ob, 'particle_systems'):
                    renderEmitter = False
                    for pSys in ob.particle_systems:
                        if pSys.settings.use_render_emitter:
                            renderEmitter = True
                        for mod in [m for m in ob.modifiers if (m is not None) and (m.type == 'PARTICLE_SYSTEM')]:
                            if (pSys.settings.render_type == 'PATH') and mod.show_render and (pSys.name == mod.particle_system.name):
                                tstart = time.time()
                                texturedHair=0
                                if ob.material_slots[pSys.settings.material - 1].material and ob.active_material is not None:
                                    pmaterial = ob.material_slots[pSys.settings.material - 1].material
                                    for th in pmaterial.texture_slots:
                                        if th and th.use:
                                            if (th.texture.type == 'IMAGE' and th.texture.image) or th.texture.type != 'IMAGE':
                                                if th.use_map_color_diffuse:
                                                    texturedHair=1
                                    if pmaterial.strand.use_blender_units:
                                        strandStart = pmaterial.strand.root_size
                                        strandEnd = pmaterial.strand.tip_size
Campbell Barton's avatar
Campbell Barton committed
                                        strandShape = pmaterial.strand.shape
                                    else:  # Blender unit conversion
                                        strandStart = pmaterial.strand.root_size / 200.0
                                        strandEnd = pmaterial.strand.tip_size / 200.0
                                        strandShape = pmaterial.strand.shape
                                else:
                                    pmaterial = "default"  # No material assigned in blender, use default one
                                    strandStart = 0.01
                                    strandEnd = 0.01
                                    strandShape = 0.0
Campbell Barton's avatar
Campbell Barton committed
                                # Set the number of particles to render count rather than 3d view display
                                pSys.set_resolution(scene, ob, 'RENDER')
                                steps = pSys.settings.display_step
                                steps = 3 ** steps # or (power of 2 rather than 3) + 1 # Formerly : len(particle.hair_keys)
                                totalNumberOfHairs = ( len(pSys.particles) + len(pSys.child_particles) )
                                #hairCounter = 0
                                file.write('#declare HairArray = array[%i] {\n' % totalNumberOfHairs)
                                for pindex in range(0, totalNumberOfHairs):

                                    #if particle.is_exist and particle.is_visible:
                                        #hairCounter += 1
                                        #controlPointCounter = 0
                                        # Each hair is represented as a separate sphere_sweep in POV-Ray.
                                        file.write('sphere_sweep{')
                                        if pSys.settings.use_hair_bspline:
                                            file.write('b_spline ')
                                            file.write('%i,\n' % (steps + 2))  # +2 because the first point needs tripling to be more than a handle in POV
                                        else:
                                            file.write('linear_spline ')
                                            file.write('%i,\n' % (steps))
Campbell Barton's avatar
Campbell Barton committed
                                        #changing world coordinates to object local coordinates by multiplying with inverted matrix
                                        initCo = ob.matrix_world.inverted()*(pSys.co_hair(ob, pindex, 0))
                                        if ob.material_slots[pSys.settings.material - 1].material and ob.active_material is not None:
                                            pmaterial = ob.material_slots[pSys.settings.material-1].material
                                            for th in pmaterial.texture_slots:
                                                if th and th.use and th.use_map_color_diffuse:
                                                    #treat POV textures as bitmaps
                                                    if (th.texture.type == 'IMAGE' and th.texture.image and th.texture_coords == 'UV' and ob.data.uv_textures is not None): # or (th.texture.pov.tex_pattern_type != 'emulator' and th.texture_coords == 'UV' and ob.data.uv_textures is not None):
                                                        image=th.texture.image
                                                        image_width = image.size[0]
                                                        image_height = image.size[1]
                                                        image_pixels = image.pixels[:]
                                                        uv_co = pSys.uv_on_emitter(mod, pSys.particles[pindex], pindex, 0)
                                                        x_co = round(uv_co[0] * (image_width - 1))
                                                        y_co = round(uv_co[1] * (image_height - 1))
                                                        pixelnumber = (image_width * y_co) + x_co
                                                        r = image_pixels[pixelnumber*4]
                                                        g = image_pixels[pixelnumber*4+1]
                                                        b = image_pixels[pixelnumber*4+2]
                                                        a = image_pixels[pixelnumber*4+3]
Campbell Barton's avatar
Campbell Barton committed
                                                        initColor=(r,g,b,a)
                                                    else:
                                                        #only overwrite variable for each competing texture for now
                                                        initColor=th.texture.evaluate((initCo[0],initCo[1],initCo[2]))
                                        for step in range(0, steps):
                                            co = ob.matrix_world.inverted()*(pSys.co_hair(ob, pindex, step))
                                        #for controlPoint in particle.hair_keys:
                                            if pSys.settings.clump_factor != 0:
                                                hDiameter = pSys.settings.clump_factor / 200.0 * random.uniform(0.5, 1)
                                            elif step == 0:
                                                hDiameter = strandStart
                                            else:
                                                hDiameter += (strandEnd-strandStart)/(pSys.settings.display_step+1) #XXX +1 or not?
                                            if step == 0 and pSys.settings.use_hair_bspline:
                                                # Write three times the first point to compensate pov Bezier handling
                                                file.write('<%.6g,%.6g,%.6g>,%.7g,\n' % (co[0], co[1], co[2], abs(hDiameter)))
Campbell Barton's avatar
Campbell Barton committed
                                                file.write('<%.6g,%.6g,%.6g>,%.7g,\n' % (co[0], co[1], co[2], abs(hDiameter)))
                                                #file.write('<%.6g,%.6g,%.6g>,%.7g' % (particle.location[0], particle.location[1], particle.location[2], abs(hDiameter))) # Useless because particle location is the tip, not the root.
                                                #file.write(',\n')
                                            #controlPointCounter += 1
                                            #totalNumberOfHairs += len(pSys.particles)# len(particle.hair_keys)
                                          # Each control point is written out, along with the radius of the
                                          # hair at that point.
                                            file.write('<%.6g,%.6g,%.6g>,%.7g' % (co[0], co[1], co[2], abs(hDiameter)))
                                          # All coordinates except the last need a following comma.
                                            if step != steps - 1:
                                                file.write(',\n')
                                            else:
                                                if texturedHair:
                                                    # Write pigment and alpha (between Pov and Blender alpha 0 and 1 are reversed)
                                                    file.write('\npigment{ color srgbf < %.3g, %.3g, %.3g, %.3g> }\n' %(initColor[0], initColor[1], initColor[2], 1.0-initColor[3]))
                                                # End the sphere_sweep declaration for this hair
                                                file.write('}\n')
                                          # All but the final sphere_sweep (each array element) needs a terminating comma.
                                        if pindex != totalNumberOfHairs:
                                            file.write(',\n')
                                        else:
                                            file.write('\n')
                                # End the array declaration.
                                file.write('}\n')
Maurice Raybaud's avatar
Maurice Raybaud committed
                                file.write('\n')
Loading
Loading full blame...